
GraphPak for OSF Motif

Programmer’s Reference
Version 2.1

Integrated Computer
Solutions, Incorporated

Copyright, 1995-2009 by Integrated Computer Solutions, Inc.
The XiPlotter Programmer’s Guide® is copyrighted by Integrated Computer Solutions,
Inc., with all rights reserved. No part of this book may be reproduced, transcribed, stored
in a retrieval system, or transmitted in any form or by any means electronic, mechanical,
photocopying, recording, or otherwise without the prior written consent of Integrated
Computer Solutions, Inc.
Integrated Computer Solutions, Inc.
54 B Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060
Fax: 617.621.9555
E-mail: info@ics.com

Trademarks
EPak and EnhancementPak are trademarks of Integrated Computer Solutions, Inc.
Motif and OSF/Motif are trademarks of the Open Software Foundation, Inc.
X, X11, and X Window System are trademarks of X Consortium, Inc.
UNIX is a registered trademark in the United States and other countries, licensed exclu-
sively through X/Open Company Ltd.
All other products or company names are used for identification purposes only, and may
be trademarks of their respective owners.

Second Printing
January 2009

Table of Contents

Page

Preface . xvii

1. Introduction: XiPlotter Architecture . 3

1.1 XiPlotter Architecture . 4
1.2 XiPlotter Data Types . 7
1.3 Plot Data Representation . 8

2. Hello, World . 11

2.1 The Program . 12
2.2 Compiling and Linking the Program . 16

3. Plotter Data Types and Resources . 19

3.1 Double Resources . 20
3.2 String And XmString Resources . 21
3.3 Fonts and Displayed Text . 22

3.3.1 Font List Inheritance . 22
3.3.2 Automatically Created XmStrings . 23
3.3.3 PostScript Font Lists . 26
3.3.4 Internationalized Text Display . 28

3.4 Markers . 29
3.5 Fill Patterns . 31
3.6 Line Patterns . 33
3.7 Line Widths . 35
3.8 Colors . 36
3.9 Cursors . 37
3.10 Inherited Resource Values . 38

4. Plot Data Representation . 39

4.1 The XiPlotData Abstraction . 40
4.2 Data in Arrays of Values . 44
4.3 Data in Arrays of Structures . 45
4.4 Data of Mixed Types . 46
4.5 Linear Data . 47
4.6 Linear Transformations of Data . 48
4.7 String Data . 49

5. The Plotter Widget . 51

5.1 Creating an XiPlotter Widget . 52
5.2 Plotter Resources . 53

5.2.1 Default Colors and Background Resources . 56
5.2.2 Fonts . 57
5.2.3 The Axes . 59
5.2.4 The Title . 60
5.2.5 The Legend . 61
5.2.6 Plotter Layout . 64
5.2.7 Double Buffering and Backing Store . 66
5.2.8 Interaction Resources and Callbacks . 67
5.2.9 Cursor Resources . 67
5.2.10 Printing Resources . 69
5.2.11 Constraint Resources . 69

5.3 Plotter Redisplay . 71
5.4 Printing the Plotter Widget . 72

5.4.1 Printout Size and Orientation . 72
5.4.2 Printout Scale . 74
5.4.3 Spooling a PostScript File to a Printer . 75

6. The Axis Widget . 77

6.1 Querying the Axes of a Plotter . 79
6.2 Axis Resources . 82

6.2.1 The Title . 82
6.2.2 The Labels . 84
6.2.3 The Axis and Tick Marks . 85

6.2.4 The Frame and the Origin . 87
6.2.5 The Grid . 88
6.2.6 Axis Layout . 89

6.3 Controlling Axis Numbering . 90
6.3.1 Computing Axis Bounds Automatically . 91
6.3.2 Setting Axis Bounds Manually . 92
6.3.3 Setting Secondary Y Axis Bounds . 93
6.3.4 Specifying Logarithmic Axes . 96
6.3.5 Computing Axis Marks Automatically . 97
6.3.6 Specifying Axis Marks Explicitly . 98
6.3.7 Computing Axis Labels Automatically . 101
6.3.8 Specifying Axis Labels Explicitly . 102

6.4 World <--> Pixel Coordinate Conversion . 105

7. The LinePlot Widget . 109

7.1 Creating a LinePlot . 110
7.2 LinePlot Resources . 110

7.2.1 Lines . 111
7.2.2 Markers . 112
7.2.3 Fill Patterns . 114
7.2.4 Impulses . 115
7.2.5 Shadows . 115
7.2.6 Data Resources . 116

7.3 Specifying LinePlot Data . 117
7.3.1 Arrays of Doubles, Floats, or Ints . 117
7.3.2 Specifying Data in Structures . 117
7.3.3 Changing Data in Place . 120
7.3.4 Adding Data Points Dynamically . 120

8. The ErrorPlot Widget . 125

8.1 Creating an ErrorPlot . 126
8.2 ErrorPlot Resources . 126

8.2.1 Error Bar Resources . 127
8.2.2 Fixed Error Resources . 128
8.2.3 Variable Error Resources . 129

8.3 Specifying ErrorPlot Data . 129

8.3.1 Arrays of Doubles, Floats, or Ints . 130
8.3.2 Specifying Error Values from Structures . 130
8.3.3 Changing Data in Place . 132

9. The BarPlot Widget . 135

9.1 Creating a BarPlot . 136
9.2 BarPlot Resources . 136

9.2.1 Bar Color and Pattern . 137
9.2.2 Bar Outline . 138
9.2.3 Bar Shadows . 139
9.2.4 Bar Positioning, Grouping and Stacking . 140
9.2.5 Data Resources . 142

9.3 Specifying BarPlot Data . 143
9.3.1 Arrays of Doubles, Floats, and Ints . 143
9.3.2 Specifying Data in Structures . 145
9.3.3 Changing Data in Place . 145

10. The HistoPlot Widget . 147

10.1 Creating a HistoPlot . 148
10.2 HistoPlot Resources . 148

10.2.1 Boundary and Bin Resources . 149
10.2.2 Data Resources . 150

10.3 Specifying HistoPlot Data . 151
10.3.1 Arrays of Doubles, Floats, and Ints . 151
10.3.2 Specifying Data from Structures . 151

10.3.3 Changing Data in Place . 152

11. The PiePlot Widget . 155

11.1 Creating PiePlot Widgets . 156
11.2 PiePlot Resources . 159

11.2.1 PiePlot Fill Pattern . 159
11.2.2 PiePlot Outline . 160
11.2.3 PiePlot Shadows . 160
11.2.4 PiePlot Labels . 161

11.2.5 PiePlot Data . 163
11.2.6 PiePlot Positioning . 164

12. The HighLowPlot Widget . 167

12.1 Creating a HighLowPlot . 168
12.2 HighLowPlot Resources . 170

12.2.1 Visual Resources . 170
12.2.2 Data Resources . 171

12.3 Specifying XiHighLowPlot Data . 172
12.3.1 Arrays of Doubles, Floats, or Ints . 172

12.3.2 Using Arrays of Structures . 174
12.3.3 Notifying the Widget of Changed Data . 176

13. Annotating Plots . 179

13.1 Creating Annotations . 180
13.2 TextPlot and ImagePlot Resources . 182

13.2.1 Annotation Position . 183
13.2.2 Annotation Offsets . 185
13.2.3 Annotation Size and Margins . 187
13.2.4 Annotation Colors . 187
13.2.5 Arrows . 188
13.2.6 Shadows and Trim . 189

13.2.7 TextPlot Resources . 190
13.2.8 ImagePlot Resources . 192

13.3 Positioning Annotations . 193
13.3.1 Querying LinePlot and HighLowPlot values 194
13.3.2 Querying the Bounds of a BarPlot Bar . 195
13.3.3 Querying the Bounds of a PiePlot Wedge . 196
13.3.4 Example: Annotating a PiePlot . 198

13.4 Updating Image Annotations . 199

14. The FadePlot Widget . 201

14.1 FadePlot Resources . 202
14.2 Using the FadePlot . 204

14.2.1 The FadePlot as Backdrop and Background . 206
14.2.2 Non-Linear Color Interpolation . 207
14.2.3 Note on Color Usage . 208

15. Drawing Your Own: the CallbackPlot 211

15.1 CallbackPlot Resources . 212
15.1.1 Untyped Data Resources . 213
15.1.2 Callback Resources . 214
15.1.3 Control Resources . 220

15.2 CallbackPlot Example . 221

16. User Interaction with the Plotter . 227

16.1 Selecting Items in the Legend . 228
16.1.1 Example: Highlighting a Selected Plot . 229

16.2 Selecting Points . 230
16.2.1 Example: Hit Detection . 232

16.3 Crosshairs and Mouse Motion . 233
16.3.1 Example: Displaying Mouse Coordinates . 235

16.4 Selecting Regions . 236
16.4.1 Example: Zooming In . 238

16.5 Panning or Scrolling . 240
16.5.1 Example: Scrolling the Plotting Area . 241

16.6 Selecting Title and Axes . 242
16.7 Plotter Translations and Actions . 243

16.7.1 Example Translation Tables . 247

17. Defining Custom Markers . 249

17.1 Creating a Custom Marker . 250
17.2 PostScript Output of Custom Markers . 252
17.3 Naming and Looking Up Markers . 257

18. Defining Custom Fill Patterns . 259

18.1 Creating a Custom Fill Pattern . 260
18.1.1 Defining a Fill Pattern for X . 260
18.1.2 Defining a Fill Pattern for PostScript . 262

18.2 Naming and Looking up Fill Patterns . 265

Appendix A Widget Resource Reference 267

A.1 Annotation Resources . 268
A.2 Axis Resources . 270
A.3 BarPlot Resources . 272
A.4 CallbackPlot Resources . 273
A.5 ErrorPlot Resources . 274
A.6 FadePlot Resources . 275
A.7 HighLowPlot Resources . 276
A.8 HistoPlot Resources . 277
A.9 LinePlot Resources . 278
A.10 PiePlot Resources . 279
A.11 Plotter Resources . 280

Appendix B Function Reference . 283

B.1 Annotation Functions . 284
B.2 Axis Functions . 285
B.3 BarPlot Functions . 286
B.4 CallbackPlot Functions . 286
B.5 ErrorPlot Functions . 287
B.6 FadePlot Functions . 287
B.7 FillPattern Functions . 287
B.8 HighLowPlot Functions . 288
B.9 HistoPlot Functions . 289
B.10 LinePlot Functions . 290
B.11 Marker Functions . 291
B.12 PiePlot Functions . 291
B.13 Plotter Functions . 291

Appendix C Data Type Reference . 293

C.1 Callback Structures . 294
C.2 Callback Reasons . 295
C.3 Data Types . 295
C.4 Fill Patterns . 296
C.5 Line Patterns . 297
C.6 Markers . 298

Index. 299

Figures

Page

Figure 1-1. The widget class hierarchy of the XiPlotter library 5
Figure 1-2. A typical widget instance hierarchy using the XiPlotter 6
Figure 3-1. Predefined markers . 29
Figure 3-2. Predefined fill Patterns. . 32
Figure 3-3. Predefined Line Patterns . 34
Figure 3-4. Definitions of the standard line patterns . 34
Figure 4-1. The XiPlotData structure and the XiPlotDataType enumerated type 40
Figure 4-2. Specifying plot data through XiPlotData resources 41
Figure 5-1. The XiPlotter legend . 62
Figure 5-2. XiPlotterPrint() . 73
Figure 6-1. Resources that control Axis appearance . 83
Figure 6-2. Plotter widgets with logarithmic axes . 96
Figure 6-3. XiAxisSetMarks() . 99
Figure 6-4. XiAxisSetLabels() and XiAxisSetLabelStrings() 104
Figure 7-1. Functions for specifying (X,Y) LinePlot data in simple arrays. 118
Figure 7-2. Functions for specifying LinePlot data in structures 119
Figure 7-3. XiLinePlotDataChanged . 120
Figure 7-4. XiLinePlotDataAdded() . 121
Figure 8-1. ErrorPlot functions for specifying error values in simple arrays 130
Figure 8-2. XiErrorPlotSetErrors() . 131
Figure 9-1. The XmNbarSize and XmNbarPosition resources 140
Figure 9-2. Independently positioned groups of bars . 141
Figure 9-3. Simple functions for specifying BarPlot data 144
Figure 9-4. XiBarPlotSetValues() . 144
Figure 10-1. Specifying HistoPlot data in simple arrays 151
Figure 10-2. XiHistoPlotSetValues() . 152
Figure 12-1. Visual resources of the HighLowPlot widget 170
Figure 12-2. Specifying data as arrays of doubles, floats, or ints 173
Figure 12-3. XiHighLowPlotSetValues() . 174
Figure 12-4. XiHighLowPlotSetPoints() . 175
Figure 12-5. XiHighLowPlotDataChanged() . 176
Figure 13-1. Positioning annotations . 184
Figure 13-2. Annotation offsets . 186

Examples

Page

Example 2-1. The XiPlotter Hello, World program . 12
Example 3-1. Specifying text style an size with a single font list 25
Example 4-1. Specifying data in simple arrays . 44
Example 4-2. Specifying data in arrays of structures . 45
Example 4-3. Specifying plot data of mixed types . 46
Example 4-4. Specifying linear data . 47
Example 4-5. Performing a linear transform on data values 48
Example 5-1. Creating XiPlotter widgets . 52
Example 6-1. Querying the Axes of a Plotter widget . 79
Example 7-1. Two methods for creating a LinePlot widget. 110
Example 7-2. Using XiLinePlotDataAdded() . 122
Example 8-1. Creating ErrorPlot widgets . 126
Example 8-2. Specifying error values from structures . 132
Example 9-1. Creating BarPlot Widgets . 136
Example 10-1. Creating a HistoPlot widget . 148
Example 11-1. Creating a piechart with PiePot . 157
Example 12-1. Creating a HighLowPlot widget . 168
Example 13-1. Creating annotations . 181
Example 13-2. Thoroughly annotating a PiePlot wedge . 199
Example 14-1. Using the FadePlot widget . 205
Example 14-2. FadePlot resources in a resource file . 206
Example 14-3. Example non-linear interpolation functions 207
Example 15-1. Using the CallbackPlot widget . 221
Example 15-2. Resources for the CallbackPlot Example 225
Example 16-1. Highlighting a selected plot . 230
Example 16-2. Hit detection . 232
Example 16-3. Displaying Mouse Coordinates . 236
Example 16-4. Zooming In . 239
Example 16-5. Scrolling the plotting area . 242
Example 16-6. Example Translation Tables . 247
Example 17-1. Creating a custom marker (X only) . 252
Example 17-2. PostScript code to draw the marker . 254
Example 17-3. Defining and using custom markers for X and PostScript 256

Example 18-1. Creating an XiFillPattern (X only) . 261
Example 18-2. Creating an XiFillPattern for X and PostScript 265

Tables

Page

Table 3-1. Predefined Markers. 30
Table 3-2. Predefined fill Patterns . 31
Table 5-1. Plotter Resources . 53
Table 6-1. Axis Resources . 80
Table 7-1 LinePlot Resources . 111
Table 8-1. ErrorPlot Resources . 127
Table 9-1. BarPlot Resources. 138
Table 10-1. HistoPlot Resources . 149
Table 11-1. PiePlot Resources . 158
Table 12-1. HighLowPlot Resources . 169
Table 13-1. AnnotationPlot Resources . 182
Table 14-1. FadePlot Resources. 202
Table 15-1. CallbackPlot Resources . 212

face

Preface

The XiPlotter library is a set of X Toolkit widgets and their related functions for
displaying (on an X display) and printing (to a PostScript printer) line plots, line plots
with error bars, bar plots, histograms, pie charts, and high-low-close plots. This
manual documents the XiPlotter library.

About the Software
The XiPlotter library requires Motif 1.2 and the X11R5 Xlib and Xt libraries. The
Plotter widget is subclassed from the Motif XmBulletinBoard widget.
The X protocol has been stable since X11R3, so these widgets will display graphs
correctly with any X server from X11R3 on. The widgets can print themselves on any
PostScript printer.
The Plotter library is implemented as a single Plotter widget that provides a plotting
infrastructure, and a number of separate Plot widgets that display line plots, bar plots,
pie charts and so on. These Plot widgets are bundled with the Plotter library. This
manual describes the complete library, with each of the Plot widgets.

Pre
Preface xvii

About This Book
This manual is the complete documentation for the XiPlotter library. It is organized in
"programmer's guide" form, rather than as a reference manual, which means that you
should read it more-or-less from beginning to end (with exceptions as noted below),
in order to learn about each of the important features of the Plotter library. Once you
have read about all of these features, you'll find the quick-reference section at the end
of the manual quite useful during your day-to-day programming.
The book has the following structure:
Chapter 1: Introduction: Plotter Architecture, is an introduction to the widgets and

other components of the Plotter library, and an explanation of how they
fit together.

Chapter 2: “Hello, World”, presents a complete (though simple) working example
of using the Plotter library to display plots. It contains information on
compiling and linking applications that use the Plotter library, so you
can get up and running right away.

Chapter 3: Plotter Data Types and Resources, explains some special data types that
are commonly used in the Plotter library, and also provides hints about
specifying values for other common resource types. The material in this
chapter is a little dry, but it will pay to be familiar with it.

Chapter 4: Plot Data Representation, documents the XiPlotData abstraction; this is
the abstraction used by almost all of the widgets in the library for data
specification. Using XiPlotData values, you can very flexibly instruct
your plots to extract data from arrays of arbitrary application data struc-
tures.

Chapter 5: The XiPlotter Widget, documents each of the resources and constraint
resources of the XiPlotter widget, as well as its convenience functions,
callbacks, translations, and actions. This chapter also explains how you
can generate a PostScript representation of your plots.

Chapter 6: The XiAxis Widget, explains all of the XiAxis resources, and documents
a number of important functions for configuring the X and Y axes of the
Plotter.

Once you have read these first six chapters, you will understand the fundamental
architecture of the XiPlotter library. The next six chapters document the individual
Plot widgets responsible for displaying different kinds of graphs. You can read them
in any order you prefer, and need only read the chapters for the widgets you plan to
use.
Chapter 7: The XiLinePlot Widget, explains how to display line plots.
Chapter 8: The XiErrorPlot Widget, explains how to display line plots with error

bars.
xviii GraphPak Programmer’s Reference Manual

Chapter 9: The XiBarPlot Widget, explains how to display bar charts and stacked
bar charts.

Chapter 10: The XiHistoPlot Widget, explains how to displayhistograms.
Chapter 11: The XiPiePlot Widget, explains how to display piecharts.
Chapter 12: The XiHighLowPlot Widget, explains how to display high-low-close

plots of financial market or similar data.
Chapter 13: Annotating Plots, explains how you can add textual and graphical anno-

tations to the Plotter widget.
Chapter 14: The FadePlot Widget, documents a special Plot widget that provides a

smoothly shaded background for presentation graphics.
Chapter 15: Drawing Your Own: the CallbackPlot, explains how you can do your

own custom drawing into the Plotter widget.
Chapter 16: User Interaction with the Plotter, explains the callbacks the Plotter pro-

vides for handling user interaction with the Plotter, and also the actions
and translations that invoke those callbacks.

The final two chapters cover advanced topics for customizing the Plotter. You need
not read them your first Time through the manual.
Chapter 17: Defining Custom Markers, explains how to define custom line plot

marker glyphs for use in X and PostScript.
Chapter 18: Defining Custom Fill Patterns, explains how to define custom hatch

patterns for use in X and PostScript.
The last part of the manual is a quick reference section that you may want to refer to
during your day-to-day use of the Plotter library.
Appendix A: Widget Resource Reference, contains tables of resources for each widget

in the library. The tables are cross-referenced by page number back to
the main body of the book, so you can easily look up a full explanation
of any item.

Appendix B: Function Reference, lists the signatures of every public function defined
by the Plotter library. The list is organized by widget or functional
group.

Appendix C: Data Type Reference, shows the definitions of all the public data types
used by the Plotter library, and also contains tables of predefined mark-
ers, fill patterns, and line patterns.
Preface xix

Assumptions and Recommended Reading
In order to use the Plotter library, you will need to be comfortable with the C pro-
gramming language and the X Toolkit. Throughout this manual, I assume that you are
at least familiar with the basic X Toolkit programming model--that you understand
what a widget is, and know the difference between a widget instance and a widget
class, for example.You will also need to understand widget resources and how to set
them, and callback lists and how to specify them.
O'Reilly & Associates publishes a useful series of books on programming with X. If
you are new to the X Toolkit, you may be interested in Volume Four-Toolkit Intrinsics
Programming Manual. This volume provides complete documentation for program-
ming with Xt, and does not omit the advanced topics as many introductory books do.
Whether or not you are new to Xt programming, I recommend Volume Five-Toolkit
Intrinsics Reference Manual; it is a complete and handy reference to Xt, with far more
explanation of functions than you will find in the standard Xt man pages.

Motif widget set
The Plotter library requires the Motif widget set. O'Reilly's VolumeSix-Motif Pro-
gramming Manual (a.k.a "the blue book") may be useful to you. Volume 6B-Motif
Reference Manual is also useful; it is a complete man page reference for Motif 1.2. I
find it easier to use than the standard OSF reference.
Although the X Toolkit is fairly effective at hiding many of the details of Xlib from
the programmer, displaying graphs is a task that relies heavily on Xlib drawing com-
mands. Because the visual appearance of the plots is customizable, there are a number
of widget resources, such as colors, line widths, and line patterns, that are Xlib data
types. Chapter 3, Plotter Data Types and Resources resources explains what you need
to know about these data types, but a basic knowledge of Xlib will be useful. Volume
One in the O'Reilly series, Xlib Programming Manual, is a definitive book on all
aspects of Xlib programming. The accompanying reference is Volume Two-Xlib Ref-
erence Manual.
Finally, if you will be defining custom markers or fill patterns that will be printed as
well as displayed in X, (there are plenty of predefined markers and fill patterns, so
this is not something that you will have to do) you will have to write some simple
PostScript code--you will need to understand the PostScript programming model, and
be familiar with the basic PostScript drawing operators. The book that defines the
PostScript language is PostScript Language Reference Manual, Second Edition, pub-
lished by Addison-Wesley. This large book contains a detailed introduction to the
PostScript programming model, and a complete language reference section.
xx GraphPak Programmer’s Reference Manual

 1

2 GraphPak Programmer’s Reference Manual

Introduction: XiPlotter
Architecture

The XiPlotter library provides X Toolkit widgets and related convenience functions
for displaying data with six standard plot types: line plots (sometimes known as x-y
plots), error plots, bar plots, histograms, pie charts, and high-low-close plots (for
financial market data, for example). The facing page shows some typical plots that
can be generated with this library. (The pictures of example plots throughout this
book were all generated using the PostScript output capability of the Plotter library
itself).

The features of the Plotter library include the following:
• All plot types can be displayed in X, or output as high-resolution encapsulated

color PostScript for printing or inclusion into other documents. (This is native
PostScript output, not simply a window dump.) The widgets support internation-
alized text.

• The Plotter widget itself has 87 resources that control the general appearance and
behavior of the Plotter title, legend and plotting area. Each of the three possible
axes (the X axis and the primary and secondary Y axes) is implemented as a sep-
arate object with 65 of its own resources to control its appearance and number-
ing. Finally, the various supported plot types add another 220 resources. If we
count the Axis resources three times, for the three independent axes, this is over
500 resources in the Plotter library.

• The X and Y axes support auto-scaling, auto-labeling, and auto-numbering. Axis
labels may be numbers or strings. Logarithmic axes are supported and plot data
will be automatically scaled to a logarithmic axis. An optional "secondary Y
axis" can be displayed to the right of the plotting area.

• The Plotter widget is implemented as a "constraint widget", and each of the plot
types are implemented as a separate gadget class to be created as children of a
Plotter. This modular architecture makes it trivial to display multiple plots and
plots of multiple types within a single widget.

• The Plotter widget displays an optional legend. Legend entries for plots are spec-
ified through a constraint resource.

1

GraphPak Programmer’s Reference Manual 3

• The Legend is sensitive to mouse clicks, and behaves like a List widget, allowing
users to select individual plots within the widget. The plotting area of the widget
is also sensitive to mouse clicks, and drags and can display crosshairs and allow
the user to select a region by dragging out a rectangle with the mouse.

• Data is specified for all plot types with a very flexible scheme that allows the plot
widget to extract values of any floating-point or scalar type directly from applica-
tion data structures--there is no need to make a special copy of the data just for
the plot widget.

• The Plotter library provides 12 standard marker types, each in four different
sizes, to mark data points in line plots and error bar plots. There are also 9 pre-
defined dash patterns for the lines that connect the data points. For bar plots and
pie charts, there are 25 predefined patterns for filling the bars and pie slices. You
can also create your own custom markers, line patterns, and fill patterns.

1.1 XiPlotter Architecture1

The XiPlotter widget is a subclass of the Motif XmBulletinBoard widget class. It dis-
plays a title and a legend and provides a general widget plotting infrastructure (such
as handling autoscaling and generating mouse selection callbacks), but does not itself
display any data. That is the job of separate Plot objects, implemented as independent
widget classes, and instantiated as children of the Plotter widget.
These children of the Plotter widget are all subclasses of the XiPlot meta-class, which
is itself a subclass of the Xt RectObj class. There are six of these Plot widget classes
currently implemented, each of which displays a different kind of plot: XiLinePlot,
XiErrorPlot, XiBarPlot, XiHistoPlot, XiPiePlot, and XiHighLowPlot. The XiAxis
widget is also a subclass of the XiPlot meta-class; the XiPlotter uses this widget class
internally to display its axes. Figure 1-1 shows the widget class hierarchy of the
XiPlotter library.
Like all widgets, each of the Plot widget classes has its own set of resources that con-
trol the appearance and behavior of any particular instance of that widget class. Each
of the Plot widget classes provides resources that you can set to specify the data to be
plotted, and the graphical appearance (colors, line widths, etc.) of that data.

1. If you are impatient with manual reading, you may want to skip to Chapter 2, Hello World at this
point. Be sure to return to this chapter, however; it provides an important overview of the library.
4 GraphPak Programmer’s Reference Manual

Figure 1-1. The widget class hierarchy of the XiPlotter library

Also like all widgets, each Plot widget has various "class methods" that it imple-
ments. The XiPlot widget class requires that each of its subclasses implement meth-
ods for displaying their data in X, for printing their data in PostScript, for rescaling
their data when the bounds of the axes change or when the size of the Plotter widget
changes, and so on. This set of class methods is essentially the definition of what it
means to be a Plot widget, and is the interface definition for interaction with the Plot-
ter widget.1
The Plotter library contains six standard plot types that implement each of these
required methods, but any subclass of XiPlot that implements the correct methods
will be a legal Plot type, suitable for use with the XiPlotter widget. (Writing widgets
is a tricky business, well beyond the scope of this manual, but if you are an experi-

1. Don’t worry if you do not fully understand this paragraph. You can use the XiPlotter library and
its widgets without knowing the details of their implementation.
Introduction: XiPlotter Architecture 5

enced widget writer, and have purchased the source code to the XiPlotter library, you
will be able to create new plot types beyond the six basic ones supplied with the
library.)

Figure 1-2. A typical widget instance hierarchy using the XiPlotter

Because the Axis and the various plot widgets are sub-classes (sub-sub-classes,
really) of the Xt RectObj class, they do not have windows of their own. This kind of
windowless widget is sometimes called a "gadget". (But don't confuse this with the
Motif XmGadget class--Motif Gadgets are a specific kind of the more general cate-
gory of gadgets.) In order for a gadget to correctly display itself, it must have a coop-
erating parent widget into whose window it can draw. The XiPlotter widget serves
this purpose for all of the gadgets in the library--Plots can only be instantiated as
direct children of a Plotter widget. Figure 1-2 shows the widget instance hierarchy of
a typical XiPlotter application.
6 GraphPak Programmer’s Reference Manual

Note that two Axis widgets appear in the figure as children of the Plotter. These wid-
gets display the X and Y axes, and are automatically created and managed by the
Plotter widget. The Axis functionality could have been incorporated directly into the
Plotter widget, but having independent Axis objects is useful because they serve as
important placeholders for axis resources--rather than adding X and Y axis resources
to the Plotter widget, these resources are broken into two independent sets of Axis
widget resources.
Keeping Plotter, Axis, and Plot widgets separate has several advantages:
• Plots can be created, managed, unmanaged, and destroyed in exactly the same

way you would handle any other widget.
• Creating multiple plots in a Plotter widget is simply a matter of creating multiple

Plot objects. Since plots are independent objects you can always display multiple
kinds of Plot objects (two bar charts and a line plot, for example) in a single Plot-
ter widget.

• Since each plot is a separate object, each has its own set of resources, and there is
no need to specify colors, line patterns, fill patterns, and so on in cumbersome
arrays.

• Since the Plotter is a Constraint widget, it provides constraint resources that each
of its children can set independently. It uses constraints to specify the name to
appear in the legend for each plot, to specify whether a plot is selected or not, and
to specify the stacking order of the plots (which affects how multiple plots over-
lap each other.)

• It is possible (with source code and appropriate expertise) to create new Plot
types to work with the Plotter widget.

1.2 XiPlotter Data Types
One of the primary features and design goals of the Plotter library was that it should
be able to display plots both in an X window, and equally well on a printed page
through PostScript. In order to achieve this, the Plotter library implements a number
of data types that hide the (significant) differences between the X and PostScript dis-
play models. A number of these abstractions are internal to the library, but there are
two that you will encounter while using the library:

XiMarker
Line plots are often drawn with a small glyph or "marker" displayed at each data
point. If plots were only to be displayed in X, it would be sufficient to simply
specify Xlib Pixmap to use as a marker, but for use with PostScript, an XiMarker
is required.
Introduction: XiPlotter Architecture 7

XiFillPattern
Bar charts and pie charts often use "hatch pattern" or "fill patterns" to distinguish
multiple bars or pie wedges from each other. As with line plot markers, a Pixmap
would be sufficient if the plots were to be displayed in X alone, but to support
PostScript, the Plotter library uses the XiFillPattern abstraction.

The Plotter library provides a number of pre-defined markers and fill patterns--you
can use one of these predefined values any time you need to specify a marker or pat-
tern. Chapter 3, Plotter Data Types and Resources explains these types in more detail
and lists their predefined values. It is also possible to define your own custom mark-
ers and fill patterns. Doing so is explained in Chapter 17 and Chapter 18.

1.3 Plot Data Representation
Most applications do not simply plot static arrays of data. First they will obtain the
data by reading a file, querying a database, or performing a numeric integration, for
example. Besides plotting the data, they might display it in a table, perform statistical
analyses on it, or write it out in a new file format. Because different applications have
different goals, each may choose to store its data in different structures. One applica-
tion might store (x,y) line plot values in two separate arrays of double, for example,
and another might store line plot data as integers in an array of structures, each struc-
ture with an x and a y field.
A fundamental architectural goal of the Plotter library is that applications should not
have to make special copies of their data just for their Plot widgets, and should not
have to make their data structures conform to whatever those Plot widgets use inter-
nally. So instead of specifying a required format for plot data, the various Plot widgets
have resources that let you describe the format of the data you will supply.
Data is assumed only to be in an array of structures--quite a broad assumption--and
you can specify the size of each element of the array, the type of the data value stored
within each element (the widgets understand nine floating point and scalar types) and
the offset of the data value from the beginning of the structure. You also, of course,
provide a pointer to the array and specify the number of elements in the array. With
this size, type, and offset information, the Plot widgets can extract and plot the data
values they need from whatever application data structures you find it convenient to
use. The default values of the size, type, and offset resources are chosen so that if you
store your data in arrays of double, you will not need to set any of the resources. (In
fact, you often needn't use widget resources for data specification at all--the Plot wid-
gets each provide convenience functions that make it easier to specify these values.)
One other feature of this data representation model is that when your data is linearly
spaced (many line plots, for example, display sampled data that is uniformly spaced
along the X axis) you need not specify an array of data at all; instead, you can simply
specify the minimum data value, the number of values, and the interval between val-
8 GraphPak Programmer’s Reference Manual

ues. You can use a similar technique to apply an arbitrary linear transformation to any
array of data.
This data representation (and transformation) scheme is described in detail in Chapter
4, Plot Data Representation.
Introduction: XiPlotter Architecture 9

10 GraphPak Programmer’s Reference Manual

Hello, World

This chapter presents and explains a complete (if somewhat simple) working Xt
program that uses the XiPlotter library to display plots. It also explains how to com-
pile the program and link it with the XiPlotter library. The figure on the facing page is
the PostScript output of the program.

2

GraphPak Programmer’s Reference Manual 11

2.1 The Program
Example 2-1 shows a complete Xt program using the XiPlotter library.
This program breaks down into a few major sections, each with some notable fea-
tures:
Header Files (lines 1-4)

<Xm/Xm.h> is the standard Motif header file, and you should include it in all
your Motif programs. <Xi/Plotter.h> is the main header file for the Plotter
library; you must include it in all your Plotter applications. <Xi/LinePlot.h> is the
standard public header file for the LinePlot widget; you must include it in any
application that uses the that widget. Similarly, you would include <Xi/Bar-
Plot.h> and <Xi/PiePlot.h> in applications that used the BarPlot and PiePlot wid-
gets. We also include the standard header <math.h> because we will be doing
some trigonometry in the following code.

Xt Housekeeping (lines 11-16, 22-24, 105, 116)
These lines are standard parts of any Xt application. They initialize the toolkit,
"realize" all the widgets, and enter the main event loop.

Example 2-1. The XiPlotter Hello, World program

 1 #include <Xm/Xm.h>
 2 #include <Xi/Plotter.h>
 3 #include <Xi/LinePlot.h>
 4 #include <math.h>
 5
 6 typedef struct { /* the data type we'll use to store data */
 7float x;
 8float y;
 9 }Point;
 10
 11 void main(ac, av)
 12 int ac;
 13 char *av[];
 14 {
 15XtAppContext app;
 16Widget toplevel, plotter, sine_plot, cosine_plot;
 17int i;
 18Point sine_data[20];
 19float cosine_data[20];
 20double x, dx;
 21
 22/* initialize the X Toolkit as usual */
 23toplevel = XtVaAppInitialize(&app, "hello", NULL, 0,
 24&ac, av, NULL, NULL);
 25
 26/* create the plotter widget as a child of the top level shell */
 27plotter = XtVaCreateWidget("plotter", xiPlotterWidgetClass,
 28 toplevel,
 29 XmNwidth, 600,
12 GraphPak Programmer’s Reference Manual

 30 XmNheight, 250,
 31 XmNtitle, "Hello, World!",
 32 NULL);
 33 /* and manage it */
 34 XtManageChild(plotter);
 35
 36 /*
 37 * Specify titles for each axis.
 38 * by default, the axes are autoscaled, auto-numbered, and
 39 * auto-labeled, so there are no other resources we must set.
 40 * Note how we get the Axis objects from the Plotter widget.
 41 */
 42 XtVaSetValues(XiPlotterXAxis(plotter),XmNtitle,"Angle", NULL);
 43 XtVaSetValues(XiPlotterYAxis(plotter),XmNtitle,"Value", NULL);
 44
 45 /*
 46 * Compute some data for the line plots.
 47 * In an application, this data could come from any source.
 48 * For demo purposes, we store the values in two ways.
 49 */
 50 dx = 2*3.1415926/(float)(XtNumber(sine_data)-1);
 51 for (i=0; i < XtNumber(sine_data); i++) {
 52 extern double sin(), cos();
 53 x = i*dx;
 54 sine_data[i].x = x;
 55 sine_data[i].y = sin(x);
 56 cosine_data[i] = cos(x);
 57 }
 58
 59 /*
 60 * Create two line plot widgets as children of the Plotter,
 61 * and set various resources on them. Notice that we do
 62 * not specify any data here.
 63 */
 64 sine_plot = XtVaCreateWidget(
 65 "sine", xiLinePlotWidgetClass, plotter,
 66 XmNlegendName, "sin(x)",
 67 XmNlineWidth, 2,
 68 XmNconnectPoints, True,
 69 XmNmarkPoints, False,
 70 XtVaTypedArg,XmNlineColor,XmRString,"navy",5,
 71 NULL);
 72 cosine_plot = XtVaCreateWidget(
 73 "cosine", xiLinePlotWidgetClass, plotter,
 74 XmNlegendName, "cos(x)",
 75 XmNlineWidth, 2,
 76 XmNlinePattern, XiLinePatternDashed2,
 77 NULL);
 78
 79 /*
 80 * Specify data for the 1st line plot by specifying the type
 81 * and position of the data fields within the Point structure
 82 * we used. We could also do this with resources.
 83 */
 84 XiLinePlotSetPoints(sine_plot,
 85 sine_data, XiPlotDataFloat,
 86 sizeof(Point), XtOffsetOf(Point, x),
 87 sine_data, XiPlotDataFloat,
Hello, World 13

 88 sizeof(Point), XtOffsetOf(Point, y),
 89 XtNumber(sine_data));
 90
 91 /*
 92 * Specify data for the next line plot with a different,
 93 * simpler convenience function. Here we take advantage that
 94 * the X values are linear, & the Y values in a simple array.
 95 */
 96 XiLinePlotSetFloatYValues(cosine_plot,
 97 0.0, dx, /* x min, x increment */
 98 cosine_data, XtNumber (cosine_data));
 99
100 /* don't forget to manage the plots, or they won't appear! */
101 XtManageChild(sine_plot);
102 XtManageChild(cosine_plot);
103
104 /* Standard Xt: realize the shell */
105 XtRealizeWidget(toplevel);
106
107 /*
108 * Print the plot to the file hello.ps, at 5 x 3 inches,
109 * using a scale factor of 1.0, and not using landscape mode.
110 * Normally, we'd print the plot under user control, but this
111 * is here for demonstration purposes.
112 */
113 XiPlotterPrint(plotter, "hello.ps", 5*72, 3*72, 1.0, False);
114
115 /* last, enter the standard Xt event loop. */
116 XtAppMainLoop(app);
117 }

Creating the Plotter (lines 26-34)
These lines create and manage the Plotter widget, setting some Plotter resources
at the same time. We could also have used XtCreateWidget(), XtCreateManaged-
Widget(), XtVaCreateManagedWidget(), or XiCreatePlotter() to do this. Chapter
3, The Plotter Widget documents the Plotter widget and all of its resources.

Configuring the Axes (lines 42-43)
These lines configure the Axis widgets. The X and Y Axis widgets are automati-
cally created by the Plotter widget; you may often want to set resources on these
widgets before displaying any plots. In this example, we simply set the XmNtitle
resource on each widget--the Axes will, by default, automatically choose appro-
priate bounds, tick mark positions and tick mark labels, so there is nothing else
that we need to configure. We set the resources with the standard XtVaSetVal-
ues() function, but note that we have to get the widget pointers for the X and Y
axes from the Plotter widget by calling the functions XiPlotterXAxis() and
XiPlotterYAxis(). Chapter 6, The Axis Widget documents the Axis widget and all
of its resources.
14 GraphPak Programmer’s Reference Manual

Computing Data (lines 50-57)
This code does some trigonometry to compute the data points we will be plotting.
Some applications will get their plot data in this way, but many will instead read
it from data files or query it from a database. Notice that we store X and Y values
for the sine plot, but only Y values for the cosine plot. This is simply so we can
demonstrate two methods of specifying the data for the plots.

Creating Plots (lines 64-78)
These two function calls create two LinePlot children of the Plotter widget. As
explained in the previous chapter, plots are added to a Plotter widget in the same
way that any widget is created. They are also managed, unmanaged, and
destroyed in the same way as any other widget. We set a few resources on each
widget that will control its appearance, but we do not specify any data values
here. (All the LinePlot resources are documented in Chapter 7, The LinePlot Wid-
get ; see that chapter if you want to look these resources up.) Note that we set the
XmNlegendName resource for both LinePlot widgets. This is actually a con-
straint resource provided by the Plotter widget; it is used to specify the string that
should appear in the Plotter legend. Note also that we do not manage the widgets
here. We'll manage them after we specify data for them. (In this example, it
doesn't matter much when we manage these LinePlot widgets, because the Plotter
widget has not been realized yet, but if we were adding these plots dynamically
to an existing widget, it could be significantly more efficient to specify the data
before managing the widgets.)

Specifying Data (lines 84-99)
The code on these lines call LinePlot convenience functions to tell the widgets
what data they should display. The second function, XiLinePlotSetFloatYVal-
ues() is the simpler one--since our X values are evenly spaced, we simply specify
a minimum X value, an X increment, and an array of float to plot as the Y values
for each point. We could have used this same technique for the first plot as well,
but for this demonstration, we used a more complicated function. XiLinePlotSet-
Points() tells the LinePlot widget how to extract its X values and its Y values
from our Point data structure. For both the X and the Y values, the arguments to
this function specify a pointer to an array of the Point data type we defined, the
type of the value to extract from each element of this array (a float), the size of
the Point data structure, and the offset of the value within the structure. Since the
X and Y values are stored in the same array, with the same data type, only the X
and Y offset arguments are different. Note that these arguments are computed
with XtOffsetOf(). This is a standard Xt macro, but unless you have written wid-
get, or used application resources, you may not be familiar with it. We could also
have specified data for the plots with LinePlot resources similar to the arguments
to these convenience functions. Chapter 4, Plot Data Representation explains in
detail how to specify plot data with resources or with convenience functions.
Hello, World 15

Making the Plots Visible (lines 101-102)
Now that the plots have had data specified, we manage them, exactly as any other
widget or gadget would be managed.

Printing the Plotter (line 113)
This line calls XiPlotterPrint() to produce a PostScript representation of the Plot-
ter and its LinePlot widgets. The width and height arguments to this function are
measured in PostScript points, so we multiply inches by 72 to convert. These
arguments are optional; if omitted, the function will use the largest size that will
fit on the page that is consistent with the Plotter's on-screen aspect ratio. Chapter
5, The Plotter Widget plotter explains this printing function in more detail.

2.2 Compiling and Linking the Program
You can compile a program using the XiPlotter widget much as you would compile
any other Motif application. The only thing you must be careful of is to ensure that
the compiler can find the header files for the EPak widgets--use the CW-I option for
this. So, if you had the EPak header files installed in/ usr/local/include/Xi, and had
your X11 and Motif header files installed in the default /usr/include/X11 and /usr/
include/Xm directories, then you could compile our hello.c program to a hello.o
object file with a command like the following:

cc -c -I/usr/local/include hello.c

The EPak header files have #ifdef'ed function declarations for both old K&R-style C
compiler, and newer ANSI-C compilers. If you are using X11R5, you will automati-
cally get the ANSI-C function prototypes when you use an ANSI-C compiler that
defines the__STDC__ symbol. On some systems, you may need to add -DXT-
FUNCPROTO to the compiler command line in order to get these ANSI-C headers.
Linking our "hello, world" program is similarly simple. You must use the -L flag to
tell the compiler where to find the Plotter library. The name of the library is
libBPak.a, and you can link with it with -lBPak. Assuming you had installed the
library as /usr/local/lib/libBPak.a, and assuming that you have your Motif, Xt and X
libraries installed in the default /usr/lib/, then you could link hello.o with a command
like the following:

cc -o hello hello.o -L/usr/local/lib -lBPak -lXm -lXt -lX11 -lXext -lm

Note that we used -lm on the command line to link with the math library. The hello.c
program used the sin() and cos() functions from this library, and the Plotter library
itself uses math functions as well (mostly in the code for supporting logarithmic
axes.) What this means is that you must always link with the math library when using
the Plotter library.
16 GraphPak Programmer’s Reference Manual

Also note the use of -lXext. This links the application with the X extensions library.
This is necessary, because the Plotter widget uses the MBX extension to the X proto-
col, if it is supported by the X server, to implement double buffering.
These examples use cc to invoke the C compiler. The preferred compiler might be
something different on your system--gcc or acc, for example. Also, you might have to
add command line flags specific to your system and compiler.
Hello, World 17

18 GraphPak Programmer’s Reference Manual

Plotter Data Types and
Resources

Like all widgets, the Plotter widget, the Axis widget, and the various Plot widgets that
accompany them are controlled via a set of named resources. You can specify the
appearance and behavior of these widgets by providing values for these resources
with the functions XtSetValues() and XtVaSetValues().
What is different about the widgets in the Plotter library is the types of some of their
resources. While many widgets use only resources that are strings or scalar types, the
Plotter widgets must also use floating point numbers, and a number of special types,
like XiFillPattern that are unique to this library. This chapter explains all you need to
know to use these data types and to use resources of these types. Some of this will be
review for experienced Xt programmers, but we recommend that you read the entire
chapter--there are some specialized tips here that even experienced programmers may
find useful.

3

GraphPak Programmer’s Reference Manual 19

3.1 Double Resources
The task of plotting data inherently involves using floating points numbers, and the
Plotter, Axis and Plot widgets have a number of resources of type double. One of the
weak points of the X Toolkit architecture is that it is not good about handling
resources of type double (or even of type float), and some care is required to set these
floating point resources.
When you specify resource values for a widget using XtCreateWidget() or XtSetVal-
ues(), Xt expects each resource (name, value) pair to be stored in an Arg, shown
below in an excerpt from <X11/Intrinsic.h>. This Arg structure contains an XtArgVal
which, on most architectures, is 4 bytes--not large enough to contain a double.

typedef long XtArgVal;
typedef struct {
 String name;
 XtArgVal value;
} Arg, *ArgList;

To set a resource that is larger than an XtArgVal, Xt requires you to specify the
address of the resource value rather than the value itself. This means that you cannot
use floating-point constants in your code; you must store a constant value into a vari-
able and then pass the address of the variable:

Widget xaxis, yaxis;
double min, max;
Arg args[10];
Cardinal i;
min = -10.0;
max = 10.0;
i = 0;
XtSetArg(args[i], XmNmin, &min); i++;
XtSetArg(args[i], XmNmax, &max); i++;
XtSetValues(xaxis, args, i);

The same holds when you use XtVaSetValues():

Widget xaxis, yaxis;
double min, max;
min = -10.0;
max = 10.0;
XtVaSetValues(xaxis,
 XmNmin, &min,
 XmNmax, &max,
 NULL);

You must be especially careful when using XtVaSetValues(), however, because the
compiler cannot do type-checking on a variable-length argument list, and will allow
you to pass a double instead of a double* without warning. Passing a double where a
double* is expected places eight bytes on the stack instead of four. The first four will
be interpreted as a pointer to the resource value, and the next four will be interpreted
20 GraphPak Programmer’s Reference Manual

as the name of the next resource. Somewhere along the line this is quite likely to
cause a core dump.
There is one more technique for setting double resources that is worth mentioning.
This technique is a little inefficient, but does not require you to declare a dummy vari-
able for each resource you want to set. XtVaSetValues() supports a special argument,
XtVaTypedArg , which allows you to specify resource values as strings (or other
types as well) and have Xt convert them to the appropriate type for you. Since point-
ers to string constants fit in four bytes, you can use a string constant instead of a dou-
ble constant without the need for an intermediate variable. The code looks like this:

XtVaSetValues(xaxis,
XtVaTypedArg, XmNmin, XmRString, "-10.0", 6,
XtVaTypedArg, XmNmax, XmRString, "10.0", 5,
NULL);

When you use XtVaTypedArg in place of a resource name, the following 4 arguments
specify the resource name, and the type, value, and size of the resource value. When
using strings, the size should be the character length of the string as it would be
returned by strlen(), plus one for the terminating null character.1

3.2 String And XmString Resources
Many of the resources of the Plotter and its associated widgets are strings or com-
pound Strings. String and XmString resources are common in many widgets, and
always require some special care, because conventions for handling them differ from
widget to widget.
When you specify the value for any String or XmString resource in any of the Plotter
library widgets, the widget will make a private, internal copy of the string or
XmString. It does this so that it does not have to rely on your application to keep a
copy of the string around. Often you will set string resources with string constants,
which stick around anyway, but there are times when you might set these resources
using allocated memory that will later be freed, or using a temporary buffer that will
later have its contents changed.
If you query the value (using XtGetValues() or XtVaGetValues()) of any String
resource of any Plotter library widget, the value that is returned to you is a pointer to
the internal copy of the string. This copy is owned by the widget, not the application,
and you must treat it as read-only: you are not allowed to modify or free the string.
You should be aware that widgets are allowed, in general, to modify or free their
strings at any time, so you should not rely on a pointer obtained by querying a

1. In some versions of X11R6, using this XtVaTypedArg technique with double resources and
XtVaSetValues() can cause a core dump. If this is the case on your system, you will have to revert
to one of the other techniques described. Arg in calls to XtVaCreateWidget(), however.
Plotter Data Types and Resources 21

resource to remain valid. If you need to use the value of a String resource that you
have queried outside the scope of the procedure that queried the resource, you should
make a private copy of the string for the application. (Use XtNewString() to allocate
memory and copy the string, and remember to free the string with XtFree() when you
are done)

3.3 Fonts and Displayed Text
The Plotter widget and its Axis, TextPlot and PiePlot children display text in a num-
ber of ways--the Plotter title, the axis labels, and the legend items, for example. All
text is displayed in the same way that it is for the Motif XmLabel widget: an
XmString is drawn, using the font or fonts specified in an XmFontList. Since
XmStrings can contain any number of lines and any number of fonts, the text you dis-
play in the Plotter can be as complex as you want. The use of XmStrings in the Plotter
also allows you to display internationalized text.
Wherever text is to be displayed in the Plotter, or in one of its Plot subclasses, you'll
find an XmString resource that specifies the text to be displayed, and an XmFontList
resource that specifies the font or fonts used to display it. These pairs of XmString/
XmFontList resources are all you need to display arbitrary text. There are shortcuts,
however: you may not always have to specify an XmFontList, and many times you
may find it simpler to specify text through a regular String resource than an
XmString. The following two subsections explain how you can do this. The subsec-
tions after those explain how XmStrings are printed in PostScript, and discuss
resources you may need to specify for printing, and explain how to display and print
internationalized text with the Plotter widget.

3.3.1 Font List Inheritance
The Plotter XmNfontList resource specifies a default font list. This resource is not
directly used by itself, but its value is used as the default of all other XmFontList
resources of the Plotter and all Plot subclasses. Thus, instead of specifying a separate
font list for each piece of text you display, you may be able to specify all the fonts you
need in a single font list resource. To do this, of course, you will need to specify
appropriate font tags when you create the XmStrings to be displayed.
For example, you might specify a font list like the following:

*plotter.fontList: \
-*-times-medium-r-*-*-*-180-*-*-*-*-*-*=TITLE,\
-*-times-medium-r-*-*-*-140-*-*-*-*-*-*=AXIS,\
-*-times-medium-r-*-*-*-120-*-*-*-*-*-*=LABELS,\
-*-symbol-medium-r-*-*-*-140-*-*-*-*-*-*=SYMBOL\
22 GraphPak Programmer’s Reference Manual

Then, when you create the XmString for the plotter title, you would use the font tag
"TITLE" to specify that you wanted the 18-point font to be used. In this case, there is
no need to specify the XmNtitleFontList resource--the correct value is automatically
inherited from XmNfontList. Similarly, when you create the XmString for the Axis
titles, you'd use "AXIS" as the font tag. Or you might create a more complicated
XmString that uses the "AXIS" font tag with the "SYMBOL" font tag to mix Times-
Roman text with mathematical symbols and Greek letters from the Symbol font.

3.3.2 Automatically Created XmStrings
When using the Plotter widget, you may often find that the text you want to display
(as the Plotter title, for example) uses only a single font. In this case, since you won't
be using the multi-font capability of the XmString, having to convert the text to an
XmString before displaying it is simply a nuisance. For this reason the Plotter widget
and its Plot children have a String resource that corresponds to each of their XmString
resources. For example, you can specify text for the Plotter's title by setting an
XmString on the XmNtitleString resource, or by setting a regular NULL-terminated C
String on the XmNtitle resource--it is as if the Motif XmLabel widget had a String
resource named XmNlabel in addition to its XmString resource named XmNlabel-
String. The naming convention evident here is used throughout the Plotter library: if
the resource name ends in "String", then it is an XmString resource. The resource with
the same name minus the "String" specifies the same text as a regular String. (The
exception to this rule are the constraint resources for specifying legend items: XmN-
legendString is the XmString resource, and XmNlegendName is the String resource.)
If you only use a single font for the Plotter title, or other text, then you can specify the
text as a String rather than an XmString. You still must specify the font to be used, but
this is also a simple case--you can specify an XmFontList that consists of a single
font. Thus you might have resource specifications like these:

*plotter.title: Average Weekly Temperature Extremes\n1984-1994
*plotter.titleFontList: *-helvetica-bold-o-*-*-*-180-*

All you need to specify is the text to display and the font to display it in.
In the previous section we noted that the default for all XmFontList resources is
inherited from the Plotter XmNfontList resource, and saw how this allows a single
font list specification to be used for all the text in the Plotter and in all of its Plot chil-
dren. Assuming we want to use different fonts in different parts of the Plotter display,
then a single font list specification of this sort will require different font list tags to
identify the various fonts in the XmFontList. This implies that it is no longer suffi-
cient to simply specify text as a String--we also need to specify a font list tag to indi-
cate which font from the font list will be used to display the text.
Each String text resource in the Plotter and its Plot children is accompanied by a pair
of other resources which combine to produce a font list tag for the text. For XmNtitle,
for example, these two resources are XmNtitleStyle (a string) and XmNtitleSize (an
Plotter Data Types and Resources 23

integer). These two resources specify a font list tag as follows: if both are specified,
they are concatenated to produce a tag like "bold14" or "italic12". If a style is speci-
fied, but the size is zero, then only the style is used--"italic" or "bold", for example.
Similarly, if the style is NULL and the size is non-zero, then only the size is used, pro-
ducing tags like "10" or "18". Finally, if no style is specified, and the size is set to
zero, then the default tag, XmFONTLIST_DEFAULT_TAG, is used.
This system of font tag selection based on style and size resources is designed for use
with font lists like the following:

-*-helvetica-medium-r-*-*-*-120-*-*-*-*-*-*=12,
-*-helvetica-medium-r-*-*-*-100-*-*-*-*-*-*=10,
-*-helvetica-medium-r-*-*-*-140-*-*-*-*-*-*=14,
-*-helvetica-medium-r-*-*-*-180-*-*-*-*-*-*=18

In fact, this font list is the default value of the Plotter XmNfontList resource, and thus,
through font list inheritance, the default value for all Plotter and Plot subclass
XmFontList resources. This default font list was chosen, of course, to work well with
the default values of all the style and size resources in the Plotter library. As you can
see, style resources throughout the library all have NULL as their default, and thus are
unused in the font list tags. Similarly, size resources throughout the library are one of
the four numbers 10, 12, 14 and 18. As you can see, the default font list will not work
adequately if you want to specify any style resource, or want to specify a size
resource that is not one of these four numbers.
While this system of specifying a large font list with many fonts, and then construct-
ing font list tags from a style and a size specification may seem confusing and cum-
bersome, consider the advantages it brings: only a single XmFontList specification is
needed, and once an appropriate font list is specified, all single-font text can be speci-
fied as a String rather than an XmString, and the font to be used for that text can be
specified (and modified) through simple string and integer resources. If you choose to
use this scheme (instead of specifying many single-font font lists, as described
above), then you will end up with resource specifications like those shown in Exam-
ple 3-1.
24 GraphPak Programmer’s Reference Manual

Example 3-1. Specifying text style an size with a single font list

*plotter.fontList: \
-*-helvetica-medium-r-*-*-*-120-*-*-*-*-*-*=12,\
-*-helvetica-medium-r-*-*-*-100-*-*-*-*-*-*=10,\
-*-helvetica-medium-r-*-*-*-140-*-*-*-*-*-*=14,\
-*-helvetica-medium-r-*-*-*-180-*-*-*-*-*-*=18,\
-*-helvetica-medium-o-*-*-*-140-*-*-*-*-*-*=italic14,\
-*-helvetica-bold-r-*-*-*-140-*-*-*-*-*-*=bold14,\
-*-helvetica-bold-o-*-*-*-140-*-*-*-*-*-*=bold-italic14,\
-*-helvetica-bold-r-*-*-*-180-*-*-*-*-*-*=bold18

*plotter.title: Average Weekly Temperature Extremes\n1984-1994
*plotter.titleStyle: bold
*plotter.titleSize: 18

*plotter.legendTitle: Key
*plotter.legendTitleStyle: italic
*plotter.legendTitleSize: 14

*plotter.xaxis.title: Week
*plotter.yaxis.title: Temperature (degrees C)
*plotter.XiAxis.titleStyle: bold
*plotter.XiAxis.titleSize: 14

*plotter.XiAxis.labelSize: 12

In summary, note first that nothing discussed in this section matters if you choose to
create your own XmStrings--in that case it is up to you to use appropriate font list tags
and font lists that define those tags. On the other hand, if you do not need multiple
fonts in your displayed text, you may prefer to specify simpler String resources and
have the Plotter library convert those Strings to XmStrings. In this case there are two
different approaches you can take. The first approach is to specify the single font you
want on each of a number of distinct XmFontList resources. The second approach is
to specify a single large font list on the XmNfontList resource. The other XmFontList
resources will inherit this font list, and you will use the various style and size
resources to specify font tags, which in turn specifies which fonts in the font list to
use for the various pieces of displayed text. Note, of course, that it is also possible to
use a combination of these two approaches.
Plotter Data Types and Resources 25

3.3.3 PostScript Font Lists
One of the downfalls of the X Window System is that X fonts are not compatible with
PostScript fonts. There is no general way to determine a PostScript font that corre-
sponds to a given X font. The Plotter library knows about the five most common fam-
ilies of X fonts, and can determine PostScript equivalents for them. This means that
the Plotter can automatically print any text you display in Adobe Helvetica, Times,
Courier, New Century Schoolbook, or Symbol, in plain, italic, bold, or bold-italic.
If you use any fonts outside of these standard five font families, however, you must
tell the Plotter what PostScript font to print them with--just as you specify X fonts for
text display with an XmFontList, you must also specify the equivalent PostScript
fonts with an XiPSFontList. An XiPSFontList is an array of XiPSFontRec structures:

typedef struct {
 String name;
 int pixelsize;
} XiPSFontRec, *XiPSFontList;

The name field specifies the name of the PostScript font to use, which will be a string
like "Utopia-Bold". The pixelsize field specifies the size, in pixels, at which the corre-
sponding X font is used. (Pixel size is used instead of point size for this field because
it is independent of the display resolution for which an X font is defined.)
Every XmFontList resource has a corresponding XiPSFontList resource. When you
specify an XiPSFontList, it must have the same number of entries as the XmFontList
it corresponds to, and the entries must occur in the same order. When you specify an
XiPSFontList resource, the Plotter library does not copy the array of XiPSFontRec
structures, nor does it copy the font name strings in the array, so these should be in
static memory, or in allocated memory that will not be modified or freed for the life-
time of the Plotter widget.
You might specify an XiPSFontList from C code as follows:

static XiPSFontRec default_ps_font_list[] = {
 {Utopia-Regular, 12},
 {Utopia-Regular, 14},
 {Utopia-Italic, 14},
 {Utopia-Bold, 18}
};

The Plotter library defines a String-to-XiPSFontList resource converter so that you
can specify XiPSFontList resources from a resource file as a comma-separated list of
name/size pairs. For example, you could specify the same XiPSFontList as above like
this:
26 GraphPak Programmer’s Reference Manual

*plotter.psFontList:\
Utopia-Regular 12, Utopia-Regular 14,\
Utopia-Italic 14, Utopia-Bold 18

Remember that you only need to specify an XiPSFontList if you are using fonts out-
side of the five "standard" X font families. Also, not that specifying a PostScript font
in an XiPSFontList is not sufficient to guarantee that it will be printed--you have to be
sure that your printer supports the font you want!
If you use a font that is not in one of the five font families that the Plotter library auto-
matically knows about, and if you do not specify an XiPSFontList, or if you specify a
NULL name in the XiPSFontRec structures, then the Plotter widget will print a warn-
ing message when it attempts to print. It does not fail altogether, however. In this
case, when it cannot determine the appropriate PostScript font to use, it uses the X
font and prints a bitmap representation of text in that font. On a high-resolution
printed page, this bitmap text will be noticeably low-resolution, but it is better than
having no text displayed at all. This can be useful when you simply do not have a
PostScript font that corresponds to the X fonts you are using.
When you do specify a PostScript font in an XiPSFontList, you should specify a font
and size that match the X font exactly, or at least match closely. The Plotter library
assumes that the individual characters in the X font have the same size as the charac-
ters in the PostScript font, and therefore that text will take up the same amount of
room when printed as it does on the screen. If, for some reason, the text comes out
larger in PostScript than it does in X, then its width and/or height will be shrunk to fit
the space allocated for it. Thus, if you display text with a narrow font like Helvetica in
X, but use an XiPSFontList to tell the Plotter widget to print that text with a wide font
like New Century Schoolbook, then the New Century Schoolbook text will be shrunk
in width to fit, and will come out looking like a condensed version of the font was
used.
One final note about X and PostScript font encodings is necessary. X fonts that dis-
play the standard Latin characters are all encoded in the ISO8859-1 international stan-
dard. When they designed the PostScript language, however, Adobe chose its own
encoding (known in PostScript as "StandardEncoding") for these fonts. ISO8859-1
and PostScript StandardEncoding are the same for all standard characters used in
English, but they differ for accented characters and other Latin characters used in
European languages. The PostScript code output by the Plotter widget handles this
situation correctly--it checks each font it uses to see if it has the StandardEncoding
encoding. If so, it re-encodes the font to use ISO8859-1. Thus, any ISO8859-1 text
displayed in X will also be correctly displayed in hardcopy. Note that StandardEncod-
ing and ISO8859-1 are the only two encodings that the Plotter library has special
knowledge of; in all other cases, the X font and the corresponding PostScript font
must use identical encodings.
Plotter Data Types and Resources 27

3.3.4 Internationalized Text Display
To display text in certain languages, more than 256 distinct character glyphs are
required, and so a 16-bit font is used, and strings are represented as arrays of 2-byte
characters. Since the Plotter widget uses XmStrings for its text display, and because
Motif XmStrings support internationalization, the Plotter widget can display this kind
of 16-bit text. The Plotter widget can also print 16-bit text, assuming, of course, that
an appropriate PostScript font exists on your printer. In PostScript, all 16-bit fonts are
implemented as "composite" or "Type 0" fonts. As noted in the previous section, the
Plotter widget relies on the assumption that the X font and the PostScript font have
exactly the same encoding.
Some languages use more than a single font to display text. Japanese text display, for
example, may require a 16-bit Kanji font, as well as 8-bit Katakana, Hiragana and
Latin fonts. There are two ways to handle text display when multiple fonts are
required like this. The first is to define an XmFontList with a separate font tag for
each individual font, and to use an XmString which explicitly switches from one font
tag to another each time the text switches fonts. This was the only method to display
this sort of text prior to Motif 1.2. To print text of this sort, you need simply to define
an XiPSFontList that corresponds to the XmFontList--each X font must have a corre-
sponding PostScript font with exactly the same encoding. In Japanese, where a 16-bit
Kanji font is required, a 16-bit PostScript composite font must be specified to match.
The problem with the above approach is that it is not a particularly natural one. Text
in a language like Japanese is not typically broken up into a bunch of discrete seg-
ments; instead it is encoded as a single string of text, which uses special embedded
codes to indicate when the font should switch. With the advent of X11R5 and Motif
1.2, there is another technique for displaying text that uses these higher-level meta-
encodings. X11R5 defines the XFontSet abstraction, which is a collection of all the
fonts necessary to display text in a given language. In Motif 1.2, you can define an
XmFontList that contains a single XFontSet, instead of separately specifying each of
the individual fonts. When you define an XmFontList that contains an XFontSet, then
your XmString can contain a single string of text with the appropriate meta-encoding
of embedded codes to switch among the fonts defined in the XFontSet. When the
application is properly internationalized, Xlib will understand the meta-encoding that
is in use, and will be able to display the text using appropriate fonts from the XFont-
Set.
Since the Plotter widget is based on Motif 1.2, it can, of course, display text repre-
sented in this way. Printing that text may be more complicated, however. Once again,
the single basic requirement is that you provide (in an XiPSFontList) a PostScript font
with an identical encoding to the X font. In this case, you must specify a composite
PostScript font with a meta-encoding that matches the meta-encoding used by the
XFontSet. The encodings of the individual fonts within the composite PostScript font
must also match the encodings of the X fonts within the XFontSet, of course. For
some languages and some meta-encodings, such an composite PostScript font may
exist. For other languages or meta-encodings, there may be no appropriate PostScript
28 GraphPak Programmer’s Reference Manual

font. In this case, you will have to break your text up into separate segments, one for
each font, as described above, and as you would have done in a Motif 1.1 application.

3.4 Markers
The LinePlot widget, and its subclass, the ErrorPlot can optionally mark each data
point in the plot with a small glyph. The XmNmarker resource of these widgets spec-
ifies the glyph to use, and is of type XiMarker. An XiMarker is an abstraction that can
display a glyph in X and in PostScript. The Plotter library contains a number of pre-
defined markers, and Chapter 17, Defining Custom Markers explains how you can
define custom markers of your own for specialized graphs.
The Plotter library defines 12 different marker glyphs each in four different sizes, for
a total of 48 distinct markers. These predefined markers are pictured in Figure 3-1and
listed in Table 3-1. (You can also find these pre-defined markers listed in the quick
reference section at the end of this manual.)

Figure 3-1. Predefined markers
The markers shown in the table are declared in the header file <Xi/Plotter.h>. You can
use the symbols exactly as shown in your C code to set the XmNmarker resource. The
names of these markers are fairly self-explanat-ory. The "Triangle" markers are equi-
lateral triangles with one vertex pointing up, and the "Triangle2" markers are the
same triangle rotated 180 degrees, with one vertex pointing down.
Plotter Data Types and Resources 29

Table 3-1. Predefined Markers

When you create a LinePlot widget, a resource converter is automatically registered
for the XiMarker type. This means that you can specify the XmNmarker resource for
any LinePlot or ErrorPlot widget from a resource file. The converter recognizes the
names shown in Table 3-1 with the "XiMarker" prefix removed. For example, you
could set the marker for a line plot with a resource specification like this:

lineplot1.marker: SmallFilledTriangle

The converter is case-sensitive, so you must specify the names with mixed-case, as
they are shown.

Tiny Markers Small Markers

XiMarkerTinySquare
XiMarkerTinyFilledSquare
XiMarkerTinyCircle
XiMarkerTinyFilledCircle
XiMarkerTinyTriangle
XiMarkerTinyFilledTriangle
XiMarkerTinyTriangle2
XiMarkerTinyFilledTriangle2
XiMarkerTinyDiamond
XiMarkerTinyFilledDiamond
XiMarkerTinyPlus
XiMarkerTinyX

XiMarkerSmallSquare
XiMarkerSmallFilledSquare
XiMarkerSmallCircle
XiMarkerSmallFilledCircle
XiMarkerSmallTriangle
XiMarkerSmallFilledTriangle
XiMarkerSmallTriangle2
XiMarkerSmallFilledTriangle2
XiMarkerSmallDiamond
XiMarkerSmallFilledDiamond
XiMarkerSmallPlus
XiMarkerSmallX

Normal Markers Large Markers

XiMarkerSquare
XiMarkerFilledSquare
XiMarkerCircle
XiMarkerFilledCircle
XiMarkerTriangle
XiMarkerFilledTriangle
XiMarkerTriangle2
XiMarkerFilledTriangle2
XiMarkerDiamond
XiMarkerFilledDiamond
XiMarkerPlus
XiMarkerX

XiMarkerLargeSquare
XiMarkerLargeFilledSquare
XiMarkerLargeCircle
XiMarkerLargeFilledCircle
XiMarkerLargeTriangle
XiMarkerLargeFilledTriangle
XiMarkerLargeTriangle2
XiMarkerLargeFilledTriangle2
XiMarkerLargeDiamond
XiMarkerLargeFilledDiamond
XiMarkerLargePlus
XiMarkerLargeX
30 GraphPak Programmer’s Reference Manual

3.5 Fill Patterns
The BarPlot and PiePlot widgets can fill their bars and wedges with a solid color, or
with a fill pattern. Both of these widgets have resources of type XiFillPattern. Like
the XiMarker described above, the XiFillPattern is an abstraction that can display a
fill pattern both in X and in PostScript. The file <Xi/Plotter.h> declares 25 pre-defined
fill patterns that you can use directly in your C code. Table 3-2 lists these pre-defined
patterns, and Figure 3-2 displays them. (For later reference, you can also find the
table of predefined patterns in the quick reference section at the end of this manual.)
Table 3-2. Predefined fill Patterns

LeftHatch RightHatch Crosshatch

XiFillPatternLefthatch1
XiFillPatternLefthatch2
XiFillPatternLefthatch3
XiFillPatternLefthatch4
XiFillPatternLefthatch5

XiFillPatternRighthatch1
XiFillPatternRighthatch2
XiFillPatternRighthatch3
XiFillPatternRighthatch4
XiFillPatternRighthatch5

XiFillPatternCrosshatch1
XiFillPatternCrosshatch2
XiFillPatternCrosshatch3
XiFillPatternCrosshatch4
XiFillPatternCrosshatch5

Grid Gray Special

XiFillPatternGrid1
XiFillPatternGrid2
XiFillPatternGrid3
XiFillPatternGrid4
XiFillPatternGrid5

XiFillPatternGray1
XiFillPatternGray2
XiFillPatternGray3
XiFillPatternGray4
XiFillPatternGray5

XiFillPatternNone
XiFillPatternSolid
Plotter Data Types and Resources 31

Figure 3-2. Predefined fill Patterns.

If none of these predefined patterns is appropriate for your application, you can define
custom fill patterns of your own.Chapter 18, Defining Custom Fill Patterns explains
how to do this.
You can use fill patterns in your C code exactly as listed in Table 3-2.

XtVaSetValues(barplot, XmNfillPattern, XiFillPatternGray2, NULL);
32 GraphPak Programmer’s Reference Manual

You can also specify fill patterns from a resource file. When you create a BarPlot or a
PiePlot, this widget automatically registers a resource converter for the XiFillPattern
type. This resource converter recognizes the names listed in Table 3-2 with the
"XiFillPattern" prefix removed, and all uppercase letters converted to lowercase.1

There are three special predefined fill patterns that do not fall into one of the five
basic categories listed above. They are the following:

XiFillPatternNone
This value specifies that the bar of a BarPlot or the wedge of a PiePlot should not
be filled at all, and that whatever is "underneath" the plot (grid lines, for exam-
ple) should show through.

XiFillPatternSolid
This value specifies that an area should be filled with a solid color rather than
with any kind of pattern. (The color to use is specified with some other resource.)
This is often the default value of any XiFillPattern resource.

3.6 Line Patterns
The LinePlot widget allows you to specify a dash pattern to use when drawing a line
that connects the data points, and the Axis widget allows you to specify line patterns
for the lines of the grid it draws in the background of the Plotter. These widget
resources have a representation type of XmRLinePattern, but there is no correspond-
ing XiLinePattern type; line patterns are represented with a character array--a String.
The file <Xi/Plotter.h> declares some convenient pre-defined line patterns, which are
shown, along with two custom line patterns in the LinePlots of Figure 3-3.
Line patterns are specified as a list of numbers that specify the number of pixels to
draw and the number of pixels to skip. Since these numbers are always small integers,
they fit conveniently into the char type and arrays of numbers are easily specified
with string constants. In C code, you can use the "\nnn" escape to encode line patterns
into strings. Thus, a dash pattern of ten pixels on followed by six pixels off would be
represented by the string "\012\006". (Remember that the "\nnn" escape uses octal
numbers--012 in base 8 is 8+2, or 10, in base 10). Line patterns will generally have an
even number of elements, but they can be any length, even or odd. When each ele-
ment in the pattern has been drawn, the pattern starts over at the first element. A dot-
dash pattern, for example will generally have four elements: "\001\003\004\003"--one
pixel on (a dot), three off, four on (a dash), and another three off.

1. For historical reasons, the XiMarker converter and the XiFillPattern resource converters use dif-
ferent capitalization conventions of the values they convert. This can unfortunately be a source of
confusion.
Plotter Data Types and Resources 33

Figure 3-3. Predefined Line Patterns

Figure 3-2 shows the definitions of each of the predefined line patterns shown in the
previous figure. These definitions are internal to the Plotter library and are not visible
to applications. The pattern names are declared, however, in the header <Xi/Plot-
ter.h>. A table of these pattern names also appears in the quick reference section.

char *XiLinePatternSolid = NULL;
char *XiLinePatternDotted1 = "\001\002";
char *XiLinePatternDotted2 = "\001\004";
char *XiLinePatternDotted3 = "\001\006";
char *XiLinePatternDashed1 = "\003";
char *XiLinePatternDashed2 = "\005";
char *XiLinePatternDashed3 = "\007";
char *XiLinePatternDotDashed1 = "\003\001\001\001";
char *XiLinePatternDotDashed2 = "\005\002\001\002";
char *XiLinePatternDotDashed3 = "\007\003\001\003";

Figure 3-4. Definitions of the standard line patterns
34 GraphPak Programmer’s Reference Manual

You can use any of these predefined patterns in your C code, patterns with a string
constant. In either case, the widget will make a copy of the pattern you specify, as it
does with all String resources. The cautions described above for String resources
apply here. Note that XiLinePatternSolid is simply defined to be NULL. You can use
NULL for any line pattern resource to get a solid line.
The Plotter library automatically registers a resource converter for line pattern
resources. This converter recognizes the names of the line patterns shown in Figure 2-
4 with the "XiLinePattern" prefix removed. It will also convert arbitrary line patterns
specified as a list of integers (in base 10, not base 8) separated by spaces. So you
could use resources like the following to specify one pre-defined and one custom line
pattern for the major and minor grid lines of an Axis widget:

*plotter.xaxis.gridPattern: Dotted1
*plotter.xaxis.subgridPattern: 2 5

3.7 Line Widths
Throughout the Plotter library there are widget resources that specify the width of
lines. The values of these resources are used directly to set the line_width field in an
Xlib Graphics Context (GC). Line widths in Xlib are always measured in pixels, but
zero is a special value. If you specify a line width of zero, Xlib will draw lines one
pixel wide, using a fast line drawing algorithm. Zero-width lines are a special case
that allow the server to relax some of the constraints placed on its drawing of wide
lines. For example, if you draw a zero-width line from point A to point B, the X
server might set a slightly different set of pixels than it would set if you had drawn the
line from point B to point A. With wider lines, this can be unacceptable, and the X
server is not allowed to do it, but with lines that are only one pixel wide, the differ-
ence is rarely noticeable.
In the Plotter library, when you want a narrow one pixel wide line, it is generally fine
to specify a line width of 0, and this is in fact the default for a number of Plotter, Axis
and Plot widget resources. In most cases, a line width of 0 will not be noticeably dif-
ferent than a line width of 1, except that it will be drawn faster.
Although it is important to understand the difference between line widths of zero and
one, note that lines one pixel wide are quite narrow, and, unless you are displaying
plots in a very small Plotter widget, a line width of 2 or 3 pixels for line plots, axes,
and so on may give you better looking results.
Plotter Data Types and Resources 35

3.8 Colors
Many of the widget resources in the Plotter library specify colors for text, lines, pat-
terns, and other things that appear within the Plotter window. The Plotter widget does
not handle color resources specially--these are standard color resources, of type Pixel.
A Pixel is not a simple type that can be expressed with a constant value in C, as a dou-
ble or a String can be; Pixel values must be allocated with XAllocNamedColor() or
some similar function, and must be freed when no longer necessary. Because this can
be somewhat cumbersome, and because the Plotter widget has so many color
resources, this section describes some easier ways of handling colors in an Xt applica-
tion.
The easiest way to specify a color is to do so in a resource. file. This way, the Xt
resource converters lookup the color name and allocate the Pixel for you. The Xt
resource converter mechanism also caches the converted value for efficient reuse, and
frees it when all the widgets that use it are destroyed; this takes a large housekeeping
burden off the application. Another advantage to using a resource file is that the col-
ors are then customizable to the end-user's preferences (or for monochrome hard-
ware).
There are some applications, however, for which you do not want to rely on a
resource file to be correctly installed, or for which you do not want to allow user cus-
tomizability of the colors. In this case you need to hardcode the color values. Instead
of allocating and freeing the Pixel values yourself, though, you can still rely on the Xt
resource converters to do this for you using XtVaSetValues(). This technique uses the
special XtVaTypedArg argument that was also used above for setting double values:

XtVaSetValues(lineplot,
XtVaTypedArg, XmNlineColor, XmRString, "maroon", 7,
XtVaTypedArg, XmNmarkerColor, XmRString, "navy", 5,
XtVaTypedArg, XmNshadowColor, XmRString, "gray", 5,
NULL);

The four arguments following XtVaTypedArg specify the name of the resource to be
set, the type that the resource is to be converted from, the value that is to be con-
verted, and the size of the value to be converted. When converting from strings
(which is what you will almost always do), the length argument should be the strlen()
of the string, plus one, for the terminating '\0' at the end of the string. Note that you
can use this XtVaTypedArg technique with XtVaCreateWidget() as well as with
XtVaSetValues().
36 GraphPak Programmer’s Reference Manual

3.9 Cursors
The Plotter widget has a number of resources of type Cursor. Like Pixel values, Cur-
sor values are X server objects that need to be allocated and freed. The default values
for these resources are all quite reasonable, so you may never need to set them your-
self. If you do, however, you can either allocate and free the Cursor values yourself by
calling Xlib functions, or, as with Pixel values above, you can have the Xt resource
converter mechanisms do this for you.
As with Pixel values, the best ways to set cursor resources are in resource files, or
with an XtVaTypedArg argument to XtVaSetValues or XtVaCreateWidget(). The
String-to-Cursor converter recognizes the names of the cursors in the standard cursor
font. You can view this font with:

xfd -fn cursor

The names of the cursors appear in the file <X11/cursorfont.h> which defines sym-
bols for each of the glyphs in the font. The resource converter recognizes the names
shown in this file, with the "XC_" prefix stripped off.
The Plotter widget registers its own enhanced String-to-Cursor converter which rec-
ognizes all of the standard cursor names, and also allows you to specify a foreground
and background color for your cursors. To use it, simply follow the name of the
desired cursor with the optional foreground and background color names. For exam-
ple, this line in a resource file:

*plotter.plotterCursor: crosshair red gray

specifies the "crosshair" cursor with a red foreground on a gray background. If you do
not specify the foreground and background colors, the converter will use a black fore-
ground and a background inherited from the XmNbackground resource. (A note about
cursor "backgrounds": most cursors are mostly transparent, so you can see what is
under them. The background color is usually only used in a thin strip around edge of
the cursor shape, so that the cursor is visible even when it is over a region the same
color as the foreground.)
While there are a lot of useful cursors in the standard font, many of them are frivolous
("XC_gumby" and "XC_trek" for example), and some are downright stupid
("XC_bogosity"). Serious applications may want to use cursors that do not appear in
this font. You can do this with the Xlib functions XCreateGlyphCursor() which makes
a cursor from two glyphs of a specified font, XCreatePixmapCursor() which creates a
cursor from two bitmaps. (One of the glyphs or bitmaps is a mask that defines the
shape of the cursor--this is necessary because cursors are non-rectangular.)
Plotter Data Types and Resources 37

3.10 Inherited Resource Values
Almost all color resources in the Plotter, Axis, and all the Plot widgets inherit their
values from one of the three Plotter resources XmNforeground, XmNbackground, or
XmNplotAreaColor. The XmFontList and XiPSFontList resources of the Axis,
PiePlot, and TextPlot widgets are similarly inherited from the XmNfontList and
XmNpsFontList resources of the Plotter. An inherited resource is one that gets its
default value from some other resource. If you do not set the XmNmarkerColor
resource of a LinePlot widget, for example, that resource will be set to whatever value
is set on the XmNforeground resource of the Plotter. If the XmNforeground resource
was itself unset, then XmNmarkerColor will inherit the default value of XmNfore-
ground. This scheme makes it easy to specify the color of all the various parts of the
Plotter widget without setting every color resource.
There are a couple of things to be aware of about these inherited resources, however.
First, note that this inheritance works only when a widget is created, not when
resource values are set. In the example above, the LinePlot will inherit the value of
XmNforeground that is in effect when it is created, but future changes to the Plotter
XmNforeground resource will not be propagated to it. So although you can use
resource inheritance to set initial colors across the Plotter widget, you cannot use it to
change colors across the widget--to do that you must set all the color resources indi-
vidually.
38 GraphPak Programmer’s Reference Manual

Plot Data Representation

Before any kind of Plot widget can plot data in its parent Plotter widget, you must
specify the data values it is to display. Every application will likely have its own par-
ticular data structures for plot data--some will use double values, and others may use
float or unsigned short values, for example. Some applications will find it most con-
venient to store (x,y) pairs for a line plot in two separate arrays of points, and others
will prefer to store these values in a single array of structures. Applications that query
complex data from a database, for example, may want to plot data values stored in the
middle of much larger records of data.
All of the Plot widget types that require an array of values to plot are flexible enough
to handle each of the cases described above. Each plot type provides convenience
functions for easily setting data that is stored in some of the most common representa-
tions (arrays of double or int, for example), but also provide resources that allow a
very flexible method of specifying data. For each required array of values, the Plot
widget is given a pointer to an array of arbitrary structures, each of which contains a
data value for the Plot. A resource specifies the size of each element of this array so
that the Plot widget can step from one element of the array to the next. The Plot wid-
gets can accept data of type double, float, int, and a number of other signed and
unsigned scalar types. Other resources specify the type of the data value and the offset
from the beginning of the data structure at which it is stored. With this information,
(size of the structure, and the type and offset of the value within the structure) the
widget can extract the data values it is interested in from whatever structures are most
convenient for the application; there is no need to make special copies of data to be
plotted.
Note that although values can be extracted from arbitrary structures with this data rep-
resentation scheme it is also of course possible to specify data as a simple array of
values. This is just a degenerate case: when each element of the array is a simple data
value, then the size of this "structure" is the size of the value, and the offset of the
value within this structure is always zero.
Also note that the structures in the array may well contain more than one data value--
you can pass the same array pointer to specify the X data points and the Y data points
for a line plot, for example, and simply specify different offsets (and perhaps different
types as well) for the X and Y values within each structure.
The variables that specify structure size, data type, offset, and so on are all contained
in the XiPlotData structure. The following section describes this XiPlotData abstrac-
tion in more detail, and the sections after that give examples of some common ways
you might choose to specify plot data.

4

GraphPak Programmer’s Reference Manual 39

4.1 The XiPlotData Abstraction
An XiPlotData abstraction is a structure that contains all the information necessary to
extract values from an array of arbitrary structures. Almost all Plot widget classes
have one or more of these structures: the BarPlot widget, for example, has one XiPlot-
Data structure that specifies how to obtain the Y values of each bar. The LinePlot
widget has XiPlotData structures that specify how to obtain both the X and Y values
of its points and the ErrorPlot widget adds two more XiPlotData structures to specify
the high and low bounds of the error bars.
Figure 4-1 shows the definition of the XiPlotData structure, It is quite important to
understand how this structure works, but note that you will never have to create or
manipulate one yourself--the Plot widgets all provide resources and functions with
which you can set all the fields.

typedef enum {
typedef struct { XiPlotDataDouble,
 XtPointer values; XiPlotDataFloat,
 Cardinal num; XiPlotDataUnsignedLong,
 Cardinal size; XiPlotDataLong,
 Cardinal offset; XiPlotDataUnsignedInt,
 unsigned char type; XiPlotDataInt,
 double constant; XiPlotDataUnsignedShort,
 double multiplier; XiPlotDataShort,
} XiPlotData; XiPlotDataUnsignedChar
} XiPlotDataType;

Figure 4-1. The XiPlotData structure and the XiPlotDataType enumerated type
40 GraphPak Programmer’s Reference Manual

Figure 4-2. Specifying plot data through XiPlotData resources

The paragraphs below explain each of the fields of the XiPlotData structure, and Fig-
ure 4-2 diagrams the meaning of the fields and illustrates how they allow Plot widgets
to extract data from application structures. The figure uses the LinePlot widget as an
example; the LinePlot resource names are all obviously based on the XiPlotData field
names.

values
This field is the pointer to the array of structures (or array of values) from which
the plot data values are to be extracted. It is set through resources like the BarPlot
Plot Data Representation 41

XmNvalues and the LinePlot XmNxValues and XmNyValues. Note that it is an
untyped pointer (an XtPointer).

num
This field specifies the number of elements in the array specified by the values
field. You usually set it through a resource named XmNnumValues. Note that
when a Plot widget, like the LinePlot takes more than one set of data values (X
values and Y values, in this case), there is generally only one resource that sets
this num field for all XiPlotData structures. This is because plots like the Line-
Plot always require that there be the same number of values in each of their
arrays. Be careful when setting this field that you never make it larger than the
number of elements actually available in the specified array. If you do, your Plot
widget might attempt to read memory beyond the bounds of the array and crash
with a segmentation violation.

size
This field specifies the size, in bytes, of each element of the array specified by
the values field. You should use the sizeof() operator to compute this size. Note
that you are specifying the size of the entire structure, not just the size of the data
value within the structure. You usually specify this field through resources like
the BarPlot XmNvalueSize or the LinePlot XmNxValueSize and XmNyValue-
Size. The default value for these fields is 8 bytes, which is the size of a double, so
if your array of structures is simply an array of double, then you will not need to
set these resources.

offset
This field specifies the offset, in bytes, from the beginning of each structure in
the array to the data value within that structure. Use the standard Xt XtOffsetOf()
macro to portably calculate this offset for any field of a structure. You usually
specify this field through resources like the BarPlot XmNvalueOffset or the Line-
Plot XmNxValueOffset and XmNyValueOffset. The default is 0 bytes, which
means that if you have specified a simple array of values that are not contained in
larger structures, you need not set these resources.

type
This field specifies the type of the data value to be extracted from each element
of the array specified by the values field. The legal values are the members of the
XiPlotDataType enumerated type, which is shown in Figure 4-1. The meanings
of each of these enumerated values is self-evident. Note that there is no XiPlot-
DataChar type--the C language does not specify whether the char type is signed
or unsigned, so this type would be less portable than the others. To avoid this
problem, XiPlotDataUnsignedChar is the only 1-byte type that exists. You usu-
ally specify the type field through resources like the BarPlot XmNvalueType or
the LinePlot XmNxValueType and XmNyValueType. The default values for
42 GraphPak Programmer’s Reference Manual

these resources is XiPlotDataDouble, since double is probably the most com-
monly used type for plot data.

multiplier
This field is a double value by which each extracted data value is multiplied. You
specify this field through resources like the BarPlot XmNvalueMultiplier and the
LinePlot XmNxValueMultiplier and XmNyValueMultiplier. The default value of
these resources is 1.0, so this multiplication does not change the data values at
all. The value -1.0 can be used to change the sign of all the plot data points, and
other values can be used to scale the values. This field, and the constant field,
described below, perform a linear transform on the data points: for each value x
extracted from the array specified by the values field, the widget will obtain a
transformed value x'

x' = mx + c
where m is the value of the multiplier field, and c is the value of the constant
field.
The multiplier and constant fields are also useful when all the data points are lin-
early spaced (as with the X data points of many LinePlot widgets, for example).
In this case, there is no need to specify an array of data values at all. When the
values field is NULL, values will be computed by performing the specified linear
transform on the index of the data value. Thus, when the widget requests the ith
data value, it will get the value x:

x = mi + c

constant
This field is the double value that is the constant c in the linear transformation
equations shown above--it is added to each data value after the value has been
multiplied by the multiplier field. You specify this field through resources like
the BarPlot XmNvalueConstant and the LinePlot XmNxValueConstant and
XmNyValueConstant. The default value for these resources is 0.0, so that ordi-
narily this field has no effect on the values that are plotted.
Plot Data Representation 43

4.2 Data in Arrays of Values
The most straightforward way to store data values to be plotted, when there is no par-
ticular reason for the application to store them in any other way, is in simple arrays
(not in arrays of structures). In this case, you end up with code like that shown in
Example 4-1.

Example 4-1. Specifying data in simple arrays

unsigned int data[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
XtVaSetValues(barplot,
 XmNvalues, data,
 XmNnumValues, XtNumber(data),
 XmNvalueType, XiPlotDataUnsignedInt,
 XmNvalueSize, sizeof(unsigned int),
 XmNvalueOffset, 0,
 NULL);

Note that it not necessary to set the XmNvalueOffset resource in this case, because its
default value is 0. Also, notice that if we had used an array of double, rather than an
array of unsigned, in Example 4-1 we would not have had to specify the XmNvalue-
Type or XmNvalueSize resources either--the defaults for these values were chosen to
match arrays of double.
Because specifying data in simple arrays is fairly common, each Plot widget provides
convenience functions that handle simple arrays of double, float, and int. If we used
an array of float, instead of an array of unsigned in Example 4-1, we might have
replaced the call to XtVaSetValues() with a convenience function like this:

float data[] = { 2.0, 3.0, 5.0, 7.0, 11.0, 13.0, 17.0, 19.0 };
XiBarPlotSetFloatValues(barplot, 0.0, 1.0, data, XtNumber(data));

The second and third arguments to this convenience function specify the X value for
the first bar of the bar plot, and the interval between successive bars. These conve-
nience functions provided by each widget are documented in the chapters on those
widgets. The convenience functions are usually the simplest thing to use when the
application has stored its data in simple arrays of common data types. There are times,
however, when no convenience function will do, and you will have to (or will prefer
to) set the XiPlotData resources directly. The following sections provide examples of
some common situations that you might encounter.
44 GraphPak Programmer’s Reference Manual

4.3 Data in Arrays of Structures
BarPlots, as used in the examples of the previous section, have only one data value
per bar--the bars are evenly spaced, and so the X values are specified with a minimum
value and an increment. For other plot types, such as line plots or high-low-close plots
of financial market data, each point has more than one value--an x coordinate and a y
coordinate, or a high value, a low value, and a close value. Often it is most convenient
to group these values together into structures that describe the complete data point. In
this case, you can end up with code like that shown in Example 4-2.

Example 4-2. Specifying data in arrays of structures

typedef struct {
 float high;
 float low;
 float close;
} MarketData;

extern MarketData market_history[365]; /* initialized elsewhere */

XtVaSetValues(highlowplot,
XmNnumValues, XtNumber(market_history),

XmNhighValues, market_history,
XmNhighValueType, XiPlotDataFloat,
XmNhighValueSize, sizeof(MarketData),
XmNhighValueOffset, XtOffsetOf(MarketData, high),

XmNlowValues, market_history,
XmNlowValueType, XiPlotDataFloat,
XmNlowValueSize, sizeof(MarketData),
XmNlowValueOffset, XtOffsetOf(MarketData, low),

XmNcloseValues, market_history,
XmNcloseValueType, XiPlotDataFloat,
XmNcloseValueSize, sizeof(MarketData),
XmNcloseValueOffset, XtOffsetOf(MarketData, close),
NULL);

The most important thing to notice about this example is the use of the standard Xt
macro XtOffsetOf() to compute the value of the offset field of the high, low, and close
XiPlotData structures used by the widget. Also note that XmNhighValueSize, XmN-
lowValueSize, and XmNcloseValueSize are all specified as sizeof (MarketData), and
not sizeof(double)--these resources specify the size of the structure that contains the
data value, not of the individual data value itself. (The size of the data value is
implicit in the data type specification--XiPlotDataFloat in this example.)
It may seem redundant in this example to have to specify each of the values
market_history, XiPlotDataFloat, and sizeof(MarketData) on three separate resources.
The reason for this redundancy is of course the flexibility that is possible with the
Plot Data Representation 45

XiPlotData scheme--having all these resources allows you to specify high, low, and
close values, even when they are in separate arrays, of differing data types, and
embedded in structures of varying sizes.

4.4 Data of Mixed Types
You will not always use the same data type for each coordinate of a data point. If you
are using the LinePlot widget to plot a measured value against time, for example, you
might store the Y coordinate as a double, and the X coordinate as an integer number
of seconds. In this case, you might end up with code like that shown in Example 4-3.

Example 4-3. Specifying plot data of mixed types

typedef struct {
 unsigned short time;
 double value;
} DataPoint;

DataPoint system_load[1000];
int num_data_points;

/* go get the plot data from somewhere */
get_load_data(system_load, &num_data_points, 1000);

XtVaSetValues(lineplot,
 XmNnumValues, num_data_points,

 XmNxValues, system_load,
 XmNxValueType, XiPlotDataUnsignedShort,
 XmNxValueSize, sizeof(DataPoint),
 XmNxValueOffset, XtOffsetOf(DataPoint, time),

 XmNyValues, system_load,
 XmNyValueSize, sizeof(DataPoint),
 XmNyValueOffset, XtOffsetOf(DataPoint, value),
 NULL);

Note again that we use XtOffsetOf() in this example to compute the offset of fields
within their structures. In particular, we do not assume that the time field has an offset
of 0, just because it is the first structure in the field. Again, XmNxValueSize and
XmNyValueSize are the size of the whole structure, not of the data values within it--
the size of the data values is implicit in their types. Note that we did not specify the
XmNyValueType resource; its default value, XiPlotDataDouble, is already correct in
this case.
46 GraphPak Programmer’s Reference Manual

4.5 Linear Data
In the previous section we used the example of plotting measured data against time.
In cases like these, the measurements are often taken at fixed time intervals, and there
is really no need to specify all the X data values--the first value and the interval
between values is sufficient. As described above, if we specify NULL for the values
field of an XiPlotData structure, then the XiPlotData abstraction will generate a linear
sequence of values based on the multiplier and constant fields. So if the Y data points
were all measured at a fixed interval of 10 seconds, starting at some arbitrary "time
zero", we might use code like that shown in Example 4-4.

Example 4-4. Specifying linear data

static double yvalues[100]; /* initialized elsewhere */
static int num_values; /* initialized elsewhere */
static double t0 = 0.0;
static double deltat = 10.0;

XtVaSetValues(lineplot,
 XmNnumValues, num_values,
 XmNxValueConstant, &t0,
 XmNxValueMultiplier, &deltat,
 XmNyValues, yvalues,
 NULL);

Note that XmNxValueConstant and XmNxValueMultiplier are both resources of type
double, and need to be set using one of the special techniques described in Chapter 3,
Plotter Data Types and Resources. The default value for XmNxValueConstant is 0.0,
so we did not actually have to set it in this example. If our sampling interval had been
1 second, then we would not have had to specify XmNxValueMultiplier either--its
default value is 1.0. For some applications, such as signal processing, the actual size
of the sample interval on the X axis is often not relevant, and the X axis may often
even be displayed without any kind of labels. In this case, the XiPlotData defaults are
such that you can display a LinePlot without ever setting any resources for its X data
points.
Notice that since the Y data values are stored in a simple array of double, we can use
the default values for XmNyValueType, XmNyValueSize, and XmNyValueOffset,
and need not set these resources. Because linear X points and arrays of double Y
points is a fairly common arrangement, the LinePlot widget provides a convenience
function for this case.
Plot Data Representation 47

4.6 Linear Transformations of Data
We can take the LinePlot example from the previous two sections one step further,
and demonstrate another use of the multiplier and constant fields of the XiPlotData
structure: suppose the Y value we are plotting is a voltage between -5 and +5 volts.
This voltage is periodically sampled through an analog-to-digital converter and its
values are stored as 10-bit quantities between 0 and 1023. The D-to-A converter is
calibrated so that it measures voltages in increments of a hundredth of a volt, and so
that an input of zero volts produces an output of 512. If the voltage is sampled every
10 milliseconds, and the collected values are stored as raw 2-byte values, Example 4-
5 shows how you could produce a line plot of the data with both time and voltage val-
ues scaled correctly.

Example 4-5. Performing a linear transform on data values

unsigned short *data; /* a large array of values; we'll only plot
some. */
int first_point = 200; /* the first value we plot */
double start_time = first_point * 10.0;

XtVaSetValues(lineplot,
 XmNnumValues, 100,
 XmNxValueConstant, &start_time
 XtVaTypedArg, XmNxValueMultiplier, XmRString,"10.0", 5,

 XmNyValues, &data[first_point],
 XmNyValueType, XiPlotDataUnsignedShort,
 XmNyValueSize, sizeof(unsigned short),
 XtVaTypedArg, XmNyValueMultiplier, XmRString, ".01", 4,
 XtVaTypedArg, XmNyValueConstant, XmRString, "-5.12", 6,
 NULL);

Notice that this example shows two different ways to set resources of type double.
Note also that there is no array specified for the X values; they are always at fixed
intervals. We had to specify the XmNyValueType and XmNyValuesSize resources
because we did not use an array of double, but we did not have to specify XmNyVal-
ueOffset because the data is in a simple array rather than an array of structures.
48 GraphPak Programmer’s Reference Manual

4.7 String Data
With some plot types, notably BarPlots, you often want the X axis to appear with
strings as the axis labels rather than numbers. To do this, you must specify an array of
strings for the Axis. The Axis widget uses a scheme similar to the XiPlotData struc-
ture to allow you to specify strings from within an array of structures: the Axis XmN-
labelRecordSize and XmNlabelRecordOffset resources specify the structure size and
the position of the string within the structure; they serve analogous purposes to the
BarPlot XmNvalueSize and XmNvalueOffset resources. These Axis resources are
documented in Chapter 6, The Axis Widget. In most cases, you will probably use a
simple array of strings when labeling an Axis, and will use an Axis convenience func-
tion to specify them. If necessary, however, you can use these resources to specify
how the Axis widget should extract the strings from an arbitrary larger structure.

Plot Data Representation 49

50 GraphPak Programmer’s Reference Manual

The Plotter Widget

With the preliminaries of the previous chapters out of the way, we can finally describe
the XiPlotter widget itself. The figure on the facing page shows a Plotter widget with
title, an empty legend, X and Y axes, and an empty plotting area. This chapter
describes the resources that control these various areas and features of the Plotter, and
describes the public functions that operate on the Plotter.
All of the plots that would appear in the Plotter widget are implemented as separate
widget classes, which are documented in the following chapters. The axes are also
implemented as separate widgets which are documented in Chapter 6, The Axis Wid-
get.

Plotter Synopsis
Class Name: XiPlotter
Class Hierarchy: Core → Composite → Constraint → XmManager → XmBulletin-

Board → XiPlotter
Header File: <Xi/Plotter.h>
Class Pointer: xiPlotterWidgetClass

Constructor: XiCreatePlotter(Widget parent, String name,
ArgList args, Cardinal
num_args);

5

GraphPak Programmer’s Reference Manual 51

5.1 Creating an XiPlotter Widget
You can create a Plotter widget with the function XiCreatePlotter(), which is a stan-
dard Motif-style widget constructor. If you prefer to use XtCreateWidget() or XtVa-
CreateWidget(), the class pointer for the Plotter widget is XiPlotterWidgetClass. Both
the constructor function and the widget class pointer are declared in the header file
<Xi/Plotter.h>.
Example 5-1 demonstrates both methods of creating the widget. Don't forget that you
must manage any widgets you create with XtManageChild() or XtManageChildren().

Example 5-1. Creating XiPlotter widgets

#include <Xi/Plotter.h>

Widget parent; /* assume this is an Xm Form, already created */
Widget plotter1, plotter2;
Arg args[10];
int i;

/* We create the first plotter with the constructor function. */
i = 0;
XtSetArg(args[i], XmNtitle, "Plotter #1"); i++;
XtSetArg(args[i], XmNtopAttachment, XmATTACH_FORM); i++;
XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM); i++;
XtSetArg(args[i], XmNrightAttachment, XmATTACH_FORM); i++;
XtSetArg(args[i], XmNbottomAttachment, XmATTACH_POSITION); i++;
XtSetArg(args[i], XmNbottomPosition, 50); i++;
plotter1 = XiCreatePlotter(parent, "top_plotter", args, i);

/* We create the second plotter with XtVaCreateWidget */
plotter2 = XtVaCreateWidget("bottom_plotter", /* name */
 xiPlotterWidgetClass, /* class */
 parent, /* parent */
 XmNtitle, "Plotter #2",
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_POSITION,
 XmNtopPosition, 51,
 NULL);
XtManageChild(plotter1);
XtManageChild(plotter2);
52 GraphPak Programmer’s Reference Manual

5.2 Plotter Resources
The Plotter widget has resources that control its title, legend, plotting area, user inter-
action callbacks, and other miscellaneous features. Also, as a constraint widget, the
Plotter provides constraint resources to each of its children. These resources are sum-
marized in Table 5-1, and are documented in detail in the subsections below.

Table 5-1. Plotter Resources

Name Class Type Default CSG Pg
Colors
XmNforeground XmCForeground Pixel black CSG 56
XmNbackground XmCBackground Pixel white CSG 56
XmNplotAreaColor XmCBackground Pixel XmNbackgrounda CSG 56
XmNbackdrop XmCBackdrop Widget NULL SG 57
Fonts
XmNfontList XmCFontList XmFontList see below CG 57
XmNtitleFontList XmCFontList XmFontList XmNfontListc CSG 58
XmNlegendTitleFontList XmCFontList XmFontList XmNfontListc CSG 58
XmNlegendFontList XmCFontList XmFontList XmNfontListc CSG 58
XmNpsFontList XmCPSFontList XiPSFontList NULL CG 58
XmNtitlePSFontList XmCPSFontList XiPSFontList XmNpsFontListd CG 58
XmNlegendTitlePS-
FontList

XmCPSFontList XiPSFontList XmNpsFontListd CG 59

XmNlegendPSFontList XmCPSFontList XiPSFontList XmNpsFontListd CG 59

Axes
XmNxAxise XmCXAxis Widget NULL G 59

XmNyAxise XmCYAxis Widget NULLf G 59

XmNyAxis2e XmCYAxis Widget NULL G 59
XmNsecondYAxis XmCSecondYAxis Boolean FALSE CSG 59
Title
XmNshowTitle XmCShowTitle Boolean TRUE CSG 61
XmNtitleString XmCTitleString XmString NULL CSG 60
XmNtitle XmCTitle String NULL CSG 60
XmNtitleSize XmCFontSize Dimension 18 CSG 60
XmNtitleStyle XmCFontStyle String NULL CSG 60
XmNtitleColor XmCForeground Pixel XmNforegroundb CSG 61

Legend
XmNshowLegend XmCShowLegend Boolean TRUE CSG 61
XmNlegendTitleString XmCLegendTitle-

String
XmString NULLf CSG 62

XmNlegendTitle XmCLegendTitle String "Legend" CSG 62
XmNlegendTitleSize XmCFontSize Dimension 14 CSG 63
XmNlegendTitleStyle XmCFontStyle String NULL CSG 63
XmNlegendTitleColor XmCForeground Pixel XmNforegroundb CSG 63
The Plotter Widget 53

XmNlegendSize XmCFontSize Dimension 12 CSG 63
XmNlegendStyle XmCFontStyle String NULL CSG 63
XmNlegendColor XmCForeground Pixel XmNforegroundb CSG 63
XmNlegendBackground XmCBackground Pixel XmNbackgrounda CSG 63
XmNlegendSelectFore-
ground

XmCBackground Pixel XmNbackgrounda CSG 63

XmNlegendSelectBack-
ground

XmCForeground Pixel XmNforegroundb CSG 64

XmNlegendSpacing XmCMargin Dimension 4 CSG 64
XmNlegendIconWidth XmCLegendIcon-

Width
Dimension 20 CSG 64

XmNlegendUnderline XmCLegend-
Underline

Boolean TRUE CSG 64

XmNlegendBox XmCLegendBox Boolean TRUE CSG 64
XmNlegendBoxWidth XmCLineWidth Dimension 2 CSG 64
XmNlegendBoxColor XmCForeground Pixel XmNforegroundb CSG 64

Layout
XmNmarginWidth XmCMargin Dimension 10 CSG 65
XmNmarginHeight XmCMargin Dimension 10 CSG 65
XmNtitleMinHeight XmCTitleM-

inHeight
Dimension 5 CSG 65

XmNlegendMinWidth XmCLegendMin-
Width

Dimension 5 CSG 65

XmNlegendMargin XmCLegendMargin Dimension 10 CSG 65
Double Buffering
XmNdoubleBuffer XmCDoubleBuffer Boolean FALSE CSG 66
XmNdoubleBufferFre-
quencyHint

XmCDoubleBuffer-
FrequencyHint

DoubleBuffer-
FrequencyHint

Frequent CSG 66

XmNbackingStore XmCBackingStore BackingStore FALSE CSG 67
User Interaction
XmNallowCrosshair XmCAl-

lowCrosshair
Boolean TRUE CSG 234

XmNcrosshairLineWidth XmCLineWidth Dimension 0 CSG 234
XmNcrosshairColor XmCForeground Pixel XmNforegroundb CSG 234
XmNpermanentCrosshair XmCPermanent-

Crosshair
Boolean FALSE CSG 235

XmNcrosshairMotion-
Only

XmCCrosshairMot-
ionOnly

Boolean FALSE CSG

XmNallowDrag XmCAllowDrag Boolean TRUE CSG 238
XmNdragThreshold XmCDragThres-

hold
Dimension 4 CSG 231

XmNdragLineWidth XmCLineWidth Dimension 0 CSG 238
XmNdragColor XmCForeground Pixel XmNforegroundb CSG 238
XmNallowPan XmCAllowPan Boolean TRUE CSG 241
XmNpanLineWidth XmCLineWidth Dimension 0 CSG 241
XmNpanColor XmCForeground Pixel XmNforegroundb CSG 241
54 GraphPak Programmer’s Reference Manual

aInherited from the XmNbackground resource.
bInherited from the Xmforeground resource.
cInherited from the XmNfontList resource.
dInherited from the XmNpsFontList resource
ePlotter axes are implemented as independent Axis objects, each with a full set of its own resources.
fWhen an XmString resource is unset, its value is created from the corresponding String resource, using a font tag
derived from the corresponding style and size resources.

XmNallowMultipleSelect XmCAllowMultip-
leSelect

Boolean TRUE CSG 229

Callbacks
XmNactivateCallback XmCCallback Callback NULL C 229
XmNclickCallback XmCCallback Callback NULL C 231
XmNdoubleClickCallback XmCCallback Callback NULL C 231
XmNdragCallback XmCCallback Callback NULL C 237
XmNdragMotionCallback XmCCallback Callback NULL C 237
XmNeditCallback XmCCallback Callback NULL C 243
XmNleaveCallback XmCCallback Callback NULL C 234
XmNmotionCallback XmCCallback Callback NULL C 233
XmNpanCallback XmCCallback Callback NULL C 240
XmNpanMotionCallback XmCCallback Callback NULL C 240
XmNselectCallback XmCCallback Callback NULL C 228
Cursors
XmNplotterCursor XmCCursor ColoredCursor None CSG 68
XmNclickCursor XmCCursor ColoredCursor crosshair CSG 68
XmNpanCursor XmCCursor ColoredCursor fleur CSG 241
XmNtopLeftCursor XmCCursor ColoredCursor ul_angle CSG 68
XmNtopRightCursor XmCCursor ColoredCursor ur_angle CSG 68
XmNbottomLeftCursor XmCCursor ColoredCursor ll_angle CSG 68
XmNbottomRightCursor XmCCursor ColoredCursor lr_angle CSG 68
Printing
XmNforceColorPrinting XmCForceColor-

Printing
Boolean FALSE CSG

XmNcustomPSPrefix XmCCustomPS-
Prefix

String NULL CSG 69

XmNcustomPSSuffix XmCCustomPS-
Suffix

String NULL CSG 69

Constraint
Resources
XmNbackgroundPlot XmCBackground-

Plot
Boolean FALSE CSG 70

XmNlegendString XmCLegendString XmString NULLf CSG 70
XmNlegendName XmCLegendName String NULL CSG 70
XmNdrawingOrder XmCDrawingOrder Short 1 CSG 70
XmNselected XmCSelected Boolean FALSE CSG 71
The Plotter Widget 55

5.2.1 Default Colors and Background Resources
The resources documented in this section control the foreground and background col-
ors for the plotter. They are not often actually used directly by the Plotter widget, but
instead serve as default values for other color resources--resources that control the
colors of the individual features of the Plotter.

XmNforeground
When a Plotter widget is created, the value of this resource is used as the default
for all the other foreground resources of the widget, but it is never actually used
itself. You can set this resource when you create the widget (or specify it in a
resource file) as a simple way to specify a foreground for all the various parts of
the widget. Setting the resource after the widget has been created has no effect,
however, since its value is used only for inheritance.

XmNbackground
This resource specifies the background color for the Plotter. If the XmNplotArea-
Color and the XmNlegendBackground resources are not specified when the wid-
get is created, then this resource is used for the plot area and legend backgrounds
as well. Note that this is not actually a Plotter resource; it is inherited from the
Core widget class. If you change this resource, the change is not propagated on to
the plotting area and the legend. If these regions inherited their color from the
XmNbackground resource, then you will probably want to change their colors
explicitly if you ever change XmNbackground.
There is another difficulty with changing the XmNbackground resource. When
this color changes, the change is not passed on to the Axis children of the Plotter.
The Y axis displays rotated text in a Pixmap and the background color of this
Pixmap does not change when the XmNbackground resource does. A
workaround is to set the Y axis title resource to NULL and then restore it to its
original value. This will cause the title text to be re-rotated, and the Pixmap re-
created with the correct background.

XmNplotAreaColor
This resource specifies the background color of the plotting area (the region
between the axes). If no value is specified for this resource when the widget is
created, its value is inherited from the XmNbackground resource of the widget.
On color displays, you can achieve visually appealing effects using different col-
ors for XmNbackground and XmNplotAreaColor. Some plot types inherit this
background color to use as the background color for markers and fill patterns. If
you change XmNplotAreaColor, the change will not automatically propagate to
these children. To be safe, you should only change this resource when there are
no plots being displayed in the plotter.
56 GraphPak Programmer’s Reference Manual

XmNbackdrop
This resource specifies a Plot widget child of the Plotter which will draw the
background for the Plotter widget. You can use this resource with special plot
types to achieve special visual effects for presentation graphics. Currently the
only type of plot widget suitable for use as a "backdrop plot" is the FadePlot wid-
get. See Chapter 14, The FadePlot Widget , for more information about backdrop
plots and an example of using this XmNbackdrop resource.

5.2.2 Fonts
The resources described in this section specify the fonts to be used to display text in
the Plotter widget, and the corresponding fonts to be used in PostScript hardcopy.
Four of these resources are of the Motif XmFontList type and specify one or more
fonts to be used to display XmStrings in a particular part of the Plotter widget. Note
that most of the font list resources inherit their default value from the XmNfontList
resource, so that if you specify an adequate number of fonts on this one font list, you
need not specify any of the other font list resources.
Each XmFontList resource has a corresponding XiPSFontList resource, which speci-
fies the PostScript equivalents of each of the X fonts listed in the XmFontList. Note
that the Plotter widget can automatically determine the PostScript equivalents for the
standard Adobe X fonts--i.e. the Adobe Times, Helvetica, Courier, New Century
Schoolbook, and Symbol font families--so if you are using only fonts from these fam-
ilies, you will not need to specify any of the XiPSFontList resources. Note that the
default values for XiPSFontList resources are inherited in the same way that the
XmFontList resource defaults are.
See Section 3.3, Fonts and DisplayedText, for more information on fonts and text dis-
play in the XiPlotter widget.

XmNfontList
When the Plotter widget is created, the value of this resource is used as the
default for all the other XmFontList resources in the widget and in its children.
Like the XmNforeground resource, however, it is never actually used itself.
XmNfontList is used only for inheritance when the widget is created; changing
its value with XtSetValues() will have no effect. The default value of this default
font list is the following:

-*-helvetica-medium-r-*-*-*-120-*-*-*-*-*-*=12,
-*-helvetica-medium-r-*-*-*-100-*-*-*-*-*-*=10,
-*-helvetica-medium-r-*-*-*-140-*-*-*-*-*-*=14,
-*-helvetica-medium-r-*-*-*-180-*-*-*-*-*-*=18

These fonts and their font tags are chosen to work with the default values of the
various font size and font style resources throughout the Plotter widget and its
The Plotter Widget 57

children. See Section 3.3 for a further discussion. When working with the Plotter
widget, you may choose to specify a single comprehensive font list, like the
default above, that contains the fonts used throughout the plotter, or you may pre-
fer to specify separate, individual fonts on the various font list resources
described below.

XmNtitleFontList
The font or list of fonts to be used to display the title of the Plotter widget. If no
value is specified for this resource, its default value is inherited from the XmN-
fontList resource.

XmNlegendTitleFontList
The font or list of fonts to be used to display the title of the legend in the Plotter
widget. If no value is specified for this resource, its default value is inherited
from the XmNfontList resource.

XmNlegendFontList
The font or list of fonts to be used to display the items in the legend of the Plotter
widget. If no value is specified for this resource, its default value is inherited
from the XmNfontList resource.

XmNpsFontList
This resource is an XiPSFontList that is not used directly by the Plotter widget
itself, but instead serves as the default value for all the other XiPSFontList
resources in the Plotter widget and its Plot children. An XiPSFontList specifies
PostScript fonts that correspond to each of the X fonts in an XmFontList. No
XiPSFontList is required when using any of the standard Adobe X fonts--the
Times, Helvetica, Courier, New Century Schoolbook, and Symbol font families--
and so the default for this resource is NULL.
Note that while the name of this resource is XmNpsFontList, its class name is
XmCPSFontList, instead of the expected XmCPsFontList--this minor departure
from the usual resource class name capitalization conventions is for legibility.
See Section 3.3 for more information on specifying XiPSFontList resources from
C and from a resource file.

XmNtitlePSFontList
The list of PostScript fonts to be used to display the title of the Plotter widget in
hardcopy. If no value is specified for this resource, its default value is inherited
from the XmNpsFontList resource.
58 GraphPak Programmer’s Reference Manual

XmNlegendTitlePSFontList
The list of PostScript fonts to be used to display the title of the legend of the Plot-
ter widget in hardcopy. If no value is specified for this resource, its default value
is inherited from the XmNpsFontList resource.

XmNlegendPSFontList
The list of PostScript fonts to be used to display the items in the legend of the
Plotter widget in hardcopy. If no value is specified for this resource, its default
value is inherited from the XmNpsFontList resource.

5.2.3 The Axes
The X and Y axes and the optional secondary Y axis are probably the most important
parts of the plotter window. They are also the most complex--each axis has over 60
resources that control its bounds, labeling, and overall appearance. Because there are
so many resources, the axes are implemented as a separate widget type. When you
create an XiPlotter widget, it automatically creates two XiAxis children--each with its
independent set of resources--for the X and Y axes, and if XmNsecondYAxis is True,
it creates a third XiAxis widget for the secondary Y axis. The XiAxis widget and all
of its resources are documented in Chapter 6, The Axis Widget.
The Plotter widget resources that are relevant to the axes are the following:

XmNxAxis, XmNyAxis, XmNyAxis2
These are read-only resources that you can use to obtain a Widget pointer for
each of the axis widgets. With this pointer you can set XiAxis resources on the
axes. See below, however: there are also convenience functions which will return
these axis Widget pointers.

XmNsecondYAxis
This is a Boolean resource that specifies whether or not the Plotter should display
a secondary Y axis on the right-hand side of the plotting area. A secondary Y axis
is not fully independent: its minimum and maximum bounds must be linearly
proportional to the bounds of the primary Y axis, and the secondary axis bounds
will automatically change when the primary axis bounds do. Note that setting
XmNsecondYAxis to True creates a new Axis widget, and setting the resource to
False destroys it. If you want to simply hide the secondary Y axis temporarily, it
is better to simply unmanage it, instead of destroying it and then recreating it
later. See Chapter 6 for more information about secondary axes.
The Plotter widget provides three functions, declared in <Xi/Plotter.h>, for
obtaining the axes of a Plotter. XiPlotterXAxis(), XiPlotterYAxis(), and
XiPlotterYAxis2() each take a Plotter widget as their single argument and return
the X axis, the Y axis, and the secondary Y axis widgets of that Plotter. You can
The Plotter Widget 59

also obtain these resources by querying the XmNxAxis, XmNyAxis, and
XmNyAxis2 resources. (These resources are read-only; you should not set them.)
Once you have obtained pointers to the Axis widgets by either of these methods,
you can set any of the Axis resources, as you would for any other widget. You
can also manage and unmanage the axes. An unmanaged axis will not appear in
the plotter; this can be useful when displaying pie charts, for example.

5.2.4 The Title
The Plotter widget optionally displays a title centered above the plotting area. The
following resources control the text and the appearance of that title.

XmNtitleString
The XmString to be displayed as the title of the Plotter. If no XmString is speci-
fied for this resource, then one will be created using the XmNtitle string, and a
font list tag constructed from the XmNtitleStyle and XmNtitleSize resources, as
described in Section 3.3, Fonts and Displayed Text. Setting this resource will
override any value previously created from the XmNtitle string. If you query this
resource, the Plotter returns its private, internal copy of the XmString, which you
must not modify or free.

XmNtitle
This is the string to appear as the title of the Plotter, if no XmNtitleString is spec-
ified. Note that this is an ordinary NULL-terminated character string, not a Motif
XmString. If you set this resource, the string will be converted to an XmString
using a font list tag constructed from the XmNtitleStyle and XmNtitleSize
resources, and this newly created XmString will become the new value of the
XmNtitleString resource. See Section 3.3 for details. When you set XmNtitle, the
Plotter widget makes an internal copy of it, so you are free to modify or change
your copy of the string after setting it. If you query this resource, the returned
string is the widget's internal copy, which you must not modify or free.

XmNtitleSize
The point size of the Plotter title text. This value is used in the font list tag of the
XmNtitle, if no XmNtitleString is specified. The default value is 18.

XmNtitleStyle
The typeface for the Plotter title text. This resource is used in the font list tag of
the XmNtitle, if no XmNtitleString is specified. XmNtitleStyle is a string
resource, and the default value is NULL. If you set this resource, you will typi-
cally set it to strings such as "bold" and "italic", depending on the font tags in
your XmNtitleFontList. When you set this resource, the string value is copied,
and when you query it, you must not modify or free the returned value.
60 GraphPak Programmer’s Reference Manual

XmNtitleColor
This is the color the Plotter title is to be displayed in. If no value is specified for
this resource when the widget is created, then the value of the XmNforeground
resource will be used. (Once the widget is created, however, changing the XmN-
foreground resource will not change the color of the title.)

XmNshowTitle
A Boolean resource that specifies whether the title should be displayed. The
default is True which specifies that the title should be displayed, if any is speci-
fied. If set to False, then no title will be displayed, even if one is specified.

5.2.5 The Legend
The Plotter widget will optionally display a "legend" or "key" to the right of the plot-
ting area. When there is more than one Plot displayed in the Plotter, this legend pro-
vides a name for each plot so that the user can identify them. The Plotter legend is
also sensitive to mouse clicks, and, like the Motif and Athena List widgets, it allows
users to select any of the displayed items.
There are many resources that control the appearance of the legend; they are
described below. There are also two Plotter constraint resources used by the legend.
The XmNlegendName constraint lets you specify the name to appear in the legend for
a particular plot, and the XmNselected constraint lets you specify whether that name
should appear highlighted in the legend. These constraint resources are documented
in Section 5.2.11, Constraint Resources.
The resources that control the appearance and layout of the Plotter legend are
described below. Figure 5-1 shows a diagram of a plotter legend, which is useful in
figuring out what each of these resources do.

XmNshowLegend
A Boolean resource that specifies whether the legend should be displayed. The
default is True. If False, then the legend will not be displayed in the Plotter.
The Plotter Widget 61

Figure 5-1. The XiPlotter legend

XmNlegendTitleString
The XmString to be displayed as the title of the Plotter legend. If this resource is
not specified, then an appropriate XmString will be created using the XmNleg-
endTitle string and a font list tag constructed from the XmNlegendTitleStyle and
XmNlegendTitleSize resources, as Text. Setting this resource will override any
value previously created from the XmNlegendTitle string. If you query this
resource, the Plotter returns its private, internal copy of the XmString, which you
must not modify or free.

XmNlegendTitle
The string that appears at the top of the legend, if no XmNlegendTitleString is
specified. This resource is an ordinary NULL-terminated character string, not an
XmString. If the XmNlegendTitleString is not specified, then this string will be
converted to an XmString, using a font list tag constructed from the XmNlegend-
TitleStyle and XmNlegendTitleSize resources, and this newly created XmString
will become the value of the XmNlegendTitleString resource. See Section 3.3 for
details.
The default value of this resource is the string "Legend", but you might want to
change it to "Key", or some other value. When you set this resource, the Plotter
makes its own private copy of the string, and the value is used to create an
62 GraphPak Programmer’s Reference Manual

XmString that overrides any previously specified value for XmNlegendTi-
tleString. When you query this resource, the string returned is a private, internal
copy, which you must not modify or free.

XmNlegendTitleSize
A point size to use in the font list tag of the XmNlegendTitle, if no XmNlegend-
TitleString is specified. The default is 14.

XmNlegendTitleStyle
A typeface name to use in the font list tag of the XmNlegendTitle, if no XmNleg-
endTitleString is specified. The default is NULL. When you set this resource, the
string value is copied, and when you query it, you must not modify or free the
returned value.

XmNlegendTitleColor
The color of the legend title. If this value is not set when the widget is created, it
will inherit the value of the XmNforeground resource.

XmNlegendSize
The point size of the font used for entries in the legend. If no XmNlegendString
constraint is specified for a plot in the Plotter, then this value is used in the font
list tag for the XmNlegendName constraint of that item. The default is 12. Note
that changing the value of this resource will not cause the size of already-existing
legend items to change. See Section 3.3 for more information.

XmNlegendStyle
The typeface for entries in the legend. If no XmNlegendString constraint is spec-
ified for a plot in the Plotter, then this value is used in the font list tag for the
XmNlegendName constraint of that item. The default is NULL. Note that chang-
ing the value of this resource will not cause the typeface of already-existing leg-
end items to change. See Section 3.3 for more information. When you set this
resource, the string value is copied, and when you query it, you must not modify
or free the returned value.

XmNlegendColor
The color of the text for each entry in the legend. If this resource is not set when
the widget is created, its value is inherited from the XmNforeground resource.

XmNlegendBackground
The background color for the legend. If this resource is not specified when the
widget is created, its value is inherited from the XmNbackground resource.

XmNlegendSelectForeground
The Plotter Widget 63

The foreground color of any selected items in the legend. If this resource is not
set when the widget is created, its value is inherited from the XmNbackground
resource.

XmNlegendSelectBackground
The background color of any selected items in the legend. If this resource is not
set when the widget is created, its value is inherited from the XmNforeground
resource, which will use selected items to be displayed in "reverse video".

XmNlegendSpacing
The number of blank pixels between items in the legend. The default is 4.

XmNlegendIconWidth
The width, in pixels of the "icon" for each legend item. The "icon" is the section
of the legend that graphically identifies the plot. The default value is 20.

XmNlegendBox
A Boolean resource that specifies whether a box should be drawn around the leg-
end. The default is True. If False, then no box will be drawn.

XmNlegendUnderline
A Boolean resource that specifies whether the legend title should be underlined.
The default is True. If False, then no line will be drawn.

XmNlegendBoxWidth
The line width to be used to draw the box around the legend and the line beneath
the legend title. The default is 2.

XmNlegendBoxColor
The color to be used for the legend box and underlining. If this resource is not set
when the widget is created, then it inherits its value from the XmNforeground
resource.

5.2.6 Plotter Layout
The Plotter widget automatically arranges its title, legend, axes and plotting area in
very reasonable default places. The resources documented in this section allow you
an extra degree of control over the size of margins in the Plotter widget and the size of
the title and legend within the Plotter. The related Axis widget resource, XmNaxis-
Width can be used to control the positions of the axes.
64 GraphPak Programmer’s Reference Manual

XmNmarginWidth
The width, in pixels, of the margin at the left and right sides of the plotter. The
default is 10.

XmNmarginHeight
The height, in pixels, of the margin at the top and bottom of the plotter. The
default is 10.

XmNlegendMargin
The number of pixels between the left edge of the legend and the right edge of
the plotting area. This resource does not take the width of the lines used to frame
the legend and plotting area into account; if you use wide lines, the number of
blank pixels will appear smaller than specified. The default value is 10.

XmNlegendMinWidth
The minimum number of pixels to be allocated for the legend at the right of the
plotter. The legend will always be at least this many pixels wide, but will be
wider if needed. This resource is useful if you have two plotter widgets displayed
one above the other, and want to force their legends to be the same width so that
their plotting areas are aligned. The default value is 5, which serves as an internal
margin when no legend is displayed. If no legend is displayed, and there is a long
label at the end of the X axis, you may have to adjust this minimum width to
make room for the axis label. See also XmNtitleMinHeight and the Axis resource
XmNaxisWidth.

XmNtitleMinHeight
This is the minimum height of the title in pixels. The plotter always allocates at
least this many pixels of its window to display the title. This can be useful when
you want to align the titles of adjacent Plotter widgets, even when those widgets
use different title fonts--you can simply set the XmNtitleMinHeight resource of
both to the height of the larger font.
The Plotter never chops off the top or bottom of the title--if the title font is taller
than this resource, the Plotter will ignore this resource and allocated as much of
its window as it needs for the title. The default value for this resource is 5 pixels;
is this smaller than any actual title that would be specified, but serves as an inter-
nal margin when no title is specified or when XmNshowTitle is False. (This
internal margin is important to prevent the topmost label on the Y axis from
extending out of the window when no title is displayed in the Plotter. If you are
using a larger-than-usual font for the labels on the Y axis, you may have to use a
larger value for XmNtitleMinHeight. See also XmNlegendMinWidth and the
Axis resource XmNaxisWidth.
The Plotter Widget 65

5.2.7 Double Buffering and Backing Store
The Plotter widget has the ability to use double buffering if you request it. When dou-
ble buffering is turned on, the Plotter always redraws itself into an off-screen "buffer",
and then when the redraw is complete, it copies the fully-drawn contents of the buffer
into the on-screen Plotter window. In practice, this makes redraws very crisp and
flicker-free. Double-buffering is not turned on by default, because it requires a fair bit
of memory in the X server to implement. If your program will be displaying data that
changes frequently, you will almost always want to turn double buffering on--it will
make the resulting display much nicer. The Plotter widget implements double-buffer-
ing with the MBX multi-buffering extension to X, if the X server it is talking to sup-
ports it. If not, it simply performs double-buffering on its own by allocating its own
off-screen bitmap.
The plotter widget also supports backing store, which, like double buffering is a way
of decreasing the amount of flickering that the user sees on the screen. When backing
store is turned on, the Plotter widget will never have to redraw itself when it is cov-
ered and uncovered--i.e. the X server remembers the contents of the Plotter window,
even when that window is obscured by other windows. Backing store can be useful
when a Plotter is displaying a particularly complex set of plots that are time consum-
ing to redraw. Bear in mind, though, that backing store takes up a lot of memory in the
server, so it is not turned on by default and it should only be used in special circum-
stances.
The resources that control double buffering and backing store are the following:

XmNdoubleBuffer
A Boolean that specifies whether double buffering is turned on. Setting this
resource to True turns on double buffering. The default is False.

XmNdoubleBufferFrequencyHint
When double buffering is on, and the X server supports the MBX multi-buffering
extension, this resource is a hint to the server that tells it how often you think that
the Plotter window will be redrawn. The legal values are defined in <X11/exten-
sions/multibuf.h>: MultibufferUpdateHintFrequent, MultibufferUpdateHintInt-
ermittent, and MultibufferUpdateHintStatic. When memory is scarce, the X
server may use this hint to decide which window have the greatest need for off-
screen buffers, and deny double-buffering to those windows that will not be
updated frequently. Many X servers will simply ignore this resource.
The Plotter widget registers a type converter so that you can specify a value for
this resource from a resource file. The converter recognizes the values "Fre-
quent", "Intermittent", and "Static".
66 GraphPak Programmer’s Reference Manual

XmNbackingStore
This resource specifies whether backing store should be on, and if so, the type of
backing store required by the widget. There are three possible values, which are
defined in <X11/X.h>: NotUseful, WhenMapped, and Always. The default is
NotUseful, which means that the widget does not request any backing store from
the server; whenever the plotter is obscured and then uncovered it will have to
redraw itself. The value WhenMapped means that the widget requests backing
store from the server, except when it is iconified. This means that the widget will
generally never have to redraw itself when covered and uncovered. The value
Always means that backing store is requested, even when the widget is iconified.
This means that the widget does not have to redraw itself even when iconified.
Remember that X servers are not required to implement backing store, nor to pro-
vide it for every window that requests it, so this resource must be considered only
a hint to the server.
The Plotter registers a type converter for this resource, so that you can specify
values from a resource file. The converter recognizes the strings "NotUseful",
"WhenMapped", and "Always".

5.2.8 Interaction Resources and Callbacks
There are a number of Plotter resources that control user interaction with the Plotter.
XmNallowDrag, for example specifies whether the plotter will display a rubber-
banded rectangle when the user drags the mouse in the plotting area, and XmNdrag-
Color specifies the color of that rectangle. The topic of user interaction also involves
callbacks, translations, and actions. These subjects are important enough to warrant a
chapter of their own. See Chapter 16, User Interaction with the Plotter for documen-
tation of these topics and a complete explanation of all of the Plotter interaction
resources.

5.2.9 Cursor Resources
The Plotter widget uses a number of different pointer cursors in different situations.
The resources described in this section specify the cursors that are to be displayed.
The XmNplotterCursor resource specifies the default cursor to be displayed. The
other resources specify special cursors to be displayed during user interaction, and
while the cursor resources are documented here, the user interactions they are used
for are described in more detail in Chapter 16, User Interaction with the Plotter.
You can set these resources to any cursor (a value of type Cursor in Xlib) you create.
You can also specify cursors by name in a resource file. The Plotter widget registers
an enhanced String-to-Cursor resource converter that also allows you to specify fore-
ground and background colors for your cursors. To use it, simply follow the cursor
name (the cursor must be from the standard cursor font) with an the desired fore-
The Plotter Widget 67

ground and background color names. If you do not specify colors, black will be used
for the foreground, and the background will be inherited from the Plotter XmNback-
ground resource. See Section 3.9, Cursors, for more information about cursors and
about the Plotter's enhanced cursor converter.
The Plotter cursor resources are the following:

XmNplotterCursor
The cursor to display when the pointer is inside the Plotter widget, there are no
crosshairs displayed, and the user is not clicking, dragging, or panning. The
default is None, which specifies that the cursor should be inherited from the Plot-
ter widget's parent. Generally, a value of None will result in the default arrow
cursor being used.

XmNclickCursor
The cursor to be displayed while the user has the mouse button down during a
click. The default is the cursor named "crosshair" from the standard cursor font.

XmNcrosshairCursor
The pointer cursor to be displayed while the crosshairs are displayed. The default
value of this resource is the cursor named "crosshair".

XmNtopLeftCursor, XmNtopRightCursor, XmNbottomLeftCursor,
XmNbottomRightCursor

These resources specify the four cursors to be used when the user drags out a
rectangle. For example, the XmNbottomRightCursor will be displayed when the
user selects a rectangle by clicking at the upper left and dragging diagonally
down and to the right--the bottom right corner of the "rubberbanded" rectangle
will follow the pointer. The default values for these cursor resources are angles
that match the appropriate corner of the rectangle. If you change one of these
resources, you will probably want to change them all to provide a matching set.

XmNpanCursor
The cursor to display when the user pans the widget. The default is the cursor
named "fleur" in the standard cursor font. (This cursor displays arrows pointing
in each of the four cardinal directions.)
68 GraphPak Programmer’s Reference Manual

5.2.10 Printing Resources
The resources described in this section control the generation of PostScript hardcopy
when the plotter is printed with XiPlotterPrint(). See Section 5.4, Printing the Plotter
Widget, for more information about creating PostScript hardcopy of the Plotter wid-
get.

XmNforceColorOutput
The Plotter widget always produces color PostScript output. When color Post-
Script is printed on a monochrome device (like most laser printers) all colors are
converted to a shade of gray. In many cases, these shades of gray distract from
the data being displayed, especially when used as a background color. Thus, by
default, the Plotter outputs PostScript which checks whether it is being printed on
a monochrome device, and if so, always produces a white background and uses a
black foreground for the axes, for text, for the lines of line plots, and so on. In
this default printing mode, only filled areas, such as the bars in bar charts and the
wedges in pie charts will be printed as shades of gray. This default behavior gen-
erally produces crisper, more legible output on monochrome devices, and still
allows full-color printing for color printers on on-screen previewers. Sometimes,
however, you will want to override this default behavior and produce mono-
chrome printouts that use shades of gray for the entire widget. You can do this by
setting XmNforceColorOutput to True.

XmNcustomPSPrefix, XmNcustomPSSuffix
These two resources specify strings that will be inserted at the beginning and end
of all PostScript output. Using them requires a thorough understanding of the
PostScript language, and also of the structure of the PostScript page descriptions
that the Plotter outputs. If you knew that your output were to be printed on a
300dpi laser printer, for example, you might use XmNcustomPSPrefix, for exam-
ple, to output a PostScript setscreen operator that would produce shades of gray
with a smaller, less grainy stipple, at the price of reducing the number of shades
of gray available.

5.2.11 Constraint Resources
The XiPlotter is a subclass of the Xt Constraint widget class. This means that it is a
"constraint widget", and, like the Motif XmForm widget, for example, it provides
"constraint resources" to each of its children. A "constraint resource" (or just "con-
straint") is a special resource provided and handled by the constraint widget which
you set on any of the children of that widget. The Plotter widget provides four such
constraint resources, which you can set on any of the Plot children that appear in that
widget. These constraints are the following:
The Plotter Widget 69

XmNbackgroundPlot
This constraint resource is a Boolean value. If True, it indicates that this Plot
should be drawn "in the background"--i.e. beneath any other plots, and also
beneath the grid lines of the Plotter. This constraint can be used with any Plot
widget, but is currently most useful with the FadePlot widget (and perhaps the
ImagePlot widget). Do not confuse this constraint resource, which specifies that
any given plot should be drawn in the background of the plotting area, with the
Plotter XmNbackdrop resource, which is not a constraint, and which specifies a
single Plot to be drawn as the background of the entire Plotter window.Chapter
14, The FadePlot Widget, shows an example of using a FadePlot widget with the
XmNbackdrop resource; that example is easily adapted to use the XmNback-
groundPlot constraint instead.

XmNlegendString
The XmString to be displayed in the legend for this plot. If no XmString is speci-
fied for this resource, then one will be created using the XmNlegendName
resource (if it is specified) and a font list tag constructed from the XmNlegend-
Style and XmNlegendSize resources, as described in Section 3.3, Fonts and Dis-
played Text. Note that all entries in the Plotter legend will be as tall as the tallest
one. Thus you should generally use the same fonts for all legend entries, and
make them the same number of lines high. Setting this resource will override any
value previously created from the XmNlegendName string. If you query this
resource, the Plotter returns its private, internal copy of the XmString, which you
must not modify or free.

XmNlegendName
This is the string that is to appear in the legend for this plot, if no XmNlegend-
String is specified. Note that this is an ordinary NULL-terminated character
string, not a Motif XmString. The default is NULL which specifies that this plot
should not have an entry in the legend. If you set this resource, the string will be
converted to an XmString using a font list tag constructed from the XmNlegend-
Style and XmNlegendSize resources, and this newly created XmString will
become the new value of the XmNlegendString constraint. See Section 3.3 for
details. The Plotter widget makes an internal copy of this resource whenever it is
set on a Plot child, so once you have set the resource, you are free to modify or
free your copy of the string. If you query this resource, however, you obtain the
internal copy of the string, which you must not modify or free.

XmNdrawingOrder
This short int resource specifies the order in which plots are drawn in the Plotter,
and the order that they appear in the legend. The default is -1, which is a special
value that indicates that the plot should be drawn after all other plots in the Plot-
ter. (This means that if you never set this resource, plots will be drawn and will
appear in the legend in the order that they were created.) The order that plots are
70 GraphPak Programmer’s Reference Manual

drawn in determines their "stacking order"-- a plot will overlap any plots that
were drawn before it. You can specify any value for this constraint, but note that
positions 0 and 1 are generally reserved for the X and Y axes, which are special
Plot widgets themselves.

XmNselected
This is a Boolean resource that specifies whether the Plot will appear selected in
the legend. The default is False. The user can select any Plot in the Plotter by
clicking or shift-clicking on its entry in the legend. Typically, you will handle this
selection through one of the Plotter callbacks, but you can also explicitly set or
query the selection state of any Plot with this constraint resource.

5.3 Plotter Redisplay
Changing the resources of the Plotter widget or of its axes or Plot children will very
often cause the plotter to redisplay itself. Similarly, creating, destroying, managing or
unmanaging a new Plot child will do the same. If you will be making more than one
change to the Plotter or its children at a time, this multiple redisplay is inefficient and
can cause annoying flickering on the screen.
To prevent multiple redisplay, call the function XiPlotterDisableRedisplay() before
beginning a series of changes to the Plotter or its children. When you have completed
a batch of changes, call XiPlotterEnableRedisplay() and the Plotter will update itself
with a single redraw. Each of these functions takes a single Plotter widget as its only
argument, and has no return value.

void XiPlotterDisableRedisplay(Widget w);s

void XiPlotterEnableRedisplay(Widget w);

w A Plotter widget. When XiPlotterDisableRedisplay() is called for a wid-
get, that widget will not redraw itself until the matching XiPlotterEn-
ableRedisplay() is called.

XiPlotterDisableRedisplay() and XiPlotterEnableRedisplay() maintain a count of the
number of times they have been called for any Plotter widget, so it is possible to nest
calls to them--the Plotter will not redisplay itself until the "outermost" XiPlotterEn-
ableRedisplay() is reached.
Whenever you change a resource or call a convenience function on the Plotter widget,
its Axis widgets, or any of its children Plot widgets, the Plotter will generally have to
do redisplay, rescale, or relayout itself. Changing the color of a Plot would force a
redisplay, for example; adding a new plot might force a rescale, if the new plot caused
the axes to autoscale; and changing the font in the Plotter title could cause a relayout
if it were a different size than the previous font.
The Plotter Widget 71

Because of the tremendous number of resources supported by the Plotter, Axis and
the various Plot widgets, it is simply not possible to test the setting of all resources in
all combinations. Although there are currently no known bugs of this sort, you may
find instances when the Plotter widget incorrectly or incompletely updates itself after
a resource has been set or a convenience function called. If you ever do notice this
behavior, please report the bug, so we can fix it for the next release. Until the bug is
fixed, you should be able to work around the problem with the function XiPlotterRe-
layout().

void XiPlotterRelayout(Widget plotter);
plotter A Plotter widget. When this function is called, the specified widget (and

all of its children) will be completely refreshed: it will be laid out,
rescaled, and redrawn from scratch.

Note that XiPlotterRelayout() is not intended for any regular use; it is provided with
the Plotter library as a workaround, in case redisplay problems do arise with your
applications.

5.4 Printing the Plotter Widget
You can generate a PostScript version of the Plotter widget and all the plots within it
by calling the function XiPlotterPrint(). The signature for this function is shown in
Figure 5-2.
XiPlotterPrint() generates an EncapsulatedPostScript file, which can be printed on
its own or easily incorporated into other documents. The PostScript it generates will
print in color on color devices, or in black and white and shades of gray on mono-
chrome devices. See XmNforceColorOutput in Section 5.2.10, Printing Resources,
for more information on how the Plotter handles color output.

5.4.1 Printout Size and Orientation
The width and height arguments to XiPlotterPrint() specify the size of the printed rep-
resentation of the plotter. Both arguments are measured in PostScript points, which
are exactly 1/72nd of an inch--to convert inches to points, multiply by 72. To convert
centimeters to points, multiply by 28.35. Note that there are not x and y arguments to
this function to specify where the Plotter should appear on the page. XiPlotterPrint()
always centers its output on the page, which is generally appropriate if you will be
printing out the page alone. If you will be incorporating the PostScript file into some
other application, that application will let you place the image at the desired point on
the page.
72 GraphPak Programmer’s Reference Manual

The landscape argument specifies whether the Plotter should be printed sideways on
the page in "landscape mode". If you pass False, the printed image will be oriented
normally in "portrait mode". If you pass True, it will be oriented sideways in land-
scape mode.

void XiPlotterPrint(Widget plotter, char *filename,
 int width, int height,
 double scale, int landscape);
plotter The XiPlotter widget that is to be printed in PostScript.
filename

The name of the PostScript file to generate.
width, height

The dimensions, in points, of the printed version of the Plotter. If either of
these arguments is 0, its value will be computed from the value of the
other argument and the on-screen aspect ratio of the Plotter widget. If both
are zero, the printed version will occupy as much of the page as possible.

scale The "scale factor" for the printout. If the scale is 1.0, the printout will have
features (font sizes, marker sizes, Axis tick lengths, etc.) that are approxi-
mately the same size as they appear on the screen. Smaller scales are
appropriate when printing out a Plotter in a fairly small area. Most of the
figures in this manual, for example, were generated with a scale of 0.5 or
0.75. Larger scales produce larger fonts, wider lines, and so on; they are
appropriate when printing large plots for use on overhead transparencies,
for example.

 landscape
If this argument is True, the Plotter will be printed out in "landscape"
mode (i.e. sideways on the page). If False, "portrait" mode will be used.

Figure 5-2. XiPlotterPrint()

The width and height arguments are both optional; you may pass 0 rather than speci-
fying a value. Since either argument may be specified or not, there are four possible
cases, each producing the output described below:

Both width and height specified.
The Plotter will be printed with the specified width and height, regardless of ori-
entation or aspect ratio.

Width specified, height = 0.
The Plotter will be printed with the specified width. The height of the printed
image will be computed by multiplying the width by the height:width ratio of the
on-screen version of the widget.
The Plotter Widget 73

Height specified, width = 0.
The Plotter will be printed with the specified height, and the width of the printout
will be computed by multiplying that height by the width:height ratio of the on-
screen version of the widget.

Width = 0, height = 0.
In this case, the Plotter will take up as much room as possible on the page (leav-
ing at least a 3/4 inch margin all around), and will be printed with the same aspect
ratio as the on-screen version of the widget. This is done by comparing the aspect
ratio of the widget to the aspect ratio of the page--the page is assumed to be 8.5
inches wide and 11 inches high, but the aspect ratio depends on whether the Plot-
ter is being printed in landscape or portrait mode. Depending on the results of this
comparison, the width or the height of the image will be fixed at the width or
height of the page (minus margins), and the other dimension of the image will be
computed based on the widget aspect ratio as in the cases above.

5.4.2 Printout Scale
While the width and height arguments specify the absolute size of the printed image
on the page, the scale argument specifies the relative size of the features within that
image. If you specify a scale of 1.0, then the printed image will appear approximately
as it does on the screen--the fonts will be the same height, the lines the same thick-
ness, the Axis tick marks the same length, and so on. They will only be approximately
the same, because of course the size on the screen depends on the rated resolution of
your monitor, as well as the way you have tuned your monitor. The Plotter widget
assumes that all X displays have a resolution of 90 pixels-per-inch. Since PostScript
has 72 points-per-inch, the Plotter widget converts each on-screen pixel to 4/5ths of a
point in PostScript. So a line drawn 5 pixels wide in X would be drawn 4 points wide
in PostScript.
But the printed page is not the same as a computer monitor, and you do not always
want PostScript output printed at the same scale that it appears on the screen. If you
pass a scale argument of something other than 1.0, the output image will still have the
width and height that you specified, but the details within the image will be larger or
smaller. Smaller scale values are appropriate when you are printing a Plotter in a
fairly small space, and don't want the fonts in the Plotter title, the legend, and the axes
to take up all the space. Many of the figures in this book, for example, are 2 inches
wide and 1.75 inches high, and were printed with a scale factor of 0.5. Because Post-
Script offers much higher resolution than X, the small scale factor allows these fig-
ures can be displayed on the page in much less room than would be required for
screen display. Larger scale values can also be useful when printing out large versions
of a Plotter. If you pass a width and height of 0, for example, and a scale of 2.0, then
you will get an image that occupies most of the page, and has large fonts, fat lines,
74 GraphPak Programmer’s Reference Manual

and so on. An image like this is ideal when generating overhead transparencies for
presentations.

5.4.3 Spooling a PostScript File to a Printer
XiPlotterPrint() simply writes PostScript to a file; it does not actually spool anything
to a printer. Sending PostScript code to a printer is a fairly system-dependent task and
is left to the application. If you want to spool Plotter printouts from your application,
you can follow a procedure like this:
1. Use tmpnam() (or mktemp() on BSD systems) to generate a unique temporary

file name.
2. Call XiPlotterPrint() to generate the PostScript representation of the Plotter into

that file.
3. Call system() to invoke the printer spooling command for your operating system.

(Probably lpr.) For portability, you might want to allow this command to be con-
figured at run time, or at least allow users to specify which printer they want
(using the lpr -P option, for example).

4. Use unlink() to delete the temporary file.
The Plotter Widget 75

76 GraphPak Programmer’s Reference Manual

The Axis Widget

When you create a Plotter, the widget automatically creates two XiAxis widgets to
display its X and Y axes (and optionally a third XiAxis widget to display the second-
ary Y axis). The Axis and Plotter widgets are closely linked--neither will work with-
out the other, and it is useful to think of the Axis widget not so much as an
independent widget, but as a convenient placeholder for resources. There are 65 sepa-
rate resources that control the appearance and numbering of each axis. Rather than
add 195 resources to the Plotter widget--65 for each of three axes--it makes more
sense to define the axes as separate objects each with an independent set of resources.

Axis Synopsis
Class Name: XiAxis
Class Hierarchy: RectObj → XiPlot → XiAxis
Header File: <Xi/Axis.h>
Class Pointer: xiAxisWidgetClass

Constructor: none; automatically created by the Plotter

This chapter documents the 62 public Axis resources that control the Axis, and also
documents the functions that you can use to manipulate the axes of a Plotter. The first
section explains how to obtain pointers to the Axis widgets from a Plotter widget, and
the following two sections document the resources and functions that control Axis
appearance and numbering.
The Axis is the most complicated of any of the widgets in the Plotter library. It has the
following features:
• Each axis displays a title which can indicate what the axis is measuring, and what

units is it using. A typical title for an X axis might be "Time (ms)", for example.
For the Y axis, this title is displayed with text that has been rotated 90 degrees, so
that it runs vertically along the axis. Resources specify the font and color of the
title.

• The Axis displays major and minor tick marks (larger labeled marks, and smaller
marks between the labels) along its length. The Axis will automatically (and
intelligently) choose reasonable, round-number positions for the marks, or you
can explicitly set the positions yourself. Resources let you specify the length,
width, and color of the marks

6

GraphPak Programmer’s Reference Manual 77

• The Axis widget can display labels for each of the major tick marks it draws. By
default, it will automatically label these marks with numbers. You can specify the
way it formats these numbers, or you can provide your own array of strings for it
to display.

• The Axis widget can autoscale itself so that all the data displayed in the Plotter
will fall between the Axis minimum and maximum values. If you turn this
autoscaling off, you can specify explicit minimum and maximum values.

• The Axis widget will draw lines perpendicular to itself across the plotting area. If
both Axes do this, the lines form a grid, and provide a graph-paper appearance to
the plotting region. The Axis can display both a "major" grid at only the labeled
tick marks, and also a "sub-grid" at the smaller, unlabeled tick marks. Resources
allow you to specify a color, width and line pattern for the lines of both grid types

• The Axis will draw a "frame" line parallel to itself on the opposite side of the
plotting area. These frame lines combine with the Axis lines themselves to form a
box around the plotting area. If the range of the axis includes the point 0.0, the
Axis can also drawn an origin line perpendicular to itself at that point.

• The Axis supports logarithmic scaling, which allows you to easily produce semi-
log or log-log plots. When logarithmic scaling is enabled, the Axis will automati-
cally divide its range into decades, and will place its marks and grid lines appro-
priately. The Axis widget controls the scaling of Plot data, so plots will
automatically be displayed correctly on the logarithmic axes.

• When the secondary Y axis is displayed, its minimum and maximum values are
always linearly proportional to those of the primary Y axis. Two resources on the
second Y axis specify how primary Y axis bounds are transformed into second-
ary Y axis bounds. When you set the bounds of the primary Y axis, the bounds of
the secondary Y axis will be automatically updated. Similarly, when autoscaling
changes the Y axis bounds, the secondary Y axis bounds change as well.
78 GraphPak Programmer’s Reference Manual

6.1 Querying the Axes of a Plotter
Since the Plotter creates its Axis widgets automatically, you'll need to obtain a pointer
to them before you can manipulate the axes in any way.

Widget XiPlotterXAxis(Widget plotter);
Widget XiPlotterYAxis(Widget plotter);
Widget XiPlotterYAxis2(Widget plotter);
plotter An XiPlotter widget.
Returns The X or Y or secondary Y Axis widget created internally by the Plotter. If

the plotter XmNsecondYAxis resource is False, then
XiPlotterYAxis2()will return NULL.

You can get the X axis of a Plotter with XiPlotterXAxis(), and you can get the Y axis
with XiPlotterYAxis(), as shown in Example 6-1.

Example 6-1. Querying the Axes of a Plotter widget

Widget plotter;
Widget xaxis, yaxis;

plotter = XtCreateManagedWidget("plotter", xiPlotterWidgetClass,
 parent, args, num_args);
xaxis = XiPlotterXAxis(plotter);
yaxis = XiPlotterYAxis(plotter);

If your application contains only one Plotter widget, you might query its axes right
after you create it and store the returned pointers in global variables. If you are writ-
ing an application that uses multiple Plotters, you may find it easier to simply call
XiPlotterXAxis() and XiPlotterYAxis() each time you need to obtain an Axis widget
from a Plotter.
However you choose to obtain these Axis widgets, you can manipulate them as you
would any other widget with XtSetValues() and XtVaSetValues(). You can query the
value of Axis resources with XtGetValues() and XtVaGetValues(). In addition, there
are some special purpose functions for controlling Axis numbering; these functions
will be described later in this chapter.
The Axis Widget 79

Table 6-1. Axis Resources

Name Class Type Default CSG Pg
Title
XmNtitleFontList XmCFontList XmFontList XmNfontLista CSG 82
XmNtitlePSFontList XmCPSFontList XiPSFontList XmNpsFontListb CSG 82
XmNtitleString XmCTitleString XmString NULLc CSG 82
XmNtitle XmCTitle String NULL CSG 83
XmNtitleSize XmCFontSize Dimension 14 CSG 83
XmNtitleStyle XmCFontStyle String NULL CSG 84
XmNtitleColor XmCForeground Pixel XmNforegroundd CSG 84

Labels
XmNdrawLabels XmCDrawLabels Boolean TRUE CSG 84
XmNlabelFontList XmCFontList XmFontList XmNfontLista CSG 84
XmNlabelPSFontList XmCPSFontList XiPSFontList XmNpsFontListb CSG 84
XmNlabelSize XmCFontSize Dimension 10 CSG 85
XmNlabelStyle XmCFontStyle String NULL CSG 85
XmNlabelColor XmCForeground Pixel XmNforegroundd CSG 85

Axis and Tick
Marks
XmNlineColor XmCForeground Pixel XmNforegroundd CSG 85
XmNlineWidth XmCLineWidth Dimension 0 CSG 85
XmNmarkWidth XmCLineWidth Dimension 0 CSG 86
XmNmarksInside XmCMarksInside Boolean FALSE CSG 86
XmNmarksOutside XmCMarksOutside Boolean TRUE CSG 86
XmNmarkLength XmCMarkLength Dimension 5 CSG 86
XmNsubmarkLength XmCMarkLength Dimension 2 CSG 86
Frame and
Origin
XmNdrawFrame XmCDrawFrame Boolean TRUE CSG 87
XmNdrawOrigin XmCDrawOrigin Boolean TRUE CSG 87
XmNoriginWidth XmCLineWidth Dimension 0 CSG 87
XmNoriginColor XmCForeground Pixel XmNforegroundd CSG 87

Grid
XmNdrawGrid XmCDrawGrid Boolean TRUE CSG 88
XmNgridColor XmCForeground Pixel XmNforegroundd CSG 88
XmNgridWidth XmCLineWidth Dimension 0 CSG 88
XmNgridPattern XmCGridPattern LinePattern "\001" CSG 88
XmNdrawSubgrid XmCDrawSubgrid Boolean FALSE CSG 89
XmNsubgridColor XmCForeground Pixel XmNforegroundd CSG 89
XmNsubgridWidth XmCLineWidth Dimension 0 CSG 89
XmNsubgridPattern XmCGridPattern LinePattern "\003" CSG 89
Layout
XmNmargin XmCMargin Dimension 2 CSG 89
XmNaxisWidth XmCAxisWidth Dimension 0 CSG 89

Auto Scalinge
80 GraphPak Programmer’s Reference Manual

aInherited from the XmNfontList resource
bInherited from the XmNpsFontList resource
cWhen an XmString resource is unset, its value is created from the corresponding String resource using a font tag
derived from the corresponding style and size resources.
dInherited from the Plotter SmNforeground resource
eDo not set these resources when using a DBPak subclass of this widget.

XmNautoScaleMin XmCAutoScale Boolean TRUE CSG 91
XmNautoScaleMax XmCAutoScale Boolean TRUE CSG 92
XmNautoScaleMargin XmCAutoScaleMargin Dimension 5 CSG 92
Bounds and
Transforme

XmNmax XmCMax Double 10.00 CSG 93
XmNmin XmCMin Double 0.00 CSG 93
XmNunitMultiplier XmCUnitMultiplier Double 1.00 CSG 94
XmNunitConstant XmCUnitConstant Double o.0 CSG 94
XmNlog XmCLog Boolean FALSE CSG 96

Auto Markinge

XmNautoMark XmCAutoMark Boolean TRUE CSG 97
XmNroundEndpoints XmCRoundEndpoints Boolean TRUE CSG 97
XmNpixelsPerLabel XmCPixelsPerLabel Dimension 50 CSG 98
XmNpixelsPerMark XmCPixelsPerMark Dimension 10 CSG 98
Manual Axis
Markinge

XmNlabelInterval XmCLabelInterval Short 1 CSG 100
XmNlabelOffset XmCLabelOffset Short 0 CSG 100
XmNmarkValues XmCMarkValues DoubleList NULL CSG 100
XmNnumMarks XmCNumMarks Cardinal 0 CSG 100
XmNmarkMultiplier XmCMarkMultiplier Double 1.0 CSG 100
XmNmarkConstant XmCMarkConstant Double 0.0 CSG 100
XmNmarkValueType XmCMarkValueType PlotDataType XiPlotDataDouble CSG 101
XmNmarkRecordSize XmCMarkRecordSize Cardinal sizeof(double) CSG 101
XmNmarkRecordOff-
set

XmCMarkRecordOff-
set

Cardinal 0 CSG 101

Auto Labelinge

XmNautoLabel XmCAutoLabel Boolean TRUE CSG 101
XmNlabelFormat XmCLabelFormat String "%g" CSG 101
XmNlabelFunction XmCLabelFunction AxisLabelProc NULL CSG 101
Manual Axis
Labelinge

XmNlabels XmCLabels XmStringTable NULL CSG 105
XmNnumLabels XmCNumLabels Dimension 0 CSG 105
XmNlabelRecordSize XmCLabelRecordSize Cardinal sizeof(String) CSG 105
XmNlabelRecordOff-
set

XmCLabelRecordOff-
set

Cardinal 0 CSG 105
The Axis Widget 81

6.2 Axis Resources
The Axis widgets control a number of important components of the overall Plotter
display. Axis resources control the Axis title (strings like "Time (ms)"), the Axis
labels (the strings that label the tick marks), the tick marks themselves, lines that form
the axis, the origin, and a frame around the plotting area, and lines perpendicular to
the axis that form a grid. Table 6-1 summarizes all the resources of the Axis widget.
The subsections below document the Axis resources that control the visual appear-
ance of the axes. Figure 6-1 illustrates some of these visual resources. The resources
that control how the axes are numbered, labeled, and marked, are explained in Section
6.3, Controlling Axis Numbering.

6.2.1 The Title
The "title" of an Axis is the string that identifies what the Axis is measuring. You
might use strings like "Velocity (m/s)" or "Units Sold". If a title is specified, it will be
drawn centered below the X axis, or centered on the left of the Y axis. The title of the
Y axis is automatically drawn rotated 90 degrees counterclockwise so that it runs par-
allel to the axis and is read going up the axis. The title of the secondary Y axis is
rotated 270 degrees so that it is read going down the axis.
The following resources control the attributes of the Axis title.

XmNtitleFontList
A font or list of fonts to be used to display the title for the Axis. If no value is
specified for this resource, its default value is inherited from the parent Plotter
XmNfontList resource.

XmNtitlePSFontList
The list of PostScript fonts to be used to display the title of the Axis in hardcopy.
If no value is specified for this resource, its default value is inherited from the
parent Plotter XmNpsFontList resource. You need only specify this resource if
XmNtitleFontList contains fonts outside of the "standard" font families--Adobe
Times, Helvetica, Courier, New Century Schoolbook, and Symbol.

XmNtitleString
The XmString to be displayed as the title of the Axis. If no XmString is specified
for this resource, then one will be created using the XmNtitle string, and a font
list tag constructed from the XmNtitleStyle and XmNtitleSize resources, as
described in Section 3.3, Fonts and Displayed Text. Setting this resource will
override any value previously created from the XmNtitle string. If you query this
resource, the Plotter returns its private, internal copy of the XmString, which you
must not modify or free.
82 GraphPak Programmer’s Reference Manual

Figure 6-1. Resources that control Axis appearance

XmNtitle
This is the string to appear as the Axis title, if XmNtitleString is not also speci-
fied. The default is NULL, which specifies that no title is to be drawn. Note that
this resource is an ordinary null-terminated character string, not a Motif
XmString. When you set this resource, the string is converted to an XmString
using a font list tag constructed from the XmNtitleStyle and XmNtitleSize
resources, and this newly created XmString becomes the new value of the XmN-
titleString resource. See Section 3.3 for details. When you set this resource, the
Axis widget makes a private copy of the string, so the application may modify or
free its copy of the string without affecting the widget. When you query this
resource, you obtain this internal copy, which you must not modify or free.

XmNtitleSize
The point size of the Axis title. This value is used in the font list tag of the XmN-
title, if no XmNtitleString is specified. The default is 14.
The Axis Widget 83

XmNtitleStyle
The typeface for the Axis title. This resource is used in the font list tag of the
XmNtitle, if no XmNtitleString is specified. XmNtitleStyle is a string resource,
and the default value is NULL. If you set this resource, you will typically set it to
strings such as "bold" and "italic", depending on the font tags in your XmNtitle-
FontList. When you set this resource, the string value is copied, and when you
query it, you must not modify or free the returned value.

XmNtitleColor
The color to draw the Axis title in. The default value of this resource is inherited
from the Plotter XmNforeground resource. Note, however, that changing the
value of the XmNforeground resource after widget creation will not affect this
resource.

6.2.2 The Labels
The "labels" of an Axis are the strings that are drawn beneath or to the left of the Axis
tick marks. Usually these labels are numbers, but for some plots (a barchart of
monthly sales, perhaps) they might be other strings, such as the names of months.
Unlike the title, the labels of a Y axis are not rotated.
The following resources control the appearance of the Axis labels. (The content and
position of the labels are controlled by other resources, described in Section 6.3, Con-
trolling Axis Numbering).

XmNdrawLabels
A Boolean resource that specifies whether the labels should be drawn at all. The
default is True. If set to False, then no labels will be drawn for the Axis, a feature
that is occasionally useful.

XmNlabelFontList
A font or list of fonts to be used to display the labels for the Axis. If no value is
specified for this resource, its default value is inherited from the parent Plotter
XmNfontList resource.

XmNlabelPSFontList
The list of PostScript fonts to be used to display the labels of the Axis in hard-
copy. If no value is specified for this resource, its default value is inherited from
the parent Plotter XmNpsFontList resource. You need only specify this resource
if XmNlabelFontList contains fonts outside of the "standard" font families--
Adobe Times, Helvetica, Courier, New Century Schoolbook, and Symbol.
84 GraphPak Programmer’s Reference Manual

XmNlabelSize
The point size of the font to be used for the Axis labels. When labels are automat-
ically computed by the Axis widget, or when labels are specified as strings
(instead of XmStrings) with XiAxisSetLabels(), this resource is used along with
XmNlabelStyle to construct a font list tag to specify which font in the XmNlabel-
FontList will be used to display the labels. The default is 10. See Section 3.3,
Fonts and Displayed Text for more information.

XmNlabelStyle
The typeface to be used for the Axis labels. When labels are automatically com-
puted by the Axis widget, or when labels are specified as strings (instead of
XmStrings) with XiAxisSetLabels(), this resource is used along with XmNlabel-
Size to construct a font list tag to specify which font in the XmNlabelFontList
will be used to display the labels. The default value is NULL. See Section 3.3,
Fonts and DisplayedText for details. When you set this resource, the string value
is copied, and when you query it, you must not modify or free the returned value.

XmNlabelColor
The color of the Axis labels. The default value of this resource is inherited from
the Plotter XmNforeground resource. Note, however, that changing the value of
the XmNforeground resource after widget creation will not affect this resource.

6.2.3 The Axis and Tick Marks
The basic feature of any Axis is a long horizontal or vertical line with tick marks
drawn perpendicular to it. The Axis draws a long tick mark wherever it will also be
drawing a label, and draws shorter lines for its unlabeled marks. In the Plotter widget
lexicon, these line are referred to as "marks" and "submarks".
This subsection describes the resources that control the Axis line and its tick marks.

XmNlineColor
The color of the Axis line and the tick marks. (And also the color of the Axis
frame, described below.) The default value of this resource is inherited from the
Plotter XmNforeground resource. Note, however, that changing the value of the
XmNforeground resource after widget creation will not affect this resource.

XmNlineWidth
The width, in pixels, of the Axis line. (And also the frame line, described below.)
The default value is 0, which is a special value that produces efficiently-drawn
lines one pixel wide. Using a line width of 2 or 3 produces bolder-looking axes
and can add visual impact to graphs.
The Axis Widget 85

XmNmarkWidth
The width, in pixels, of the Axis tick marks. The default is 0, a special value that
produces efficiently-drawn lines one-pixel wide. If you make the tick marks
wider than this, you may also want to increase the width of the grid lines (which
are described in the next subsection.) In particular, tick marks that are two-pixels
wide can be troublesome, because there is no "center" pixel for a one-pixel wide
grid to align with.

XmNmarksInside
A Boolean that specifies whether tick marks should be drawn on the "inside" of
the Axis--above the X axis and to the right of the Y axis. The default is False.
Setting this resource to True will cause tick marks to be drawn into the plotting
area of the Plotter, where they may be obscured by actual plot data. Note that
XmNmarksInside and XmNmarksOutside are independent resources; both may
be True to produce tick marks that are drawn through the Axis, or both may be
False to turn off the tick marks entirely.

XmNmarksOutside
A Boolean that specifies whether tick marks should be drawn on the "outside" of
the Axis--below the X axis and to the left of the Y axis. The default is True,
which is suitable for most graphs.

XmNmarkLength
The length, in pixels, of any tick marks that have labels. The default is 5. If both
XmNmarksInside and XmNmarksOutside are True, then this many pixels will be
drawn on both sides of the axis. Tick marks are drawn from the center of the axis
outward; if you specify an XmNlineWidth more than one pixel wide, then a por-
tion of the tick marks will be obscured by the axis line.

XmNsubmarkLength
The length, in pixels, of any tick marks that do not have labels. The default is 2.
If both XmNmarksInside and XmNmarksOutside are True, then this many pixels
will be drawn on both sides of the axis. Tick marks are drawn from the center of
the axis outward; if you specify an Axis more than one pixel wide, then a portion
of the tick marks will be obscured by the axis.
86 GraphPak Programmer’s Reference Manual

6.2.4 The Frame and the Origin
The Axis widget can optionally draw two other important lines, besides the main line
of the axis itself. The first of these is the "frame", a line drawn parallel to the axis, on
the opposite side of the plotting area. This line is drawn with the same color and width
as the Axis itself, and if both X and Y Axis widgets of a plotter draw these "frame"
lines, then the two axis lines plus the two frame lines form a complete box (or
"frame") around the plotting area.
If the domain of the axis include zero, the X and Y Axis widgets will also optionally
draw a line perpendicular to themselves to mark the zero point as the origin. Display-
ing an origin can be useful in some graphs, for example when the behavior of a
graphed function differs in different quadrants of the real-number plane.
Note that the secondary Y axis, if it is displayed, never draws a frame or origin for
itself.

XmNdrawFrame
A Boolean resource that specifies whether the Axis should draw a frame parallel
to itself on the opposite side of the plotting area. The default is True. The frame is
drawn using the same color and line width as the axis itself; these are specified
by the XmNlineColor and XmNlineWidth resources described above.

XmNdrawOrigin
A Boolean that specifies whether the Axis should draw a perpendicular line
across the plotting area to mark the points 0.0. The default is True, but the line
will obviously only be drawn in the point 0.0 is between the axis minimum and
the axis maximum. If the Axis will also be drawing a grid, you may want to set
the origin width and/or color to ensure that the origin line is distinguishable from
the grid lines.

XmNoriginWidth
The width, in pixels, of the origin line. The default is 0, a special value that spec-
ifies efficiently drawn lines one-pixel wide.

XmNoriginColor
The color of the origin line. The default value of this resource is inherited from
the Plotter XmNforeground resource. Note, however, that changing the value of
the XmNforeground resource after widget creation will not affect this resource.
The Axis Widget 87

6.2.5 The Grid
The X and Y Axis widgets will optionally draw lines perpendicular to the axis across
the plotting area of the Plotter. These lines are aligned with the tick marks on the axis.
If both X and Y Axis widgets draw these lines, they form a grid, and give the plotting
area the appearance of graph paper. Each Axis draws two sets of grid lines, which can
have different colors, thicknesses, and dash patterns. One set of lines is drawn for
every labeled mark. These lines are known as the "grid", and are relatively widely
spaced. The other set of lines is drawn for the remaining unlabeled marks (the "sub-
marks"). These lines form the "subgrid". They are closely spaced, and if they are
drawn at all, they are generally drawn using a fainter color, or with a widely spaced
dot pattern.
Note that the secondary Y axis, if displayed, never draws a grid or subgrid for itself,
and so the resources described in this section have no effect for the secondary Y axis.
This subsection describes the Axis resources that control the grid and subgrid.

XmNdrawGrid
A Boolean that specifies whether the grid lines should be drawn. The default is
True.

XmNgridWidth
The width, in pixels, of the grid lines. The default is 0, a special value that speci-
fies efficiently-drawn lines, one pixel wide.

XmNgridColor
The color of the grid lines. The default value of this resource is inherited from the
Plotter XmNforeground resource. Note, however, that changing the value of the
XmNforeground resource after widget creation will not affect this resource. A
good choice for this resource is a color that is distinguishable, but not too distinct
in hue or intensity, from the XmNplotAreaColor of the Plotter widget. This will
result in a grid that is visible, but does not distract from the actual plot data. On
monochrome systems, you can use the XmNgridPattern resource to simulate this
effect.

XmNgridPattern
The line pattern to use for the grid lines. The default is the "\001\001", a one pixel
on, one pixel off pattern. The value NULL specifies solid lines. Like all String
resources, any pattern you specify for this resource is copied by the Axis widget,
so you may modify or free the pattern once you have set it. If you query the
resource, however, you must not modify or free the internal copy of the string
that is returned. If you are using a color display, you may prefer to use the XmN-
gridColor resource and set this resource to NULL.
88 GraphPak Programmer’s Reference Manual

XmNdrawSubgrid
A Boolean resource that specifies whether the subgrid lines should be drawn. The
default is False. If this resource is set to True, and XmNdrawGrid is also True,
then the subgrid lines will be drawn for every unlabeled tick mark on the axis. If
this resource is True, and XmNdrawGrid is False, then the subgrid lines will be
drawn for both labeled and unlabeled tick marks.

XmNsubgridWidth
The width in pixels of the subgrid lines. The default is 0.

XmNsubgridColor
The color of the subgrid lines. The default value of this resource is inherited from
the Plotter XmNforeground resource. See XmNgridColor above for more infor-
mation.

XmNsubgridPattern
The line pattern for the subgrid lines. The default is "\001\003"--one pixel fol-
lowed by three pixels off. See XmNgridPattern above for more information about
line pattern resources.

6.2.6 Axis Layout
There are two Axis resources that allow fine control over the positioning of the labels
and title in the Axis, and the positioning of the Axis within the Plotter. They are
explained below:

XmNmargin
This resource specifies the distance, in pixels, between the axis tick marks and
their labels, the distance between the tallest or widest of the tick labels and the
axis title, and the margin between the axis title and the edge of the plotter. (At the
edges, the Axis XmNmargin resource is added to the Plotter XmNmarginWidth
or XmNmarginHeight resource.) The default is 2 pixels. Larger values give the
axis a more open appearance, and are appropriate when using larger font sizes.

XmNaxisWidth
This resource serves a purpose similar to the Plotter XmNtitleMinHeight and
XmNlegendMinWidth resources. "Axis width" in this context means the short
dimension of the axis--the height of an X axis, or the width of a Y axis. The
default value of 0 specifies that the Axis should compute its own width, and that
the Plotter should allocate this much screen space for displaying the Axis. If you
specify a non-zero value for this resource, the plotter will allocate that many pix-
els for the axis. This resource differs from the Plotter XmNtitleMinHeight and
The Axis Widget 89

XmNlegendMinWidth in that the Axis will not ignore it if it is too small. If you
specify a value for XmNaxisWidth that is too small, portions of the Axis will be
chopped off by the edges of the Plotter window.
The purpose of this resource is to allow you to lineup the axes of adjacent plotter
widgets, even if those widgets use different fonts or have labels of different
lengths. By specifying the same value for the Axes of two adjacent Plotter wid-
gets, you can guarantee that the axes will appear at the same distance from the
bottom or left edges of the Plotter. If you use this technique, note that the Y axis
can be troublesome: since the labels are drawn horizontally, the width of the axis
depends on the content of the individual labels, which generally depends on the
axis bounds. If your application allows the Y axis bounds to vary over several
orders of magnitude you may be better off letting the Axis specify its own width.

6.3 Controlling Axis Numbering
The resources described in the section above control such things as the length and
width of the Axis tick marks and the size of the font used for the Axis labels. This sec-
tion explains how you can specify the position of the tick marks and the content of the
labels.
For many applications, the X and Y Axis widgets of a Plotter will perform automati-
cally, and you will never need to manipulate them at all. By default, the Axis will set
its minimum and maximum bounds to be large enough to accommodate all the data
currently displayed in the Plotter. Once the Axis has performed this "autoscaling", it
will do "auto-marking"--it will place a reasonable number of small and large tick
marks at intervals along the axis. In this default automatic setup, the Axis will auto-
matically label each of the large tick marks with the value it measures. The tick marks
are chosen so that these will always be "round" numbers--multiples of 1, 2, 5, 10, 20,
50, etc.
The Axis widget works well in this fully automatic mode for many applications, but
there are times when you may want to turn off auto-scaling (when you want to "zoom-
in" on some data, for example) or turn off auto-marking (when autoscaling is off, and
the user has requested a particular mark interval, perhaps), or turn off auto-labeling
(usually when you want to label an axis with the names of months or other strings
rather than with numbers). It doesn't make sense to use auto-scaling without auto-
marking and auto-labeling, or to use auto-marking without auto-labeling, so there are
four modes that you can use the Axis widget in (and four functions for configuring the
Axis in those modes).
• Autoscale Mode. This is the fully automatic mode. The Axis chooses the

bounds, computes mark positions, and labels the marks. The function XiAxisAu-
toscale() places an Axis in this mode.

• Automark Mode. In this mode you specify the minimum and maximum values
for the Axis, but it automatically computes reasonable mark positions and labels
90 GraphPak Programmer’s Reference Manual

the marks. The function XiAxisSetBounds() takes a minimum and maximum val-
ues as arguments, and places the Axis in this mode.

• Autolabel Mode. In this mode, you specify the axis bounds, and the positions of
the marks. The Axis automatically provides numeric labels for each mark. The
function XiAxisSetMarks() places an Axis in this mode.

• Manual Mode. In this mode you specify the bounds and mark positions, and also
provide an array of strings to use as labels for each mark. The function XiAxis-
SetLabels() places an Axis in this mode.

In addition, the Axis widget supports a somewhat different "log mode" which auto-
matically marks and labels the axis with a logarithmic transform. The subsections
below document the convenience functions and Axis resources you can use to config-
ure an Axis in each of the modes.

6.3.1 Computing Axis Bounds Automatically
By default, an Axis will set its bounds to be large enough for whatever data is dis-
played in the Plotter. When auto-scaling is on, auto-marking and auto-labeling must
also be on, because the axis must be able to compute new mark positions and labels as
the bounds of the axis change. The resources that control auto-marking and auto-
labeling are described in the following subsections; you can use any of them when
you are using auto-scaling.
The easiest, and the recommended, way to place an Axis into this fully automatic
mode (assuming you left this default mode for some reason) is to call the function
XiAxisAutoscale().

void XiAxisAutoscale(Widget w);

w An Axis widget that should have high and low bounds autoscaled.

Calling this function turns on autoscaling for both the minimum and maximum
bounds of the axis, and turns on auto-marking and auto-labeling as well. It also sets
the XmNroundEndpoints resource to True; this resource is described below.
The following resources specify the auto-scaling behavior of an Axis; you can set
them individually to give you finer control over auto-scaling than is possible with
XiAxisAutoscale().

XmNautoScaleMin
A Boolean that specifies whether the minimum bound of the axis should be auto-
matically adjusted to fit all the data in the Plotter widget. The default is True.
Most often, you will set XmNautoScaleMin and XmNautoScaleMax to the same
value, but there are times when you will want to set them independently: when
The Axis Widget 91

displaying a bar chart, for example, you generally want the minimum value on
the Y axis to be zero, regardless of the data values.

XmNautoScaleMax
A Boolean that specifies whether the maximum bound of the axis should be auto-
matically adjusted to fit all the data in the Plotter widget. The default is True. See
also XmNautoScaleMin.

XmNautoScaleMargin
When the Axis computes it bounds by autoscaling, it finds the largest and small-
est data values (for the X or the Y dimension) and adds a margin to these values.
This resource is a positive integer that specifies the size of this margin as a per-
centage of the total range of the axis. The default value is 5. With data that ranged
between 100 and 300, and this default margin of 5, for example, the minimum
bound of an Axis would be auto-scaled (if XmNautoScaleMin were True) to 90,
and the maximum bound would be scaled to 310 (because 5% of 300-100 is 10).

The minimum and maximum bounds of an Axis may also be automatically adjusted
depending on the XmNroundEndpoints resource. This resource is used as part of the
auto-marking process and is described below.

6.3.2 Setting Axis Bounds Manually
There are times when axes should not be autoscaled. If you implement a "zoom-in"
feature in your application, for example, you will probably have to turn off auto-scal-
ing for this. Or if you have a lot of data stored in a single plot, you might only display
a portion of it at a time, and allow the user to pan through the data with a scrollbar or
similar technique.

void XiAxisSetBounds(Widget w, double min, double max);

w An XiAxis widget.
min The new minimum bound of the widget.
max The new maximum bound of the widget.

You can set the bounds on a Axis by calling XiAxisSetBounds(). This function turns
off autoscaling of both the minimum and maximum bounds, and sets those bounds to
the specified values. It also sets the XmNroundEndpoints resource (described below)
to False, and turns auto-marking and auto-labeling on. (If you do not want auto-mark-
ing or auto-labeling, there are other functions, described below, that let you set the
bounds and the mark positions, or the bounds, mark positions, and labels.)
92 GraphPak Programmer’s Reference Manual

void XiAxisGetBounds(Widget w, double *min, double *max);

w An XiAxis widget.
min Returns the minimum bound of the widget.
max Returns the maximum bound of the widget.

Whether or not the Axis bounds are auto-scaled, you can query their values with
XiAxisGetBounds(): This function returns the minimum and maximum bounds of the
specified Axis at the specified addresses.
XiAxisSetBounds() and XiAxisGetBounds() are the recommended (and usually the
easiest) techniques forsetting and querying axis bounds. You can, however, set these
values individually with the following resources:

XmNmin
Specifies the minimum value for the Axis. Note that this resource is a double, so
special care is required when setting it.

XmNmax
Specifies the maximum value for the Axis. Note that this resource is a double, so
special care is required when setting it.

Note that the minimum and maximum bounds that you specify for an axis may be
adjusted during auto-marking, depending on the XmNroundEndpoints resource. This
resource is described below.

6.3.3 Setting Secondary Y Axis Bounds
The bounds of the secondary Y axis (if one is displayed) are always based on the
bounds of the primary Y axis: the maximum value of the secondary axis is linearly
proportional to the maximum value of the primary axis, and the minimum values of
the axes are similarly proportional. I.e. for any possible bounds of the primary and
secondary Y axes, we can always find a multiplier m and a constant c such that:

y2 max = m x ymax + c
y2 min= m x ymin + c

In order to use a secondary Y axis, the multiplier m must be specified as the
XmNunitMultiplier resource of the secondary Y axis, and the constant c must be
specified as the XmNunitConstant resource of the secondary Y axis:
The Axis Widget 93

XmNunitMultiplier
A double that specifies one half of the linear equation that defines the relation-
ship between values on the primary Y axis and values on the secondary Y axis.

XmNunitConstant
A double that specifies the other half of the linear equation that defines the rela-
tionship between values on the primary Y axis and values on the secondary Y
axis.

When these two resources are specified for the secondary Y axis, the bounds for that
axis will automatically be updated according to the equations above every time the
bounds of the primary Y axis change. Note that the default multiplier is 1.0 and the
default constant is 0.0; this means that by default, the secondary Y axis will display
the same values and the primary Y axis.
Setting these resources is simple enough. Determining the appropriate multiplier and
constant can be confusing, however. When you know the desired minimum and max-
imum bounds for both axes, you can compute m and c as follows:

m = {y2 max - y2 min}
 {y max - y min}

c = y2 min - m x y min
The most common use for a secondary Y axis is to display a second set of units for the
data. For example, when graphing temperatures, you might display degrees Celsius
on the primary Y axis and degrees Fahrenheit on the secondary Y axis. Or, when
graphing energy values, you might display kilojoules on one Y axis and kilocalories
on the other, or you might express volume in liters and gallons, or monetary value in
German marks and Japanese yen. Instead of simply setting a separate set of minimum
and maximum bounds for the two axes, however, you specify a linear transformation
that relates the two units and converts the bounds of the primary axis into the bounds
of the secondary axis. To return to our temperature example, you could specify an
XmNunitMultiplier of 1.8, and an XmNunitConstant of 32.0 to convert degrees Cel-
sius on the primary Y axis to degrees Fahrenheit on the secondary Y axis. The benefit
of specifying the secondary Y axis bounds this way is that they will automatically be
updated appropriately when the bounds of the primary Y axis change, when autoscal-
ing occurs, for example.
The important thing to remember whenever you use a secondary Y axis is that all the
data you graph must be expressed in the units used for the primary Y axis. So, if you
have degrees Celsius on the primary Y axis, then all your temperature data should be
expressed in those units. If you do happen to have some data in degrees Fahrenheit,
however, you don't actually have to convert it all to Celsius yourself. Recall that the
XiPlotData structure (introduced in Chapter 4, Plot Data Representation) which is
used to store data for plotting allows a linear transformation to be applied to any data.
Thus, you'd need simply to figure out an appropriate multiplier and constant to con-
vert degrees Fahrenheit to degrees Celsius. If you were using a LinePlot widget, you'd
94 GraphPak Programmer’s Reference Manual

specify an XmNyValueMultiplier of 0.55555 and an XmNyValueConstant of -17.777
to do this. (These figures were computed simply by reversing the y and y2 terms in
the above equations.)
There is another way you might use a secondary Y axis. Sometimes, you may want to
graph two unrelated quantities in the same Plotter widget, simply for the convenience
of having them displayed in the same place. For example, in an application that mon-
itors the flow of liquid going through a pipe, you might want to graph both tempera-
ture and pressure on the same graph. While this kind of graph can be confusing to
read, many disciplines have standardized data display formats that do this sort of
thing.
The difficulty of displaying both temperature and pressure on the same graph is that
they are unrelated units, and there is no natural linear transformation that converts one
to the other. We can still produce a graph like this, however; it will just take some
work. Suppose we are displaying pressure in psi (pounds per square inch) on the pri-
mary Y axis, and temperature in degrees Celsius on the secondary Y axis. Further,
suppose that we want our Y axis to display pressures between 0 psi and 100 psi, and
that we want the secondary Y axis to display temperatures between 20 C and 70 C. To
do this, we would set the bounds of the primary Y axis directly, and set the XmNunit-
Multiplier of the secondary Y axis to 0.5 and the XmNunitConstant of that axis to
20.0.
With the axes set up like this, we can go ahead and graph our pressure data as normal,
since pressure is displayed on the primary Y axis. But remember that all graphs are
displayed in terms of the units on the primary Y axis. So to graph temperature we first
have to convert our temperature values to pressure values. Obviously, degrees Celsius
cannot be converted to pounds per square inch. In our limited case, however, all we
really need to do is scale a number between 20 and 70 (our temperature) to a propor-
tional number between (0 and 100). We do this simply by multiplying by 2 and adding
-40. As we saw above, we can automatically scale LinePlot data in this way by setting
the LinePlot XmNyValueMultiplier to 2.0 and setting the LinePlot XmNyValueCon-
stant to -40.0.
So, with a linear transform applied to our secondary Y axis which displays tempera-
ture, and with the reverse linear transform applied to all of our temperature data, we
can successfully graph pressure and temperature data in the same Plotter widget.
Because the primary and secondary axes are linked, if either pressure or temperature
data causes the Plotter to autoscale, both axes will be updated. Or, if you change the
bounds on the primary (pressure) axis, then the bounds on the secondary (tempera-
ture) axis will be updated as well. In this case, when we are graphing distinct quanti-
ties, we are more likely to want to change the bounds of one axis without changing
the bounds of the other. This is where this case gets more complicated. To change the
bounds of the pressure axis without changing the bounds on the temperature axis, we
need to recompute the linear transform for the temperature axis (the secondary axis)
and also recompute the linear transforms for all the plots that display temperatures.
The Axis Widget 95

Finally, note one last thing about the secondary Y axis. The secondary axis is assumed
to be of secondary importance to the primary axis, and thus it never draws grid lines,
or an origin or frame line, as the primary axis does.

6.3.4 Specifying Logarithmic Axes
The Axis widget can display itself logarithmically scaled, which makes it easy to pro-
duce semi-log and log-log plots, as shown in Figure 6-2. The Axis widgets control the
scaling of data points to appear on the screen, so when an Axis is in log mode, any
data that appears in the Plotter will automatically be scaled correctly against the axis.

Figure 6-2. Plotter widgets with logarithmic axes

The XmNlog resource controls this feature:

XmNlog
A Boolean resource that specifies whether the axis will display itself logarithmi-
cally (base 10) or not. If True, then the Axis will automatically divide its range
into decades, and will place its marks and grid lines appropriately. The Axis wid-
get controls the scaling of Plot data, so plots will automatically be displayed cor-
rectly on the logarithmic axes.

Note that logarithmic axes can only be used when auto-labeling and auto-marking are
on. Also, since the logarithm of zero and all negative numbers is undefined, you can-
96 GraphPak Programmer’s Reference Manual

not have a logarithmic axis with a non-positive minimum bound, and you should not
attempt to plot non-positive data against a logarithmic axis.
There is no special function for making an Axis logarithmic; you can do so simply by
setting the XmNlog resource. It is recommended that you do this in conjunction with
XiAxisSetBounds(), which ensures that auto-labeling and auto-marking are turned
on, and that autoscaling is turned off (you can use autoscaling with logarithmic axes,
but you may get better looking results if the axis bounds are always an exact power of
10.)
The Y axis of the semi-log plot shown in Figure 6-2, for example, was set up with the
following code:

yaxis = XiPlotterYAxis(plotter);
XiAxisSetBounds(yaxis, 10.0, 10000.0);
XtVaSetValues(yaxis,
 XmNlog, True,
 XmNdrawSubgrid, True,
 NULL);

Note that logarithmic axes have labeled ticks every decade, and have unlabeled ticks
between decades. The labels are evenly spaced, but the unlabeled ticks are not. For
this reason, you may want to turn on the subgrid with the XmNdrawSubgrid resource
to get the effect of logarithmic graph paper.

6.3.5 Computing Axis Marks Automatically
By default, the Axis widget will automatically compute positions for a reasonable
number of labeled and unlabeled tick marks. Calling either of the functions XiAxi-
sAutoscale() and XiAxisSetBounds() will also place an Axis into the auto-marking
mode. Note that when auto-marking is on, auto-labeling must also be on. This is
because if an application does not know where the Axis will be placing the marks, it
cannot know what labels to provide for those marks.
The following resources control auto-marking of the Axis widget.

XmNautoMark
A Boolean that specifies whether an Axis will have its mark positions automati-
cally computed. The default is True. You can set this resource directly, but the
recommended way for specifying automatic marking is to call XiAxisAutoscale()
or XiAxisSetBounds(). The recommended way to turn automatic marking off is
by calling XiAxisSetMarks() or XiAxisSetLabels(). (documented below.)

XmNroundEndpoints
A Boolean that specifies whether the Axis may adjust its minimum and maxi-
mum bounds in the process of computing marks so that they are multiples of the
mark interval and a mark (either labeled or unlabeled) will appear at each bound.
The Axis Widget 97

The default is True. This resource is set to True by calling XiAxisAutoscale(),
and is set to False by calling XiAxisSetBounds(), XiAxisSetMarks(), or XiAxis-
SetLabels(). If the bounds are adjusted, they are always adjusted "outward"--the
minimum bound is made smaller, and the maximum bound made larger.

XmNpixelsPerLabel
This resource is an integer that provides a hint to the Axis auto-marking code
about how far apart the longer, labeled tick marks should be placed. This
resource can only be a hint because the Axis always places its marks at round
numbers. The default is 50 pixels. Increasing this number will generally result in
labeled marks that are further apart, and decreasing it will result in labeled marks
that are closer together.

XmNpixelsPerMark
This resource is an integer that provides a hint to the Axis auto-marking code
about how far apart the shorter, unlabeled tick marks (the "subticks") should be
placed. The default is 10 pixels. This resource can only be a hint because the
Axis divides the interval between two labeled ticks into 2, 4, 5, or 10 sub-inter-
vals.

6.3.6 Specifying Axis Marks Explicitly
When you specify fixed bounds for an axis, and don't want the uncertainty of not
knowing what space between tick marks the Axis would choose automatically, you
can specify the interval between the tick marks, and the interval between labeled tick
marks explicitly. The easiest, and the recommended way to do this is with the func-
tion XiAxisSetMarks(), shown in Figure 6-3.
98 GraphPak Programmer’s Reference Manual

void XiAxisSetMarks(Widget w, double min, double max,

 double mark_interval, double first_mark,

 int label_interval, label_offset);

w The Axis widget.

min, max

The minimum and maximum bounds for the Axis.
mark_interval

The interval (in axis units) between successive tick marks, whether labeled
or unlabeled.

first_mark

The position of the first mark on the Axis. Subsequent marks will be offset
from this first one by a multiple of the mark_interval argument.

label_interval

The interval between labeled marks. Unlike the mark_interval argument,
label_interval is an integer and is measured in multiples of the mark inter-
val itself. This argument must be greater than or equal to 1.

label_offset

The number of marks to skip before placing the first label. This argument
must always be less than label_interval.

Figure 6-3. XiAxisSetMarks()

XiAxisSetMarks() sets the bounds and marks you specify for the axis. It turns off
autoscaling on both the minimum and maximum bounds of the axis, turns off auto-
marking, and sets XmNroundEndpoints to False. It also turns on auto-labeling, so the
marks you specified to be labeled will automatically receive their correct numeric
labels.
If you wanted, for example, to set up an axis running from -3.5 to 3.5, with marks
every .25 units, and labels on the whole numbers, you might use XiAxisSetMarks() as
follows:

XiAxisSetMarks(XiPlotterXAxis(plotter), -3.5, 3.5, 0.25, -3.5, 4,
2);

The last two arguments, label_interval and label_offset require some extra clarifica-
tion: these arguments are integers, and rather than being measured in the coordinate
system of the axis, they are interpreted as multiples of the mark_interval argument.
Thus we set label_interval to 4 to specify that every fourth mark should have a label.
We set label_offset to 2 in the example above to specify that the first two marks on the
axis will be unlabeled. This means that the marks at -3.5 and -3.25 will not be labeled,
The Axis Widget 99

but the mark at -3.0 will be. Subsequently, every fourth mark will be labeled, and
since the mark_interval is 0.25, and 4\(mu0.25 is 1.0, the other labels will appear at -
2.0, -1.0, 0.0, and so on.
The positioning of marks can also be controlled with Axis resources. Note that you
can use these resources to specify an arbitrary array of mark positions if, for some
reason, you do not want an Axis to be uniformly marked. The resources for specifying
this array of positions are the fields of an XiPlotData structure--this is the same way
you specify arrays of values for plots. The resources allow you to use values of just
about any type, stored at arbitrary offsets in an array of structures. See Chapter 4, Plot
Data Representation for more information on specifying this kind of array of values.

XmNlabelInterval
The interval between labeled marks, measured in multiples of the mark interval
itself. This resource is the equivalent of the label_interval argument of XiAxis-
SetMarks() described above.

XmNlabelOffset
The number of marks to skip before labeling the first one. The equivalent of the
label_offset argument described above.

XmNnumMarks
The number of marks to appear on the Axis. If you use XiAxisSetMarks(), this
value is computed for you from the axis bounds, the position of the first mark,
and the mark interval. When specifying marks directly with resources, you must
compute it yourself and set it on this resource.

XmNmarkMultiplier
The interval, in axis units, between marks on the axis. This is equivalent to the
mark_interval argument described above.

XmNmarkConstant
The position of the first mark. This is the equivalent to the first_mark argument
described above.

XmNmarkValues
A pointer to the first element in an array of structures that contain an explicit list
of mark positions. The following resources specify the type of these values and
how to extract them from the structures. You only need to use this and its related
resources if you want marks on an Axis that are not linearly spaced. If you spec-
ify this explicit array of values, XmNmarkMultiplier and XmNmarkConstant
will be used to perform a linear transform on the values; set those resources to 1.0
and 0.0 respectively (their default values) if you do not want the mark position
values changed.
100 GraphPak Programmer’s Reference Manual

XmNmarkValueType
An XiPlotDataType that specifies the type of the data in the XmNmarkValues
array.

XmNmarkRecordSize
The size, in bytes, of each of the structures in the XmNmarkValues array. Use
sizeof() to compute this size. Note that it is perfectly legal to use an array of dou-
bles or integers, or other types that are not actually structures.

XmNmarkRecordOffset
The offset of the mark position within each element of the XmNmarkValues
array. Use XtOffsetOf() to compute this value. If XmNmarkValues is an array of
doubles or integers, or some other simple type, then this resource will be 0.

6.3.7 Computing Axis Labels Automatically
All the axis modes and functions we've discussed so far have relied upon automatic
Axis labeling. Unlike the problem of choosing a reasonable spacing for axis marks,
the problem of placing numeric labels on marks is straightforward, and there is never
a reason to turn off auto-labeling unless you will be using non-numeric labels, such as
the names of months.
The resources you can use to control the labels that the Axis automatically generates
are described below.

XmNautoLabel
A Boolean that specifies whether the Axis automatically provides labels for its
marks. The default is True. You can set this resource directly, but usually you will
rely on the Axis setup functions to do it for you. XiAxisAutoscale(), XiAxisSet-
Bounds(), and XiAxisSetMarks() all set this resource to True. XiAxisSetLabels()
sets it to False.

XmNlabelFormat
A printf() format string used by the Axis to convert the numeric value of a mark
position to the equivalent string. The default is "%g". Like all String resources,
the Axis makes a copy of any string you specify, so you may modify or free the
string after setting this resource. If you query the resource, you must not modify
or free the private value you obtain.

XmNlabelFunction
A function to call, instead of sprintf() to convert the numeric position of a tick
mark to the label for that mark. The default value for this resource is NULL,
which means that the Axis will use sprintf() with the format string specified by
The Axis Widget 101

XmNlabelFormat. If you specify this resource, then sprintf() will never be called,
and XmNlabelFormat will be ignored. The type of this resource is XiAxisLabel-
Proc:
typedef String (*XiAxisLabelProc)(XiAxisWidget, double);

A procedure of this type expects an XiAxisWidget as its first argument and a
double mark position as its second. It should return a string, in allocated memory
(use XtMalloc() or XtNewString()), that will serve as the label for the mark at the
specified position. Once this label function has allocated memory for the label
and returned it, it should never again modify or free that memory; the Axis wid-
get will automatically free it (with XtFree()) when appropriate.
One common use for this resource is to multiply or divide the mark position by
some power of ten. If an X axis is labeled "Time (ms)", for example, but the plot
data is actually specified in seconds, rather than milliseconds, then you could
multiply the label positions by 1000 to convert. Or if a Y axis is labeled "Profit
(millions)", you might divide by 1,000,000. Doing this would result in more
compact labels, and remove redundant information (repeated zeros on each label)
from the Plotter display.
There are other useful, if less simple, conversions you can do with the XmNla-
belFunction. If you have data measured in seconds, and a labeled tick mark every
900 seconds, for example, you might use this resource to supply a function that
would convert these times to clock format and produce labels like "10:30am" and
"4:45pm".

6.3.8 Specifying Axis Labels Explicitly
In some circumstances, notably with bar plots, you need an axis that has textual labels
rather than numeric ones. The X axis of a bar plot might be labeled, for example, with
the names of months, or the quarters of a fiscal year, or the hostnames of computers
on a local area network. In order to label an Axis in this way, you must supply an
array of strings for it to use as labels. Note that this cannot work when auto-scaling or
auto-marking is in effect for the Axis.
Even when you are not using numeric labels, the Axis still operates with a minimum
and maximum bound and a mark interval. Generally, the easiest way to handle this is
to place your labels at integral values starting at 1.0. This is a good choice because
these are the X values that the BarPlot widget, by default, assigns to its Y data. You
do need to be careful, when using non-numeric axes with BarPlots or LinePlots with-
out X values, that the labels and the data points line up.
It does not make sense to have unlabeled marks between marks that are labeled with
discrete quantities such as computer names, so you will want a mark interval of 1.0
and a label interval of 1 in this case. If you were using the names of months as your
labels, it might make sense to have unlabeled marks between them (perhaps only to
have a subgrid showing in the Plotter) and you could specify this with a different
combination of mark interval and label interval.
102 GraphPak Programmer’s Reference Manual

The easiest, and the recommended, way to specify labels for an Axis is with XiAxis-
SetLabels() or XiAxisSetLabelStrings() , shown in Figure 6-4.
The first seven arguments of both functions have the same names and meanings as the
arguments to XiAxisSetMarks(), documented above. The remaining two arguments
specify an array of labels, and the number of elements in that array. For XiAxisSetLa-
bels(), the eighth, labels argument is an array of NULL-terminated strings. XiAxis-
SetLabels() converts this array of strings to an internal array of XmStrings using a
font list tag constructed from the XmNlabelStyle and XmNlabelSize resources. Note
that this is a one-time conversion--when labels are specified with XiAxisSetLabels(),
changing the value of XmNlabelStyle or XmNlabelSize will not change the font used
to display the labels. Once XiAxisSetLabels() has been called, the Axis widget makes
no further use of the labels array, and you can modify or free it.
XiAxisSetLabelStrings() takes an array of XmStrings as its eighth argument, instead
of an array of strings. These strings do not need to be converted, and are displayed
directly by the Axis widget. Note that the Axis widget does not make a copy of these
XmStrings or of the array that holds them. You must not modify or free the strings or
the array until the Axis will no longer be using them (until you've specified a new
array, or switched the axis back to auto-label mode).
For both functions, the ninth argument is the number of elements in the array of
strings or XmStrings. This number should match the number of labeled marks on the
axis, which is implicitly specified by the combination of the second through seventh
arguments.
You could use XiAxisSetLabels() as follows, for example, to create an X axis labeled
with the names of months:

static char *months[] = {"Jan", "Feb", "Mar", "Apr", "May"};
XiAxisSetLabels(XiPlotterXAxis(plotter),
 0.25, 5.75, 1.0, 1.0, 1, 0,
 months, 5);

The numeric positions of the marks and labels is arbitrary, since this axis isn't num-
bered. As recommended above, however, this example places the marks at an interval
of 1.0(mark_interval) starting at 1.0 (first_mark). Each mark is labeled
(label_interval = 1), starting with the first one (label_offset = 0). The bars of a BarPlot
widget are, by default, positioned at an interval of 1.0, starting at 1.0, so this axis will
work well with a BarPlot widget. Note that the axis bounds are not set to 1.0 and 5.0.
This is because bars in a BarPlot have width--a bar positioned at 1.0 could extend
between 0.5 and 1.5, and a bar positioned at 5.0 could extend between 4.5 and 5.5.
Here the axis bounds are set to 0.25 and 5.75 to provide a margin on either side of
these bars.
The Axis Widget 103

void XiAxisSetLabels(Widget w, double min, double max,

 double mark_interval, double first_mark,

 int label_interval, label_offset,

 String *labels, Cardinal num_labels);

void XiAxisSetLabelStrings(Widget w, double min, double max,

 double mark_interval, double first_mark,

 int label_interval, label_offset,

 XmString *label_strings, Cardinal num_labels);

w The XiAxis widget that is having its labels set.
min, max

The minimum and maximum bounds for the axis.
mark_interval, first_mark

The positions of each of the marks; see XiAxisSetMarks() above.
label_interval, label_offset

The positions of each of the labels; see XiAxisSetMarks() above.
labels

For XiAxisSetLabels() only, an array of String to use as labels for the axis.
The strings will be converted to an internal array of XmString, using a font
list tag derived from XmNlabelStyle and XmNlabelSize. Once converted,
the widget never uses these strings or their array again, so you may modify
or free them.

label_strings

For XiAxisSetLabelStrings() only, an array of XmString to use as labels
for the axis. The Axis widget does not make a copy of the array, or of the
XmStrings it contains, so you must not modify or free them until they are
no longer in use (when you've specified a new array, or switched back to
auto-label mode.)

num_labels

The number of labels for the axis. There must be at least this many strings
in the labels or label_strings array, and this value must match the number
of labels implicitly specified by the other arguments to this function.

Figure 6-4. XiAxisSetLabels() and XiAxisSetLabelStrings()

As with XiAxisSetMarks(), XiAxisSetLabels() and XiAxisSetLabelStrings() turn off
autoscaling on the minimum and maximum bounds, turn off auto-marking, and set
XmNroundEndpoints to False. Unlike XiAxisSetMarks(), they also turn off auto-
labeling.
104 GraphPak Programmer’s Reference Manual

You can also specify a set of non-numeric labels through resources. The resources
used to specify the positioning of marks and labeled marks were described above. The
resources below let you specify an array of labels in a more flexible way (using an
XiPlotData-style scheme) than is possible with XiAxisSetLabels(). Note that these
resources will be ignored (and overwritten) if XmNautoLabel is True.)

XmNlabels
An array of XmStrings, each of which is a label, or an array of structures each of
which contains an XmString label.

XmNnumLabels
The number of elements in the XmNlabels array.

XmNlabelRecordSize
The size, in bytes, of each element in the XmNlabels array. Use sizeof() to spec-
ify this value. If XmNlabels is a simple array of XmStrings, this resource will be
sizeof(XmString). The Axis will use this value to move from element to element
within the array.

XmNlabelRecordOffset
The offset, in bytes, within each element of the array, of the label. If XmNlabels
is a simple array of XmStrings, this resource will be 0. Otherwise, use XtOff-
setOf() to compute the offset of the label field within the structure. The Axis will
use this offset to extract the label from the structure.

6.4 World <--> Pixel Coordinate Conversion
On occasion you may want to convert a point from floating-point world (or axis)
coordinates to the equivalent integer pixel coordinates, or vice versa. The two public
functions documented below allow you to do this quite easily.
The Axis Widget 105

void XiConvertWorldToPixel(Widget plotter, double x, double y,

 int *px_return, int *py_return);

plotter The XiPlotter widget for which the conversion is to be done.
x The X axis coordinate of the point to be converted.
y The Y axis coordinate of the point to be converted.
px_return

The address at which the X pixel coordinate of the point is to be returned.
py_return

The address at which the Y pixel coordinate of the point is to be returned.

void XiConvertPixelToWorld(Widget plotter, int px, int py,

 double *x_return, double *y_return);

plotter The XiPlotter widget for which the conversion is to be done.
px The X pixel coordinate of the point to be converted.

py The Y pixel coordinate of the point to be converted.

x_return

The address at which the X axis coordinate of the point is to be returned.
y_return

The address at which the Y axis coordinate of the point is to be returned.
106 GraphPak Programmer’s Reference Manual

The Axis Widget 107

108 GraphPak Programmer’s Reference Manual

The LinePlot Widget

The LinePlot widget plots arbitrary (x,y) data points by marking each point with a
small glyph and/or connecting adjacent points with lines. LinePlot resources allow
you to specify the color of the markers, as well as the color, width, and line pattern of
the lines. Arrays of X and Y data points are specified through two independent
XiPlotData structures. This means that when data points occur at regular intervals
along the X axis, you need only specify the Y data points.

LinePlot Synopsis
Class Name: XiLinePlot
Class Hierarchy: RectObj → XiPlot → XiLinePlot
Header File: <Xi/LinePlot.h>
Class Pointer: xiLinePlotWidgetClass

Constructor: XiCreateLinePlot(Widget parent,String name,

ArgList args, Cardinal

num_args);

You can add error bars to your line plots by using the ErrorPlot widget. This is a sub-
class of LinePlot that is useful for displaying experimental data. The ErrorPlot sub-
class is documented in Chapter 8, The ErrorPlot Widget.
The present chapter explains how to create LinePlot widgets, documents the resources
that control LinePlot appearance, and explains the functions and resources that let you
specify the plot data to be displayed.

7

GraphPak Programmer’s Reference Manual 109

7.1 Creating a LinePlot
You can create a LinePlot widget with the function XiCreateLinePlot(), which is a
standard Motif-style widget constructor. If you prefer to use XtCreateWidget() or
XtVaCreateWidget(), the class pointer for the LinePlot widget is xiLinePlotWidget-
Class. Both the constructor function and the widget class pointer are declared in the
header file <Xi/LinePlot.h>.
Example 7-1 demonstrates both methods of creating the widget. Don't forget that you
must manage any widgets you create with XtManageChild() or XtManageChildren().

Example 7-1. Two methods for creating a LinePlot widget.

#include <Xi/Plotter.h> /* always include this */
#include <Xi/LinePlot.h> /* declares constructor and class pointer
*/

Widget plotter; /* assume this is already created */
Widget plots[2];
Arg args[10];
int i;

/* method #1 */
i = 0;
XtSetArg(args[i], XmNlegendName, "line plot #1"); i++;
XtSetArg(args[i], XmNlineWidth, 3); i++;
XtSetArg(args[i], XmNlinePattern, XiLinePatternDotDashed2); i++;
XtSetArg(args[i], XmNdrawShadow, True); i++;
plot1 = XiCreateLinePlot(plotter, "plot1", args, i);

/* method #2 */
plot2 = XtVaCreateWidget("plot2", xiLinePlotWidgetClass, plotter,
 XmNmarkPoints, True,
 XmNmarker, XiMarkerCircle,
 XtVaTypedArg,XmNmarkerColor,XmRString,"navy",5,
 NULL);

/* the plots must be managed before they are visible */
XtManageChildren(plots, XtNumber(plots));

7.2 LinePlot Resources
The LinePlot widget has resources that control the line, markers, impulses, and shad-
ows that it draws, and the data points that it plots. These resources are summarized in
Table 7-1 and are documented in detail in the subsections below. For convenience, the
table of resources also appears in the quick reference section at the end of this man-
ual.
110 GraphPak Programmer’s Reference Manual

7.2.1 Lines
The following resources specify whether and how the LinePlot widget draws lines
between adjacent data points.

XmNconnectPoints
A Boolean that specifies whether the LinePlot widget will connect adjacent
points with lines. The default is True. If you set this resource to False, then you
should generally also set XmNmarkPoints to True, or the points will not be visi-
ble at all.

XmNlineColor
The color of the line to draw between adjacent data points. If you do not set this
resource when you create the LinePlot widget, it inherits the value of the XmN-
foreground resource of its parent Plotter widget.

XmNlineWidth
The width, in pixels, of the line to draw between adjacent data points. The default
value is 0, which specifies an efficiently drawn line one-pixel wide. For many
plots, a line two or three pixels wide has more visual impact, and for some pre-
sentation graphics you may want to use lines ten or more pixels wide.

XmNlinePattern
The dash pattern to use for the line between adjacent data points. The default is
NULL, which specifies solid lines. Chapter 3, Plotter Data Types and Resources
explains how to specify line patterns. A table of pre-defined line patterns appears
in this chapter, and also in the quick-reference section at the end of this manual.
When using line patterns, bear in mind that many X servers draw dashed and dot-
ted lines inefficiently, and can be particularly slow when drawing patterned lines
with XmNlineWidth greater than 0.

Table 7-1 LinePlot Resources

Name Class Type Default CSG Pg
Lines
XmNconnectPoints XmCConnectPoints Boolean TRUE CSG 111
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 111
XmNsegmentWidth XmCLineWidth Dimension 0 CSG
XmNlinePattern XmCLinePattern LinePattern XiLinePatternSolid CSG 111
Markers
XmNmarkPoints XmCMarkPoints Boolean FALSE CSG 112
XmNmarker XmCMarker Marker XiMarkerCircle CSG 112
XmNmarkerColor XmCForeground Pixel XmNforegrounda CSG 113
XmNmarkerBackground XmCBackground Pixel XmNplotAreaColorb CSG 113

FillPattern
The LinePlot Widget 111

aInherited from the Plotter XmNforeground resource.
bInherited form the Plotter XmNplotAreaColor resource.
cDo not set these resources when using a DBPak subclass of this widget.

7.2.2 Markers
The following resources specify whether and how the LinePlot widget marks each of
its data points.

XmNmarkPoints
A Boolean resource that specifies whether the LinePlot widget should place a
small glyph to mark each data point. The default is False.

XmNmarker
The XiMarker that the LinePlot widget should use to mark its data points. The
default is the predefined value XiMarkerCircle. Chapter 3, Plotter Data Types
and Resources explains the XiMarker abstraction and contains a list of pre-
defined markers that you can use for this resource. This list also appears in the
quick reference section at the end of this manual. Chapter 17, Defining Custom

XmNfillPattern XmCFillPattern FillPattern XiFillPatternNone CSG 114
XmNfillColor XmCForeground Pixel XmNforegrounda CSG 114
XmNfillBackground XmCBackground Pixel XmNplotAreaColorb CSG 114
XmNfillOpaque XmCFillOpaque Boolean TRUE CSG 114
Impulses
XmNdrawImpulses XmCDrawImpulses Boolean FALSE CSG 115
Shadows
XmNdrawShadow XmCDrawShadow Boolean FALSE CSG 115
XmNshadowColor XmCForeground Pixel XmNforegrounda CSG 115
XmNstippleShadow XmCStippleShadow Boolean TRUE CSG 116
XmNshadowXOffset XmCShadowOffset Position 2 CSG 116
XmNshadowYOffset XmCShadowOffset Position 2 CSG 116

Datac

XmNnumValues XmCNumValues Cardinal 0 CSG 116
XmNxValues XmCXValues Pointer NULL CSG 116
XmNxValueType XmCValueType PlotDataType XiPlotDataDouble CSG 116
XmNxValueSize XmCValueSize Cardinal sizeof(double) CSG 116
XmNxValueOffset XmCValueOffset Cardinal 0 CSG 116
XmNxValueConstant XmCValueConstant Double 0.0 CSG 116
XmNxValueMultiplier XmCValueMultiplier Double 1.0 CSG 116
XmNyValues XmCYValues Pointer NULL CSG 116
XmNyValueType XmCValueType PlotDataType XiPlotDataDouble CSG 116
XmNyValueSize XmCValueSize Cardinal sizeof(double) CSG 116
XmNyValueOffset XmCValueOffset Cardinal 0 CSG 116
XmNyValueConstant XmCValueConstant Double 0.0 CSG 116
XmNyValueMultiplier XmCValueMultiplier Double 1.0 CSG 116
112 GraphPak Programmer’s Reference Manual

Markers explains how you can define your own custom marker glyphs to display
in X and print in PostScript.

XmNmarkerColor
The foreground color for the marker. If you do not set this resource when the
LinePlot widget is created, its value is inherited from the XmNforeground
resource of the parent Plotter widget.

XmNmarkerBackground
The background color for the marker. If you do not set this resource, its value is
inherited from the XmNplotAreaColor resource of the parent Plotter widget. The
background color is used only for those marker types that are unfilled, and have a
"hollow" section in the center. Usually, you will want this resource to match the
Plotter XmNplotAreaColor, as it does by default, so that the markers actually do
appear hollow. You can use this background resource, however, to create two-
color markers; note, though, that the background color will not be used when the
LinePlot is printed. Finally, note that this resource is not affected by changes to
the Plotter XmNplotAreaColor resource. If you change the background color of
the plotting area without changing the background color of the markers for each
of your LinePlot widgets, markers that previously appeared hollow will become
two-tone.
The LinePlot Widget 113

7.2.3 Fill Patterns
The LinePlot widget can optionally fill the area between its data points and the origin
(or between the data and the bottom or top edge of the Plotter, if the origin is not visi-
ble) with a solid color or with a pattern. To have it fill this area, set the XmNfillPat-
tern resource to specify the type of fill to perform and the XmNfillColor resource to
specify the color. You may also want to specify XmNfillBackground and XmNfillO-
paque to specify how the background color, if any, should be handled.
Note that displaying a LinePlot in this way may not look good unless XmNconnect-
Points is True. If you have more than one LinePlot widget that you wish to fill
beneath, you must carefully set their drawing order (see the Plotter XmNdrawin-
gOrder constraint) so that the smaller filled areas are drawn on top of the larger filled
areas, instead of being obscured by those larger filled areas.
The resources that control filling in the LinePlot are the following:

XmNfillPattern
The pattern to be used to fill beneath the LinePlot data. The default is the special
value XiFillPatternNone which specifies that no filling should occur. The value
XiFillPatternSolid specifies that the area beneath the data points should be filled
with a solid color specified by XmNfillColor. Other values specify a patterned
fill.Chapter 3, Plotter Data Types and Resources explains the XiFillPattern
abstraction, and that chapter and the quick reference section at the end of this
manual contain lists of the predefined fill patterns. You can also define custom
fill patterns of your own; Chapter 18, Defining Custom Fill Patterns explains
how to do this.

XmNfillColor
The solid color to fill with, or the foreground color of the fill pattern. If you do
not set this resource, its value is inherited from the XmNforeground resource of
the parent Plotter widget.

XmNfillBackground
The background color of the pattern used to fill with. If XmNfillPattern is XiFill-
PatternSolid, or XmNfillOpaque is False, then this resource is not used. If you do
not set this resource, its value is inherited from the XmNplotAreaColor resource
of the parent Plotter widget. This default value will make a patterned fill appear
to have a transparent background.

XmNfillOpaque
A Boolean that specifies whether pattern fills should be "opaque" or "transpar-
ent". With an opaque fill, the LinePlot widget draws both the foreground and
background bits of the pattern, so that everything in the area beneath the data is
erased. This is the default, and is almost always the appropriate setting for this
resource. If you set it to False, then only the foreground bits of the fill pattern will
114 GraphPak Programmer’s Reference Manual

be drawn, and anything previously drawn underneath the data (such as grid lines)
will show through.

7.2.4 Impulses
Besides connecting adjacent points and placing a marker at each point, the LinePlot
widget can draw an "impulse" for each point. An impulse is a line drawn vertically
from the origin (or the minimum value of the Y axis) to the data point. Impulses can
be used alone, and also in conjunction with markers and/or lines. When displaying
sampled data, in signal processing contexts, for example, using impulses can help to
emphasize the sampled nature of the data. A single resource controls whether or not
the LinePlot draws impulses:

XmNdrawImpulses
A Boolean that specifies whether impulse lines should be drawn vertically from
the origin of the Y axis, or from the minimum value on the Y axis, if the Y axis
does not pass through 0.0, to the data point. The default value is False.

Impulse lines are drawn using the same attributes as the connecting lines in the line
plot: XmNlineColor, XmNlineWidth, and XmNlinePattern. Impulse lines are never
shadowed, so you probably do not want to set both XmNdrawImpulses and XmN-
drawShadow to True.

7.2.5 Shadows
The LinePlot widget can draw a shadow beneath the markers it draws at data points,
and the lines it draws between those points. This shadow gives the plot a somewhat
three-dimensional appearance and can add dramatically to the visual impact of the
plot. LinePlot shadows are useful for presentation graphics, but generally should not
be used for scientific or engineering graphs, because they distract attention from the
underlying data that the plot represents.
The following resources control whether and how the LinePlot draws its shadows:

XmNdrawShadow
A Boolean that specifies whether the LinePlot widget will draw shadows beneath
its markers and lines. The default is False.

XmNshadowColor
The color of the shadow to be drawn. If you do not set this resource, its value is
inherited from the XmNforeground resource of the parent Plotter widget. Note
that if XmNstippleShadow is True, then the stippling will result in an apparent
shadow color that is significantly lighter than the value specified by this resource.
The LinePlot Widget 115

XmNstippleShadow
A Boolean that specifies whether the LinePlot shadows should be drawn with a
solid color or with a stippled color. The default is True which specifies that a stip-
ple should be used. Note that on monochrome systems, stippling is required
because the shadow color and the line color will be the same. Note also that shad-
ows will always be stippled in PostScript output, regardless of the state of this
resource.

XmNshadowXOffset, XmNshadowYOffset
The offset, in pixels, of the shadow from the line plot in the X and Y dimensions.
The default for each of these resources is 2 pixels. Larger values will produce a
shadow further away from the actual line plot, increasing the apparent three
dimensional height of the LinePlot above the Plotter background. If you are using
particularly wide lines in a LinePlot, you may want to increase this shadow offset
as well. Note that negative values are legal for this resource, and simply change
the position of the imaginary light source that is casting the shadow.

7.2.6 Data Resources
Table 7-1 lists thirteen data resources for the LinePlot widget. These resources corre-
spond to the fields of two XiPlotData structures which specify how the LinePlot wid-
get is to extract its X and Y data values from application data structures. These
resources are not explained here; if you have read Chapter 4, Plot Data Representa-
tion, the meaning of each of them will be evident from their names.
Note that there is only one XmNnumValues resource, rather than separate XmNx-
NumValues and XmNyNumValues resources--since there must always be the same
number of X and Y points, the LinePlot only needs one resource to set the appropriate
fields in both XiPlotData structures. You must be careful when setting this XmNnum-
Values resource to ensure that the arrays specified on the XmNxValues and XmNy-
Values resources have at least that many elements. If you increase the size of
XmNnumValues before you update XmNyValues to point to its new, longer, array, the
LinePlot widget may attempt to read data beyond the end of the array, which can
cause a segmentation violation.
The LinePlot widget is often used to display graphs of data that has been measured,
sampled, or computed at some regular interval along the X axis. In this case, there is
no need to provide a complete array of X points; instead, you need only specify the
first X point, and the interval between points on the X axis. You can do this with the
XmNxValueConstant and the XmNxValueMultiplier resources. Again, see Chapter 3
for more information on these resources. This technique will obviously not work
when plotting polar data, parametric functions, scatter plots, or any kind of data that
does not have evenly spaced X points.
116 GraphPak Programmer’s Reference Manual

Finally, note that the convenience functions for specifying data that are described in
the next section are often easier to use (though they are not quite so flexible) than
these resources are.

7.3 Specifying LinePlot Data
The most general way to specify data for a LinePlot widget is through the data
resources described in the previous section. It is often easier, however, to use one of
the convenience functions provided by the LinePlot for this purpose. The subsections
below document these convenience functions.

7.3.1 Arrays of Doubles, Floats, or Ints
The simplest of the LinePlot convenience functions allow you to specify X and Y data
stored in separate arrays of type double, float, or int. These functions are shown in
Figure 7-1.
XiLinePlotSetDoublePoints(), XiLinePlotSetFloatPoints(), and XiLinePlotSetInt-
Points() are appropriate when you want to specify arrays of both X and Y data. But
many line plots have evenly spaced X data that can be fully specified with only the
minimum value and the interval between values. In this case, you can use XiLinePlot-
SetDoubleYValues, XiLinePlotSetFloatYValues(), or XiLinePlotSetIntYValues().
These three functions they are very similar to the previous three, except that they take
X minimum and X interval arguments instead of an array of X values.

7.3.2 Specifying Data in Structures
Sometimes you may want to plot data that is stored in an array of structures, rather
than a simple array of double, float, or int. Or you may want to plot data of some other
type, like unsigned short. The LinePlot widget has two convenience functions that
allow this--one used when you want to specify X and Y points, and one when you
only want to specify Y values. Figure 7-2 shows these functions.
The LinePlot Widget 117

void XiLinePlotSetDoublePoints(Widget w,

 double *xvals,double *yvals,Cardinal num);

void XiLinePlotSetFloatPoints(Widget w,

 float *xvals, float *yvals, Cardinal num);

void XiLinePlotSetIntPoints(Widget w,int*xvals,int*yvals,Cardinal num);

void XiLinePlotSetDoubleYValues(Widget w, double xmin,double xinterval,

 double *yvals, Cardinal num);

void XiLinePlotSetFloatYValues(Widget w, double xmin, double xinterval,

 float *yvals, Cardinal num);

void XiLinePlotSetIntYValues(Widget w, double xmin, double xinterval,

 int *yvals, Cardinal num);

w The LinePlot widget that is having its data values set.

xvals, yvals

Arrays of double, float, or Wint which contain the X and Y data values to
be plotted.

xmin The X coordinate of the first point in the plot.

xinterval

The interval between adjacent points along the X axis.
num

The number of points in the plot. There must be at least this many ele-
ments in each of the arrays.

Figure 7-1. Functions for specifying (X,Y) LinePlot data in simple arrays.

The arguments to XiLinePlotSetPoints() correspond to the XmNxValue resources, the
XmNyValue resources, and the XmNnumValues resource of the LinePlot widget.
Note, though that there are no arguments that correspond to the "constant" and "multi-
plier" resources. Except for these linear transform resources, however, XiLinePlotSet-
Points() provides all the flexibility of the widget data resources. Since this function
requires you to specify a complete array of X values, you would use it for scatter
plots, parametric functions, or other plots that do not have a uniform point spacing
along the X axis.
XiLinePlotSetYValues() is similar to XiLinePlotSetPoints(), but lets you specify your
X data with a minimum value and an interval, rather than a complete array of values.
The xmin and xinterval arguments are the equivalent of the XmNxValueConstant and
XmNxValueMultiplier resources. You would use this function whenever you are plot-
ting sampled data, or any plot with a uniform interval between X points.
118 GraphPak Programmer’s Reference Manual

void XiLinePlotSetPoints(Widget w,XtPointer xvals,XiPlotDataType xtype,

 Cardinal xsize, Cardinal xoffset,

 XtPointer yvals, XiPlotDataType ytype,

 Cardinal ysize, Cardinal yoffset, Cardinal num);

void XiLinePlotSetYValues(Widget w, double xmin, double xinterval,

 XtPointer yvals, XiPlotDataType ytype,

 Cardinal ysize, Cardinal yoffset,Cardinal num);

w

The LinePlot widget that is having its data set.
xvals, xtype, xsize, xoffset

An array of structures containing the X values, the type of each value, the
size of each array element, and the offset of the X value within the struc-
ture. These arguments correspond to the X data resources.

yvals, ytype, ysize, yoffset

An array of structures containing the Y values, the type of each value, the
size of each array element, and the offset of the Y value within the struc-
ture. These arguments correspond to the Y data resources.

xmin, xinterval

The X coordinate of the first point in the plot, and the interval between
adjacent X points. This is an alternate way of specifying X data.

num

The number of points in the plot. Both the xvals and the yvals arrays must
have at least this many elements.

Figure 7-2. Functions for specifying LinePlot data in structures
The LinePlot Widget 119

7.3.3 Changing Data in Place
Since the LinePlot widget extracts its data values directly from application data struc-
tures, it needs to be notified when that data has changed "underneath" it. Some appli-
cations will define static data structures, and leave them unchanged for the lifetime of
the program. Other applications, however, will update plot data dynamically. One
way to do this is to give the widget a pointer to new data arrays (by setting resources
or calling one of the convenience functions above), and then free the memory associ-
ated with the old ones. Another approach is to write the new plot data directly into the
existing arrays, and notify the widget that its data has changed and that it should
redraw itself. You can do this with XiLinePlotDataChanged(), shown in Figure 7-3.

void XiLinePlotDataChanged(Widget w);

w The LinePlot widget that has had its data changed. Calling this function
will cause that widget to extract and display new data from the application
data structures.

Figure 7-3. XiLinePlotDataChanged

7.3.4 Adding Data Points Dynamically
Some applications will want to use the Plotter widget to display "live" data--to update
data dynamically as it is computed, generated, or otherwise becomes available. One
way to do this is to simply update the widget's data resources, or call one of its conve-
nience functions for setting data. This approach will cause the widget to reread,
rescale and redisplay all of its data values, and is not a particularly efficient technique
if new data points are only being added at the end of the plot.
Since the LinePlot widget is the most commonly used with this kind of live data, it
supports a special convenience function, XiLinePlotDataAdded(), that allows you to
efficiently add new data points to the end of a LinePlot. Figure 7-4 shows the signa-
ture of this function.
120 GraphPak Programmer’s Reference Manual

void XiLinePlotDataAdded(Widget w, Cardinal new_num);

w The LinePlot widget that is having data points added.
new_num

The new number of points in the LinePlot data arrays. Calling this func-
tion will add the new points to the end of the plot without redrawing the
existing points.

Figure 7-4. XiLinePlotDataAdded()

You use XiLinePlotDataAdded(), like XiLinePlotDataChanged(), when you have
updated the LinePlot data "in place"--that is, when the data has changed, but the
pointers to the array or arrays of data have remained the same. XiLinePlotDataAd-
ded() takes the new number of data points as its second argument. It assumes that
none of the existing data has changed, and only reads, scales, and draws the new data
points. This generally results in a fast update. Note, however, that if autoscaling is on,
adding new points to the plot can cause the axes to be rescaled, if any of the new
points fall outside of the current axis bounds. When this happens, all of the data dis-
played in the Plotter will have to be rescaled, and the update will be a slow one.
The LinePlot Widget 121

Example 7-2. Using XiLinePlotDataAdded()

static int ypoints[50];
static int num_points = 0;
static double xmin = 0.0;
static double xmax = 50.0;

void AddPoint(int new_y_value)
{
 /* add the new value to our array */
 ypoints[num_points++] = new_y_value;

 /*
 * if we've filled up the array, throw out the first 25 points,
 * adjust the xaxis and the plot, and redisplay the plot.
 * Otherwise, just add the point to the plot efficiently.
 */
 if (num_points == 50) {
 bcopy(&ypoints[25], ypoints, 25 * sizeof(int));
 num_points = 25;
 xmin += 25.0;
 xmax += 25.0;
 XiPlotterDisableRedisplay(plotter);
 XiAxisSetBounds(XiPlotterXAxis(plotter), xmin, xmax);
 XiLinePlotSetIntYValues(plot1, xmin, 1.0, ypoints,
num_points);
 XiPlotterEnableRedisplay(plotter);
 }
 else
 XiLinePlotDataAdded(plot1, num_points);
}

When dynamically updating data with XiLinePlotDataAdded(), the X axis will gener-
ally measure time, or some other monotonically increasing quantity. When this is the
case, you will want to be sure to turn off autoscaling on the X axis, or the axis will
rescale itself (and all data in the Plotter) each time you add a point. Instead you will
have to explicitly specify a minimum and maximum bound for the X axis. As you add
data points, the line plot will eventually reach the maximum value you have specified.
If you continue to add points, they will not appear because they will be off the edge of
the plotting area. Instead, the behavior you often want is to scroll the line plot to the
left each time it reaches the right edge of the plotting area. This is the default behavior
of the xload application, for example. Figure 7-2 shows a procedure you might use to
do this.
The procedure shown in the example simply discards values once they have been
scrolled off the left of the plotting area. Another approach is to retain the data points,
and allow the user to manually scroll backwards to view past data. You might use the
Plotter XmNpanCallback to allow the user to scroll.
122 GraphPak Programmer’s Reference Manual

The LinePlot Widget 123

124 GraphPak Programmer’s Reference Manual

The ErrorPlot Widget

The ErrorPlot widget is a subclass of the LinePlot widget which displays error bars
for each data point of a plot--this is useful for scientific and engineering data, and any
kind of plot for which there is uncertainty in the measurement of data. Because the
ErrorPlot is a subclass of LinePlot, it inherits all the resources of that widget. This
means that you can specify data points, how those points are to be marked, how they
are to be connected, and so on, exactly as you would for a LinePlot. (See Chapter 7,
The LinePlot Widget for information on that widget.)

ErrorPlot Synopsis
Class Name: XiErrorPlot
Class Hierarchy:RectObj → XiPlot → XiErrorPlot
Header File: <Xi/ErrorPlot.h>
Class Pointer: xiErrorPlotWidgetClass

Constructor: xiCreateErrorPlot (Widget parent,String name,

 ArgList args, Cardinal num_args);

Error values can be specified for an ErrorPlot in three different ways: If there is a
fixed error for all points in a plot, you can specify it easily as a single absolute error
value above and below each data point. Similarly, if there is a single percentage error
for all measured values in a plot, you can specify this as a single value. Finally, if
errors vary from point to point, you can explicitly specify the bounds of the error bar
above and below each point in the plot.
Error bars appear like the capital letter 'I'. Resources allow you to control the color of
the bar, the width of the lines used to draw the bar, and the length of the "caps"--the
horizontal lines at the top and bottom of the bar.
This chapter explains how to create ErrorPlot widgets, documents the resources that
control ErrorPlot appearance, and explains how to specify error values for a plot.

8

GraphPak Programmer’s Reference Manual 125

8.1 Creating an ErrorPlot
You can create an ErrorPlot widget with the function XiCreateErrorPlot(), which is a
standard Motif-style widget constructor, or with XtCreateWidget() or XtVaCreate-
Widget() with the widget class pointer xiErrorPlotWidgetClass. Both the constructor
function and the widget class pointer are declared in the header file <Xi/ErrorPlot.h>.
Example 8-1 demonstrates both methods of creating the widget

Example 8-1. Creating ErrorPlot widgets

#include <Xi/Plotter.h> /* always include this */
#include <Xi/ErrorPlot.h> /* declares constructor and class pointer
*/

Widget plotter; /* assume this is already created */
Widget plots[2];
Arg args[10];
int i;

/* method #1 */
i = 0;
XtSetArg(args[i], XmNerrorBarWidth, 3); i++;
XtSetArg(args[i], XmNlineWidth, 3); i++;
XtSetArg(args[i], XmNerrorCapLength, 5); i++;
XtSetArg(args[i], XmNmarkPoints, True); i++;
plot1 = XiCreateErrorPlot(plotter, "plot1", args, i);

/* method #2 */
plot2 = XtVaCreateWidget("plot2", xiErrorPlotWidgetClass, plotter,
 XmNmarkPoints, True,
 XmNmarker, XiMarkerSquare,
 XtVaTypedArg,XmNlineColor,XmRString,"tan",4,
 XtVaTypedArg,XmNerrorBarColor,XmRString,"tan",4,
 NULL);

/* the plots must be managed before they are visible */
XtManageChildren(plots, XtNumber(plots));

8.2 ErrorPlot Resources
The ErrorPlot widget inherits all the resources of the LinePlot widget. It also defines
three new resources that control the appearance of the error bars, and a number of
other resources that allow you to specify error values for a plot. These new resources
are summarized in Table 8-1 and are documented in the subsections below. Chapter 7,
The LinePlot Widget documents the resources of the LinePlot widget; you will need to
use these resources to specify how data points should be marked, connected, and so
126 GraphPak Programmer’s Reference Manual

on. For convenience tables of LinePlot and ErrorPlot resources appear in the quick
reference section at the end of this manual.

Table 8-1. ErrorPlot Resources

aInherited from the Plotter XmNforeground resource.
bDo not set these resources when using a DBPak subclass of this widget.

8.2.1 Error Bar Resources
An error bar looks like a capital letter 'I'. The following resources control the color of
the bar, the width of the lines that comprise it, and the length of the horizontal lines at
the top and bottom of the bar.

XmNerrorBarColor
The color of the error bar. If no value is specified for this resource, the default
value is inherited from the XmNforeground resource of the parent Plotter widget.

XmNerrorBarWidth
The width, in pixels, of the lines that comprise the error bar. The default is 0, a
special value that specifies efficiently drawn lines one pixel wide.

XmNerrorCapLength
The length, in pixels, from the center of an error bar to the left and right end of
the horizontal line segments at the top and bottom of the bar. The default is 3,
which specifies a cap with a total length of 7 pixels (the center pixel of the bar

Name Class Type Default CSG Pg
Error Bars
XmNerrorBarColor XmCForeground Pixel XmNforegrounda CSG 127
XmNerrorBarWidth XmCLineWidth Dimension 0 CSG 127
XmNerrorCapLength XmCErrorCapLength Dimension 3 CSG 127
Fixed Errors
XmNfixedError XmCFixedError Double 0.0 CSG 128
XmNpercentError XmCPercentError Double 0.0 CSG 128

Variable Errorsb

XmNnumErrorValues XmCNumValues Cardinal 0 CSG 129
XmNhighValues XmCValues Pointer NULL CSG 129
XmNhighValueType XmCValueType PlotDataType XiPlotDataDouble CSG 129
XmNhighValueSize XmCValueSize Cardinal sizeof(double) CSG 129
XmNhighValueOffset XmCValueOffset Cardinal 0 CSG 129
XmNlowValues XmCValues Pointer NULL CSG 129
XmNlowValueType XmCValueType PlotDataType XiPlotDataDouble CSG 129
XmNlowValueSize XmCValueSize Cardinal sizeof(double) CSG 129
XmNlowValueOffset XmCValueOffset Cardinal 0 CSG 129
The ErrorPlot Widget 127

plus three pixels on the left and three on the right). When using a wide value for
XmNerrorBarWidth, you may want to increase the value of XmNerrorCa-
pLength, because the wide vertical line in the center will hide some of the length
of the cap.

Note that there are not resources for specifying shadows for an error bar. Because the
ErrorPlot widget is used in situations where accurate representation of data is very
important, the widget does not support shadows underneath error bars--they would
only distract from the actual data points and the measurement errors being plotted.
Thus, when using the ErrorPlot widget, you should leave the XmNdrawShadow Line-
Plot widget at its default value of False, or there will be shadows under the plot lines
and markers but not under the error bars.

8.2.2 Fixed Error Resources
Some plots will have a fixed error across all points in the data set. You might be plot-
ting weights which have been measured with an accuracy of (+-5g, for example, or
electrical resistances with a rated tolerance of (+-10%. If you have a fixed error value
(either an absolute error value or a percentage) like this, then you specifying the error
values for your plot is simple; you need only set one of the two following resources:

XmNfixedError
An absolute error value above and below each point in the plot. Use this resource
when your errors are of the form (+-.05m, for example. The default is 0.0, which
means that no fixed error is specified. Note that this resource is ignored if XmN-
numErrorValues is set; in that case high and low error values are looked up for
each point. Also, remember that this resource if of type double, and special tech-
niques are required to set it. (See Chapter 3, Plotter Data Types and Resources.)

XmNpercentError
A percentage error value above and below each point in the plot. Use this
resource when your errors are of the form \(+-10%, for example. Because the
error is a percentage of the data value, values close to zero will have smaller error
bars than those farther away. The default is 0.0, which means that no percentage
error is specified. Note that this resource is ignored if XmNnumErrorValues or
XmNfixedError is specified. Also, remember that this resource is of type double,
and special care is required when setting it.

Notice that there are not ErrorPlot resources for specifying the plot data values them-
selves, only the errors for those data values. Since the ErrorPlot is a subclass of Line-
Plot, you specify the plot data through inherited LinePlot resources or convenience
functions.
128 GraphPak Programmer’s Reference Manual

8.2.3 Variable Error Resources
When your data does not have the same fixed error for each point, the ErrorPlot wid-
get allows you to specify the absolute high and low bound of the error bar for each
data point in the plot. Table 8-1 lists nine resources that allow you to specify these
high and low error values. These resources are the fields of two XiPlotData structures
that tell the ErrorPlot widget how to extract its high and low error values from appli-
cation data structures. Note that the high and low values in these data structures abso-
lute values, not \(+- values relative to the data Y value. The resources are not
individually explained here; if you have read Chapter 4, Plot Data Representation the
meaning of each of them will be evident from their names. The ErrorPlot widget also
provides a number of convenience functions for specifying error values; these func-
tions are described in the next section, and are often easier to use than these resources.
Note that there is only a single XmNnumErrorValues resource, rather than individual
XmNhighNumValues and XmNlowNumValues resources--since there must always
be the same number of high and low error values, only one resource is necessary to
specify the number of values in both XiPlotData structures. You must be careful when
setting the XmNnumErrorValues resource to ensure that there are at least that many
values in the XmNhighValues and XmNlowValues arrays; if there are not, the Error-
Plot widget may read beyond the end of the arrays and cause a segmentation viola-
tion.
The ErrorPlot high and low data resources specify only the values to be displayed by
the error bar for each point; they do not specify the position of the points themselves-
-this remains the job of the LinePlot (LinePlot is the superclass) X and Y data
resources and convenience functions. See Chapter 7, The LinePlot Widget for more
information.
Finally, notice that the ErrorPlot widget does not have resources to set the constant
and multiplier fields of the error value XiPlotData structures. Since there is probably
no realistic case where error values will be linear, this is not really a problem. It does
mean that although you can apply a linear transformation to the data values of an
ErrorPlot, you cannot automatically apply the same transform to the error values.

8.3 Specifying ErrorPlot Data
The most general way to specify high and low error values for an ErrorPlot widget is
through the data resources described in the previous section. When your data is stored
in certain common formats, however, it is often easier to use one of the convenience
functions provided by the ErrorPlot for this purpose. The subsections below docu-
ment these convenience functions.
The ErrorPlot Widget 129

8.3.1 Arrays of Doubles, Floats, or Ints
The simplest of the ErrorPlot convenience functions allow you to specify high and
low error values that are stored in separate arrays of type double, float, or int. These
functions are shown in Figure 8-1
Notice that these functions only specify the error values for an ErrorPlot. Before any-
thing can be displayed, you must also specify the data points for each plot. You can do
this with LinePlot functions like XiLinePlotSetDoubleValues(), or through LinePlot
data resources.

8.3.2 Specifying Error Values from Structures
Often, it is more convenient for an application to store its pairs of high, low error val-
ues together in the same structure, perhaps in conjunction with the (X,Y) coordinates
of the data point itself. If you store your error values in this way, you can use XiError-
PlotSetErrors() to specify the error values. This arguments to this function are shown
in Figure 8-2.

void XiErrorPlotSetDoubleErrors(Widget w, double* highvals,

 double *lowvals,

 Cardinal num_values)

void XiErrorPlotSetFloatErrors(Widget w,float *highvals,float *lowvals,

 Cardinal num_values);

void XiErrorPlotSetIntErrors(Widget w, int *highvals, int *lowvals,

 Cardinal num_values);

w The ErrorPlot widget that is having its error values set.
highvals, lowvals

Two arrays of, of type double, float, or int, depending on the function,
which contain the high and low values for each error bar in the plot.

num_values

The number of error bars to appear in the plot. There must be at least this
many values in the highvals and lowvals arrays.

Figure 8-1. ErrorPlot functions for specifying error values in simple arrays
130 GraphPak Programmer’s Reference Manual

void XiErrorPlotSetErrors(Widget w,

 XiPlotDataType type, Cardinal size,

 XtPointer highvals, Cardinal highoffset,

 XtPointer lowvals, Cardinal lowoffset,

 Cardinal num_values);

w The ErrorPlot widget that is having its error values set.
type The type of both the high and low error values.
size The size of the structure that both the high and low values are stored in.
highvals, lowvals

Pointers to arrays of structures that contain the high and low values. Often
these two arguments will be the same.

highoffset, lowoffset

The offset, in bytes, of the high value and the low value within the struc-
ture that they are stored in.

num_values

The number of error bars in the plot. The highvals and lowvals arrays must
each have at least this many elements.

Figure 8-2. XiErrorPlotSetErrors()

Again, note that this function sets only the error values for a plot; to set the data points
themselves, use the superclass LinePlot convenience function or data resources.
Example 8-2 shows how you might use XiErrorPlotSetErrors() to set error values that
are stored in an array of structures.
The ErrorPlot Widget 131

Example 8-2. Specifying error values from structures

typedef struct {
 float y; /* the y coordinate of the data point */
 float high, low; /* the y coordinates of the error bar */
} Point;

static Point points[50]; /* assume this is initialized elsewhere */

/* set data points with a LinePlot function */
XiLinePlotSetYValues(errorplot, 0.0, 1.0,
 points, XiPlotDataFloat,
 sizeof(Point), XtOffsetOf(Point, y),
 XtNumber(points));
/* and then set error values */
XiErrorPlotSetErrors(errorplot,
 XiPlotDataFloat, sizeof(Point),
 points, XtOffsetOf(Point, high),
 points, XtOffsetOf(Point, low),
 XtNumber(points));

8.3.3 Changing Data in Place
To change the error values of an ErrorPlot, you can pass a new array to the widget
with XiErrorPlotSetErrors() or a related function, or, if the number of points remains
the same, you can simply change the values in the existing array. If you take this latter
course, you must notify the ErrorPlot widget of the change by calling XiErrorPlot-
DataChanged(), because the widget will have no other way of detecting it.

void XiErrorPlotDataChanged(Widget w);

w The ErrorPlot widget that has had its data changed. Calling this function
will cause that widget to extract and display new error values from the
application data structures.

Note also that if the data point value changed at the same time as the error values, you
will probably also want to call XiLinePlotDataChanged().
132 GraphPak Programmer’s Reference Manual

The ErrorPlot Widget 133

134 GraphPak Programmer’s Reference Manual

The BarPlot Widget

The BarPlot widget displays data by plotting vertical rectangles between the origin of
the Y axis and the Y data point. Resources allow you to specify a fill pattern and a fill
color for the bar, as well as the color and width of the lines used to outline the bar.
Other resources control the drawing of shadows for each bar. You specify only the Y
coordinate of each data point; bars are assumed to be evenly spaced in the X dimen-
sion and there are resources that let you specify the first X value and the interval
between values on the X axis. There are resources to specify the width of each bar,
and an offset to the left or right of the X data point. Multiple BarPlot widgets in a
Plotter can automatically cluster themselves into groups at each X data point, or can
automatically stack themselves at each point.

BarPlot Synopsis
Class Name: XiBarPlot
Class Hierarchy:RectObj → XiPlot → XiBarPlot
Header File: <Xi/BarPlot.h>
Class Pointer: xiBarPlotWidgetClass
Constructor: XiCreateBarPlot (Widget parent, String name,

 ArgList args,

 Cardinal num_args);

This chapter explains how to create BarPlot widgets, documents the resources that
control BarPlot appearance, grouping and stacking, and explains the functions and
resources that specify the data to be plotted.

9

GraphPak Programmer’s Reference Manual 135

9.1 Creating a BarPlot
You can create a BarPlot widget with the function XiCreateBarPlot(), which is a stan-
dard Motif-style widget constructor. If you prefer to use XtCreateWidget() or XtVa-
CreateWidget(), the class pointer for the BarPlot widget is xiBarPlotWidgetClass.
Both the constructor function and the class pointer are declared in the header file <Xi/
BarPlot.h>.
Example 9-1 demonstrates both methods of creating the widget. Don't forget that you
must manage any widgets you create with XtManageChild() or XtManageChildren().

Example 9-1. Creating BarPlot Widgets

#include <Xi/Plotter.h> /* always include this */
#include <Xi/BarPlot.h> /* declares constructor and class pointer*/

Widget plotter; /* assume this is already created */
Widget bar1, bar2;
Arg args[10];
int i;

XiPlotterDisableRedisplay(plotter); /* don't refresh for now */

/* XiCreateBarPlot() method */
i = 0;
XtSetArg(args[i], XmNlegendName, "Widget Sales"); i++;
XtSetArg(args[i], XmNfillPattern, XiFillPatternGray1);
bar1 = XiCreateBarPlot(plotter, "widgets", args, i);
XtManageChild(bar1);

/* class pointer method */
XtVaCreateManagedWidget("gadgets", xiBarPlotWidgetClass, plotter,
 XmNlegendName, "Gadget Sales",
 XmNfillPattern, XiFillPatternGray3,
 NULL);
XiPlotterEnableRedisplay(plotter); /* turn updating back on */

9.2 BarPlot Resources
The BarPlot widget has resources that control its fill color and fill pattern, line color
and width, shadows, bar grouping and stacking, and the data points that it plots. These
resources are summarized in Table 9-1 and are documented in detail in the subsec-
tions below. For convenience, Table 9-1 also appears in the quick reference section at
the end of this manual.
136 GraphPak Programmer’s Reference Manual

9.2.1 Bar Color and Pattern
The BarPlot widget fills its bars with a solid color by default. You can specify this
color, and can also specify a fill pattern to use instead of a solid color. The following
resources control how the bars are filled:

XmNfillColor
The solid color to fill the bars with, or the foreground color of the fill pattern. If
you do not set this resource, its value is inherited from the XmNforeground
resource of the parent Plotter widget.

XmNfillBackground
The background color of the pattern used to fill the bars of the BarPlot. If XmN-
fillPattern is XiFillPatternSolid, or XmNfillOpaque is False, then this resource is
not used. If you do not set this resource, its value is inherited from the XmNplo-
tAreaColor resource of the parent Plotter widget. This default value will make
patterned bars appear transparent.

XmNfillPattern
The pattern to be used to fill each bar of the BarPlot. The default is the special
value XiFillPatternSolid which specifies bars should be drawn with a solid color.
Chapter 3, Plotter Data Types and Resources explains the XiFillPattern abstrac-
tion, and that chapter and the quick reference section at the end of this manual
contain lists of the predefined fill patterns. You can also define custom fill pat-
terns of your own; Chapter 18, Defining Custom Fill Patterns explains how to do
this.

XmNfillOpaque
A Boolean that specifies whether pattern fills should be "opaque" or "transpar-
ent". With an opaque fill, the BarPlot widget draws both the foreground and
background bits of the pattern, so that anything under the bars is erased. This is
the default, and is almost always the appropriate setting for this resource. If you
set it to False, then only the foreground bits of the fill pattern will be drawn, and
anything previously drawn underneath the bars (such as grid lines) will show
through.
The BarPlot Widget 137

Table 9-1. BarPlot Resources

aInherited from the Plotter XmNforeground resource.
bInherited from the Plotter XmNplotAreaColor resource.
cDo not set these resources when using a DBPak subclass of this widget.

9.2.2 Bar Outline
The BarPlot widget always outlines each bar with a line drawn on the left, top, and
right sides of the bar. (The X axis, or the origin line drawn by the Y axis serves as a
the bounding line for the bottom of each bar.) The following two resources set the
color and width of this outline:

Name Class Type Default CSG Pg
FillPattern
XmNfillColor XmCForeground Pixel XmNforegrounda CSG 137
XmNfillBackground XmCBackground Pixel XmNplotAreaColorb CSG 137
XmNfillPattern XmCFillPattern FillPattern XiFillPatternSolid CSG 137
XmNfillOpaque XmCFillOpaque Boolean TRUE CSG 137
Lines
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 139
XmNlineWidth XmCLineWidth Dimension 0 CSG 139
Shadows
XmNdrawShadow XmCDrawShadow Boolean FALSE CSG 139
XmNshadowColor XmCForeground Pixel XmNforegrounda CSG 139
XmNshadowPattern XmCShadowPattern FillPattern XiFillPatternGray3 CSG 139
XmNshadowXOffset XmCShadowOffset Position 4 CSG 139
XmNshadowYOffset XmCShadowOffset Position 4 CSG 139
Bars
XmNbarSize XmCBarSize Short 80 CSG 142
XmNbarPosition XmCBarPosition Short 0 CSG 142
XmNstacked XmCStacked Boolean FALSE CG 142
XmNorigin XmCOrigin Double 0.0 CSG 142

Datac

XmNnumValues XmCNumValues Cardinal 0 CSG 143
XmNxMin XmCXMin Double 1.0 CSG 143
XmNxInterval XmCXInterval Double 1.0 CSG 143
XmNvalues XmCValues Pointer NULL CSG 143
XmNvalueType XmCValueType PlotDataType XiPlotDataDouble CSG 143
XmNvalueSize XmCValueSize Cardinal sizeof(double) CSG 143
XmNvalueOffset XmCValueOffset Cardinal 0 CSG 143
XmNvalueConstant XmCValueConstant Double 0.0 CSG 143
XmNvalueMultiplier XmCValueMultiplier Double 1.0 CSG 143
138 GraphPak Programmer’s Reference Manual

XmNlineColor
The color of the bar outline. If you do not set this resource, its value is inherited
from the XmNforeground resource of the parent Plotter widget.

XmNlineWidth
The width, in pixels, of the outline drawn around each bar. The default is 0,
which is a special value that specifies efficiently-drawn lines one pixel wide.

9.2.3 Bar Shadows
Like the LinePlot widget, the BarPlot can draw shadows underneath each of its bars.
These shadows give BarPlots a three-dimensional effect that is visually striking for
presentation graphics. For scientific and engineering data, you should probably
refrain from using shadows, because they distract from the actual data that is being
displayed.

XmNdrawShadow
A Boolean that specifies whether shadows should be drawn under the bars of this
BarPlot. The default is False.

XmNshadowColor
The color of the shadow to draw under each plot. If you do not set this resource,
its value is inherited from the XmNforeground resource of the parent Plotter wid-
get. Note that when this shadow color is combined with the stipple pattern speci-
fied by XmNshadowPattern, the apparent shadow color that results can be
significantly lighter than the shadow color alone would be.

XmNshadowPattern
The fill pattern to use as a stipple for the shadow. The default is
XiFillPatternGray3, which is a 50% gray pattern. The gray fill patterns all make
good shadow stipples, but many of the other pre-defined patterns are not appro-
priate for this use.

XmNshadowXOffset, XmNshadowYOffset
The X and Y offsets, in pixels, of the bars' shadows from the bars themselves.
The default for each of these resources is 2 pixels. Larger values increase the sep-
aration between bar and shadow, making the bar appear three-dimensionally fur-
ther above the plotter background. Negative values are legal for both of these
resources; varying their values moves the position of the imaginary light source
that casts the shadows.
The BarPlot Widget 139

9.2.4 Bar Positioning, Grouping and Stacking
The BarPlot widget requires its bars to be evenly spaced along the X axis. By default,
it centers its bars over each data point on the X axis, and makes them wide enough to
take up 80% of the space between data points. The position and width of the bars are
controlled by the XmNbarSize and XmNbarPosition resources which are described
below, and are pictured in Figure 9-1.

Figure 9-1. The XmNbarSize and XmNbarPosition resources

When you display more than one BarPlot in the same Plotter widget, you can use the
XmNbarSize and XmNbarPosition resources to adjust the position and width of each
of the bars so that they do not overlap at any data point. Usually, however, there is no
need to set the position and size of BarPlot widgets--when multiple BarPlot widgets
appear in the same Plotter, they can automatically arrange themselves to share the
available space. If two or more BarPlot children of the same Plotter widget have the
same number of data points, spaced at the same interval on the X axis, and have the
same values for their XmNbarPosition and XmNbarSize resources, (when all have the
default values, for example) then they are assumed to be a "group", and those position
and size resources apply to the group as a whole. Grouped bars are placed side-by-
side within in the available space specified by their XmNbarSize resource; there is no
horizontal spacing between them.
The only time you need to use the XmNbarSize and XmNbarPosition resources, then,
is when you want to position bars that are not grouped so that they do not overlap one
another. Suppose, for example, that you wanted to display six different bar plots in a
Plotter widget. If the variables you were plotting broke naturally down into two dis-
tinct types, then it might be useful to arrange them in two groups positioned to the left
and the right of each X data point, with a small horizontal space between them. You
could arrange this by specifying one pair of size and position values for three of the
140 GraphPak Programmer’s Reference Manual

plots and different pair of values for the other three plots. The plots that shared values
would automatically arrange themselves, but the two groups would be positioned
independently. Figure 9-2 illustrates a case like this, using two groups of two bars.
One group of bars is stacked, as explained below.

Figure 9-2. Independently positioned groups of bars

When multiple BarPlot widgets in a Plotter have the same number of data points,
share the same X values for those points, and have the same values of the XmNbar-
Size and XmNbarPosition resources, they form a "group", as described above, and
are, by default, arranged side by side. If the XmNstacked resource is set to True on
each bar in the group, however, the bars will be stacked, as shown in Figure 9-2 to
form a bar which has a height that is the sum of the heights of the individual bars. If
the bars have different patterns or colors, then this total height will appear as a stack
of bars, each making its contribution to the total. This is the simplest way to under-
stand stacked bars--just as a different way of arranging a related group of bars. Note
that BarPlot widgets must have matching values for their XmNstacked resource in
order to be members of the same group.
The resources that control bar positioning are documented below:
The BarPlot Widget 141

XmNbarSize
The width of a bar, or of a group of related bars (groups of bars are explained in
the paragraphs above) as a percentage of the available space. The default value
for this integer resource is 80, which specifies that the bar or group of bars should
use 80% of the pixels between two adjacent data points on the X axis.

XmNbarPosition
The position of a bar, or group of bars within the space available to it. The avail-
able space is the region centered on the X data point and extending half way to
the adjacent data points on the left and the right. The default value for this
resource is 0 which indicates that the bar, or group of bars, should be centered
over the data point. Legal values for this resource are integers between -50 and
50. If you add 50 to the value of this resource, then it becomes the position of the
center of the bar or group, expressed as a percentage from 0 to 100 of the avail-
able space. Note, however, that because this resource specifies where the center
of the bar or group will go, you must also take XmNbarSize into account when
setting this value: XmNbarPosition plus or minus half of XmNbarSize must be
between -50 and 50.

XmNstacked
A Boolean that specifies whether the bars in a group (groups of bars are
explained in the introductory paragraphs of this subsection) will be stacked one
on top of another. The default is False, which specifies that grouped bars will be
arranged side-by-side.

XmNorigin
The position on the Y axis from which the bars extend up or down. The default of
0.0 is the correct choice for most data, but for some data sets there will be a more
natural choice.

9.2.5 Data Resources
The BarPlot widget requires you to specify only the Y values for the bars--it assumes
that the bars are evenly spaced along the X axis. There are two resources that specify
these X values:

XmNxMin
The X coordinate of the first bar in the plot. The default value is 1.0.
142 GraphPak Programmer’s Reference Manual

XmNxInterval
The distance between adjacent bars on the X axis. The default value is 1.0.

Note that many bar charts uses textual labels on the X axis, rather than numeric labels.
In this case, the values you specify for XmNxMin and XmNxInterval are not them-
selves important; what is important is only that they match the bounds of the X axis,
and that the labels on the Axis are aligned with the bars. Also note that the default
value for XmNxMin is 1.0, not 0.0, which is the default for the various XiPlotData
constant resources. Because the bars of a BarPlot take up space along the Axis, you
should not set your X axis minimum to the same value as XmNxMin, or a portion of
the bar width may be truncated (depending on XmNbarPosition and XmNbarSize, of
course)
The number of bars in the plot, and the Y value for each bar are specified by a full set
of seven XiPlotData resources, listed in Table 9-1. These resources, XmNnumValues,
XmNvalues, XmNvalueType, XmNvalueSize, XmNvalueOffset, XmNvalueMulti-
plier, and XmNvalueConstant, are not described in detail here. Chapter 4, Plot Data
Representation describes the XiPlotData abstraction and makes the meaning of each
of these resources evident.
When BarPlot data is stored in certain commonly used forms, the BarPlot widget pro-
vides convenience functions for specifying data which are often easier to use than
these resources. The next section describes these functions.

9.3 Specifying BarPlot Data
The most general way to specify data for a BarPlot widget is with the XiPlotData
resources described in the previous section. It is often easier, however, to use one of
the convenience functions provided by the BarPlot widget for this purpose. The sub-
sections below document these functions.

9.3.1 Arrays of Doubles, Floats, and Ints
The simplest of the BarPlot convenience functions allow you to specify the Y values
for the bars as arrays of double, float, or int. They also provide xmin and xinterval
arguments that specify the X value for each bar in the same way that the XmNxMin
and XmNxInterval resources do. These functions are shown in Figure 9-3.
The BarPlot Widget 143

void XiBarPlotSetDoubleValues(Widget w, double xmin, double xinterval,

 double *values, Cardinal num);

void XiBarPlotSetFloatValues(Widget w, double xmin, double xinterval,

 float *values, Cardinal num);

void XiBarPlotSetIntValues(Widget w, double xmin, double xinterval,

 int *values, Cardinal num);

w The BarPlot widget that is having its data values set.
xmin The X coordinate of the first bar in the plot.
xinterval

The distance between bars along the X axis.
values

An array of Y values for the bars of the plot. This array is of type double,
float, or int, depending on the function.

num

The number of bars in the plot. There must be at least this many elements
in the values array.

Figure 9-3. Simple functions for specifying BarPlot data

void XiBarPlotSetValues(Widget w, double xmin, double xinterval,

 XtPointer vals, XiPlotDataType type,

 Cardinal size, Cardinal offset, Cardinal num);

w The BarPlot widget that is having its data set.
xmin, xinterval

The X coordinate of the first bar, and the X interval between bars.
vals, type, size, offset

An array of structures containing the bar values, the type of each value, the
size of each structure, and the offset of the value within the structure.
These arguments correspond to the BarPlot XiPlotData resources.

num

The number of bars in the plot. The vals array must have at least this many
elements in it.

Figure 9-4. XiBarPlotSetValues()
144 GraphPak Programmer’s Reference Manual

9.3.2 Specifying Data in Structures
Sometimes, you may want to produce a bar chart from values that are stored in struc-
tures, rather than in simple arrays, or are of some type other than double, float, or int.
In these cases, you can use XiBarPlotSetValues() to specify BarPlot data. This func-
tion has arguments that correspond to all of the X and Y data resources, except for
XmNvalueConstant and XmNvalueMultiplier. This means it provides all the flexibil-
ity of the data resources, except for the linear transform capability. The signature for
XiBarPlotSetValues() is shown in Figure 9-4.

9.3.3 Changing Data in Place
To change the data displayed by a BarPlot widget, you can use one of the functions
described above to pass new data to the widget, you can set the data resources to new
values, or, if the number of new bars is the same as the old, you can simply overwrite
the old data with the new data. If you do this, you must notify the widget that its data
has changed by calling XiBarPlotDataChanged().

void XiBarPlotDataChanged(Widget w);

w The BarPlot widget that has had its data values changed in place.

Calling this function will cause the widget to reread and redisplay its data, extracting
it from your application data structures however you previously specified.
The BarPlot Widget 145

146 GraphPak Programmer’s Reference Manual

0

The HistoPlot Widget

The HistoPlot widget is a subclass of BarPlot that displays histograms. A regular bar
plot simply plots the data points you specify. A histogram is different: instead of dis-
playing the data itself, it displays the distribution of the data. In a histogram, the X
axis is divided into intervals and a bar is drawn for each of those intervals. The bar
displays the number of data points that fall within the interval. (These intervals are
often called "bins".) Histograms are useful, for example, when studying test scores,
the size of network packets, or performing any other statistical analysis on collected
data.

HistoPlot Synopsis
Class Name: XiHistoPlot
Class Hierarchy:RectObj → XiPlot → XiHistoPlot
Header File: <Xi/HistoPlot.h>
Class Pointer: xiHistoPlotWidgetClass

Constructor: XiCreateHistoPlot (Widget parent,String name,

 ArgList args,

 Cardinal num_args);

Because the HistoPlot widget is a subclass of BarPlot, it inherits all the resources of
that widget class that control the size, position, color, fill pattern, and so on for the
bars. New resources let you specify the size and position of the "bins". Other
resources let you specify the raw data to be analyzed--the HistoPlot widget will auto-
matically count the number of these raw data values that fall into each bin.
This chapter explains how to create a HistoPlot widget, how to specify raw data for
the histogram, and the resources that control the histogram.

1

GraphPak Programmer’s Reference Manual 147

10.1 Creating a HistoPlot
You can create a HistoPlot with the function XiCreateHistoPlot(), which is a standard
Motif-style widget constructor, or with XtCreateWidget() or XtVaCreateWidget()
with the widget class pointer xiHistoPlotWidgetClass. Both the constructor function
and the widget class pointer are declared in <Xi/HistoPlot.h>.
Example 10-1 shows how you might create a HistoPlot widget:

Example 10-1. Creating a HistoPlot widget

#include <Xi/Plotter.h> /* always include this */
#include <Xi/HistoPlot.h> /* declares constructor and class pointer
*/

Widget plotter; /* assume this is already created */
Widget histogram;
static double min = 1.0;
static double max = 12.0;
static double size = 1.0;

histogram = XtVaCreateManagedWidget("histogram", xiHistoPlotWidget-
Class,
 plotter,
 XmNmin, &min,
 XmNmax, &max,
 XmNbinSize, &size,
 NULL);

10.2 HistoPlot Resources
The HistoPlot widget inherits all the resources of the BarPlot widget. It defines five
new resources that specify how the data are to be counted into bins, and a set of
XiPlotData resources for specifying the data. The HistoPlot widget also overrides the
default value of the BarPlot XmNbarSize resource, setting it to 100--this means that,
by default, the bars in a histogram will touch one another.
The new HistoPlot resources are summarized in Table 10-1 and are documented
below. Note that a number of these new resources are of type double, and special
techniques are required to set them. (See Chapter 3, Plotter Data Types and Resources
.) Chapter 9, The BarPlot Widget documents the resources of the BarPlot widget. You
will need to use these resources to specify such things as bar color, fill pattern, spac-
ing, and so on. For convenience, tables of BarPlot and HistoPlot resources appear in
the quick reference section at the end of this manual.
148 GraphPak Programmer’s Reference Manual

Table 10-1. HistoPlot Resources

aAn unspecified value; will be computed based on XmNbinSize.
bThis is a BarPlot resource; HistoPlot changes the default value.
cDo not set these resources when using a DBPak subclass of this widget.

10.2.1 Boundary and Bin Resources
The HistoPlot widget has five resources that specify how the data values are to be
counted into their "bins":

XmNmin
A double resource that specifies the lower boundary of the first bin in the plot.
Any data values that are less than XmNmin will not be counted in any of the bins.
The default is 0.0.

XmNmax
A double resource that specifies the upper boundary of the last bin in the plot.
Any data values that are greater than XmNmax will not be counted in any of the
bins. The default is 100.0.

XmNcomputeBounds
A Boolean that specifies whether the HistoPlot widget should automatically com-
pute values for XmNmin and XmNmax based on the minimum and maximum
specified data values. The default is False. This resource can be useful if you do
not have any idea about the distribution of the data to begin with, and when there

Name Class Type Default CSG Pg
Bounds
XmNmin XmCMin Double 0.0 CSG 149
XmNmax XmCMax Double 100.0 CSG 149
XmNcomputeBounds XmCComputeBounds Boolean FALSE CSG 149
Bins
XmNnumBins XmCNumBins Short -1a CSG 150
XmNbinSize XmCBinSize Double 10.0 CSG 150
XmNbarSizeb XmCBarSize Short 100 CSG

Datac

XmNnumRawValues XmCNumValues Cardinal 0 CSG 150
XmNrawValues XmCValues Pointer NULL CSG 150
XmNrawValueType XmCValueType PlotDataType XiPlotDataDouble CSG 150
XmNrawValueSize XmCValueSize Cardinal sizeof(double) CSG 150
XmNrawValueOffset XmCValueOffset Cardinal 0 CSG 150
XmNrawValueConstant XmCValueConstant Double 0 CSG 150
XmNrawValueMultiplier XmCValueMultiplier Double 1.0 CSG 150
The HistoPlot Widget 149

are not natural lower and upper bounds that can be placed on the data. Setting this
resource to True gives you a kind of autoscaling of your data so that it takes up all
the available horizontal space in the Plotter widget, but is not always appropriate.
When displaying a distribution of test scores percentages, for example, you prob-
ably want the lower bound to be 0.0, even if the minimum score on the test was
40.

XmNnumBins
The number of equal bins that the interval between XmNmin and XmNmax
should be divided into. The default value of this resource is -1, a special value
that indicates that the number of bins should instead be computed from the XmN-
binSize resource. If you do set this resource to something other than the default,
then the XmNbinSize resource will be ignored.

XmNbinSize
A double resource that specifies how large each bin should be. The default value
of this resource is 10.0, but it is only used if the XmNnumBins resource is not set.
If that resource is set, then XmNbinSize is computed from it. If you use XmNbin-
Size, then you should be sure that the interval between XmNmin and XmNmax is
evenly divisible by XmNbinSize; if it is not, the last bin in the plot will be "nar-
rower" than the others (though the bar that represents it on the screen will be as
wide as all the others, of course).

10.2.2 Data Resources
The HistoPlot has a standard complement of XiPlotData resources for specifying the
raw data that is to be counted into the bins of the histogram: XmNnumRawValues,
XmNrawValues, XmNrawValueType, XmNrawValueSize, XmNrawValueOffset,
XmNrawValueConstant, and XmNrawValueMultiplier. You can specify data values
with these resources as explained in Chapter 4, Plot Data Representation. The His-
toPlot widget also provides convenience functions for setting data values that may
often be more convenient than using these values. These functions are documented in
the section below.
These HistoPlot data resources have the "rawValue" prefix to distinguish them from
the "value" resources of the BarPlot superclass. When using the HistoPlot widget, you
should never set the data resources of the BarPlot widget; the HistoPlot widget will
analyze the "raw values" into bins, and then set the BarPlot data resources itself to
display the contents of each bin.
150 GraphPak Programmer’s Reference Manual

10.3 Specifying HistoPlot Data
The most general way to specify raw data to be sorted and displayed by a HistoPlot
widget is with the XiPlotData resources described above. The HistoPlot widget also
provides convenience routines, that are often easier to use than those resources. They
are described in the subsections below.

10.3.1 Arrays of Doubles, Floats, and Ints
The simplest of the HistoPlot convenience functions allow you to specify raw data in
a single array of double, float, or int values. These functions are shown in Figure 10-
1.

void XiHistoPlotSetDoubleValues(Widget w, double *values, Cardinal
num);

void XiHistoPlotSetFloatValues(Widget w, float *values, Cardinal num);

void XiHistoPlotSetIntValues(Widget w, int *values, Cardinal num);

w The HistoPlot widget that is having its raw data specified.
values An array of raw data to be displayed as a histogram by the widget. The

elements of the array are of type double, float, or int, depending on the
function.

num The number of values to be included in this histogram analysis. There
must be at least this many elements in the values array. Note that this is not
the number of bars that will appear in the plot.

Figure 10-1. Specifying HistoPlot data in simple arrays

Note that these functions specify only the raw data for the HistoPlot. You must still
specify the bounds for the histogram, and the number of bins or the bin size. You do
not have to specify any X or Y data for this BarPlot superclass, however; the His-
toPlot uses the raw data, and the boundary and bin specifications to set the BarPlot
resources appropriately.

10.3.2 Specifying Data from Structures
Sometimes the raw data for a histogram may be stored as a field within a larger struc-
ture, or may be stored as some type other than double, float, or int. In this case, you
can specify that data with the function XiHistoPlotSetValues(). This function has
resources that correspond to each of the raw data resources of the HistoPlot except for
XmNrawDataConstant and XmNrawDataMultiplier. This means that this conve-
nience function has all the flexibility of the data resources, except for the linear trans-
The HistoPlot Widget 151

form capability they allow. The signature of XiHistoPlotSetValues() is shown in
Figure 10-2.

void XiHistoPlotSetValues(Widget w,

 XtPointer vals, XiPlotDataType type,

 Cardinal size, Cardinal offset, Cardinal num);

w The HistoPlot widget that is having its raw data set.
vals, type, size, offset

An array of structures containing the raw data values, the type of each
value, the size of each structure, and the offset of the value within the
structure. These arguments correspond to the HistoPlot XiPlotData
resources.

num The number of elements in the vals array that are to be used in the histo-
gram. vals must have at least this many elements.

Figure 10-2. XiHistoPlotSetValues()

10.3.3 Changing Data in Place
To change the raw data used by a HistoPlot widget, you can use one of the functions
described above to pass new raw data values to the widget, or you can set the XiPlot-
Data resources to new values, or, if the number of raw data values remains the same,
you can simply overwrite the old data with the new data. If you do this, you must
notify the widget that its data has changed by calling XiHistoPlotDataChanged().

void XiHistoPlotDataChanged(Widget w);

w The HistoPlot widget that has had its data values changed in place.

Calling this function will cause the widget to re-read, re-analyze, re-display its data,
extracting it from your application data structures however you previously specified.
152 GraphPak Programmer’s Reference Manual

The HistoPlot Widget 153

154 GraphPak Programmer’s Reference Manual

1

The PiePlot Widget

The PiePlot widget is used to display "slices" in a pie chart. This kind of graph is use-
ful to display the proportional contribution of a number of quantities that sum to some
total value. It is useful to display business income and expenditures by category, for
example. Human perception seems to be good at understanding angles, and so this
angular representation of values is a good way to display the relative size of values.
Because pie charts are weighted (there are always 360 degrees in a pie, no matter
what the quantities being displayed are) they can also be useful when the values being
displayed are too large or too small for a useful intuitive understanding.

PiePlotPlot Synopsis
Class Name: XiPiePlot
Class Hierarchy:RectObj → XiPlot → XiPiePlot
Header File: <Xi/PiePlot.h>
Class Pointer: xiPiePlotWidgetClass

Constructor: XiCreatePiePlot (Widget parent, String name,

 ArgList args,

 Cardinal num_args);

The PiePlot widget is a little different from other Plot widgets--while the LinePlot and
the BarPlot widgets display complete line plots and bar charts, each PiePlot widget
displays only a single wedge of a pie chart. What this means is that each wedge of a
pie chart can have its own fill pattern, color, and, importantly, its own entry in the
Plotter legend. Rather than supplying an array of data values for the pie chart as a
whole, each PiePlot widget has a single XmNvalue resource. The values for each
PiePlot in the Plotter are added together, and the size of each pie slice is determined
by the contribution of each value to the whole. While this use of multiple PiePlot wid-
gets to create a single pie chart may seem strange at first, it actually makes it simpler
to create pie charts, because there is no need for awkward resources like arrays of
strings or arrays of fill patterns.
As mentioned above, each PiePlot wedge can have its own color and/or fill pattern.
Additionally, each wedge will be outlined with a line of the color and width you spec-
ify. Wedges can have shadows, much like bar plot and line plot shadows, and individ-
ual wedges can be "exploded" slightly away from the center of the pie for emphasis.

1

GraphPak Programmer’s Reference Manual 155

As with all Plot types, each PiePlot can have an entry in the legend with any appropri-
ate string. PiePlots can also have a string placed near their wedge. Resources control
the font or fonts, color and position of this label, and the label string may optionally
contain a printf()-style substitution which will be replaced with the percentage the
wedge contributes to the whole, or the absolute value represented by the wedge.
Although it is common to see "3D" pie charts that have been rotated so that the circu-
lar pie becomes elliptical, the PiePlot widget cannot display this kind of chart--rotat-
ing the pie in this way distorts the data it is supposed to represent, and so is not a valid
display mode. The PiePlot shadows do provide a three dimensional appearance and
can add impact to a pie chart while still keeping it circular and undistorted.
The following sections show how to create PiePlot widgets, and explain each of the
PiePlot resources.

11.1 Creating PiePlot Widgets
You can create a PiePlot widget with the function XiCreatePiePlot(), which is stan-
dard Motif-style widget constructor, or you can use XtCreateWidget() or XtVaCreate-
Widget() with the widget class pointer xiPiePlotWidgetClass. Both the constructor
function and the widget class pointer are declared in the header <Xi/PiePlot.h>.
Example 11-1 demonstrates how you might create PiePlot widgets. Since you always
need more than one PiePlot widget to make an interesting piechart, creating the wid-
gets in a loop, as shown in this example, is often a useful technique.
The example points out another difference between the PiePlot widget and other Plot
types: the X and Y axes are not meaningful for piecharts. When you are displaying
PiePlot widgets the easiest thing to do, as in the example, is simply to unmanage the
X and Y axes. This will make them disappear. Sometimes, when displaying presenta-
tion graphics, you may want to keep the axes and their grid, simply because they add
interest to the display. When you do this, you will probably want to get rid of the Axis
titles, labels, tic marks, and origin by setting the Axis resources XmNtitle, XmNdraw-
Labels, XmNmarkLength, XmNsubmarkLength, and XmNdrawOrigin. You might
also want to use XiAxisSetMarks() to explicitly control the distance between the lines
of the grid and subgrid.
156 GraphPak Programmer’s Reference Manual

Example 11-1. Creating a piechart with PiePot

#include <Xi/Plotter.h> /* always include this */
#include <Xi/PiePlot.h> /* declares constructor and class pointer */

Widget plotter; /* assume this is already created */
Widget wedges[5];
char name[10];
int i;

/* data is federal government income for fiscal 1991, in billions of $*/
static double values[] = {316, 369, 74, 74, 221};
static String legends[] = {
 "FICA taxes, etc.",
 "Personal income taxes",
 "Excise taxes, etc.",
 "Corporate income taxes",
 "Borrowing"
};
static XiFillPattern patterns[] = {
 XiFillPatternGray1, XiFillPatternGray2,
 XiFillPatternGray3, XiFillPatternGray4,
 XiFillPatternGray5,
};

for(i=0; i < XtNumber(wedges); i++) {
 sprintf(name, "wedge%d", i);
 wedges[i] = XtVaCreateWidget(name, xiPiePlotWidgetClass, plotter,
 XmNvalue, &values[i], /* a double
 resource */
 XmNlegendName, legends[i],
 XmNfillPattern, patterns[i],
 XtVaTypedArg, XmNlineColor, XmRString,
 "maroon", 7,
 XmNlabel, "%.0g%%",
 NULL);
}

/* Plots all have to be managed, or they won't appear */
XtManageChildren(wedges, XtNumber(wedges));

/* Pie charts don't need axes, so we hide them by unmanaging. */
XtUnmanageChild(XiPlotterXAxis(plotter));
XtUnmanageChild(XiPlotterYAxis(plotter));
The PiePlot Widget 157

Table 11-1. PiePlot Resources

aInherited from the Plotter XmNforeground resource.
bInherited from the Plotter XmNplotAreaColor resource.
cInherited from the Plotter XmNfontList resource.
dInherited from the Plotter XmNpsFontList
edWhen an XmString resource is unset, its value is created from the corresponding String resource, using a font
tag derived from the corresponding style and size resources.
fThis resource is ignored except for the first wedge in a pie chart.
gDo not set this resource when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
Fill Pattern
XmNfillColor XmCForeground Pixel XmNforegrounda CSG 159
XmNfillBackground XmCBackground Pixel XmNbackgroundb CSG 159
XmNfillPattern XmCFillPattern FillPattern XiFillPatternSolid CSG 159
XmNfillOpaque XmCFillOpaque Boolean TRUE CSG 159
Lines
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 160
XmNlineWidth XmCLineWidth Dimension 0 CSG 160
XmNdrawRadius XmCDrawRadius Boolean TRUE CSG 160
Labels
XmNlabelFontList XmCFontList XmFontList XmNfontListc CSG 161
XmNlabelPSFontListf XmCPSFontList XiPSFontList XmNpsFontListd CSG 161
XmNlabelString XmCLabelString XmString NULLe CSG 162
XmNlabel XmCLabel String NULL CSG 162
XmNlabelSize XmCFontSize Dimension 12 CSG 162
XmNlabelStyle XmCFontStyle String NULL CSG 162
XmNlabelColor XmCForeground Pixel XmNforegrounda CSG 163
XmNlabelRadius XmCLabelRadius Dimension 38 CSG 163
XmNshowValue XmCShowValue Boolean FALSE CSG 163
Shadows
XmNdrawShadow XmCDrawShadow Boolean FALSE CSG 160
XmNshadowColor XmCForeground Pixel XmNforegrounda CSG 160
XmNshadowPattern XmCShadowPattern FillPattern XiFillPatternSolid CSG 161
XmNshadowOpaque XmCShadowOpaque Boolean TRUE CSG 161
XmNshadowXOffset XmCShadowOffset Position 4 CSG 161
XmNshadowYOffset XmCShadowOffset Position 4 CSG 161
Layout
XmNxPosition XmCXPosition Dimension 50 CG 164
XmNyPosition XmCYPosition Dimension 50 CG 164
XmNradius XmCRadius Dimension 35 CG 164
XmNexplodeRadius XmCExplodeRadius Dimension 0 CSG 165
XmNstartAnglef XmCStartAngle Position 90 CG 165

Data
XmNvalueg XmCValue Double 0.0 CSG 163
158 GraphPak Programmer’s Reference Manual

11.2 PiePlot Resources
The PiePlot widget has resources that control the color and fill pattern of the wedge,
the way the wedge is outlined, shadowed, and labeled. Unlike other Plot types, how-
ever, the PiePlot widget only has one resource for the data it is to display, rather than
one or more sets of XiPlotData resources. This is because a PiePlot widget only dis-
plays a single slice of a pie chart, and there is no need for an array of data values for
each widget.
The PiePlot widget resources are summarized in Table 11-1, and are explained in the
following subsections.

11.2.1 PiePlot Fill Pattern
Like the BarPlot widget, the PiePlot widget fills its wedge with a specified color or
pattern. These resources specify how the wedge is filled:

XmNfillColor
The solid color of the wedge, or the foreground color of the fill pattern for the
wedge. The default value for this resource is inherited from the XmNforeground
resource of the parent Plotter widget.

XmNfillBackground
The background color of the pattern used to fill the PiePlot wedge. If XmNfill-
Pattern is XiFillPatternSolid, or XmNfillOpaque is False, then this resource is
not used. If you do not set this resource, its value is inherited from the XmNplo-
tAreaColor resource of the parent Plotter widget. This default value will make
patterned wedges appear transparent.

XmNfillPattern
The pattern to be used to fill the PiePlot wedge. The default is the special value
XiFillPatternSolid which specifies that the wedge should be filled with a solid
color rather than a pattern. Chapter 3, Plotter Data Types and Resources explains
the XiFillPattern abstraction, and that chapter and the quick reference section at
the end of this manual contain lists of the predefined fill patterns. You can also
define custom fill patterns of your own; Chapter 18, Defining Custom FIll Pat-
terns explains how to do this.

XmNfillOpaque
A Boolean that specifies whether pattern fills should be "opaque" or "transpar-
ent". With an opaque fill, the PiePlot widget draws both the foreground and back-
ground bits of the pattern, so that anything under the bars is erased. This is the
default, and is almost always the appropriate setting for this resource. If you set it
to False, then only the foreground bits of the fill pattern will be drawn, and any-
The PiePlot Widget 159

thing previously drawn underneath the bars (such as grid lines) will show
through.

11.2.2 PiePlot Outline
The PiePlot widget always draws an outline around the outside of each wedge, and
optionally outlines the sides of each wedge. These resources specify how the outlin-
ing is done:

XmNlineColor
The color of the line that outlines the PiePlot wedge. If this resource is not set, it
inherits the value of the XmNforeground resource of the parent Plotter widget.

XmNlineWidth
The width, in pixels, of the outline drawn around each wedge. The default is 0,
which is a special value that specifies efficiently-drawn lines one pixel wide.

XmNdrawRadius
A Boolean resource that specifies whether the PiePlot widget should draw the
radius lines from the center of the pie to its outside arc, or whether it should limit
its outlining to the arc alone. The default is True which specifies that the radius
lines should be drawn as part of the outline.

11.2.3 PiePlot Shadows
Each PiePlot wedge can be drawn with a shadow underneath it. This shadow gives a
3D effect to the pie chart and adds impact to presentation graphics, without distorting
the pie into an ellipse. The following resources specify the attributes of the wedge
shadow.

XmNdrawShadow
A Boolean resource that specifies whether a shadow should be drawn under the
BarPlot wedge. The default is False.

XmNshadowColor
The color of the shadow to draw under the wedge. If you do not set this resource,
its value is inherited from the XmNforeground resource of the parent Plotter wid-
get. Note that when this shadow color is combined with the stipple pattern speci-
fied by XmNshadowPattern, the apparent shadow color that results can be
significantly lighter than the shadow color alone would be.
160 GraphPak Programmer’s Reference Manual

XmNshadowPattern
The fill pattern to use as a stipple for the shadow. The default is
XiFillPatternGray3, which is a 50% gray pattern. The gray fill patterns all make
good shadow stipples, but many of the other pre-defined patterns are not appro-
priate for this use.

XmNshadowOpaque
A Boolean resource that specifies whether the shadow drawn under the PiePlot
wedge should be opaque or not. The default is True, which specifies that both the
foreground and the background bits of the shadow pattern will be drawn. The
background bits will be given the same color as the XmNplotAreaColor of the
Plotter, effectively erasing anything under the shadow. If you set this resource to
False, then only the foreground bits of the pattern will be drawn, and any any-
thing "under" the shadow (such as grid lines) will show through where the pattern
is not drawn.

XmNshadowXOffset, XmNshadowYOffset
The X and Y offsets, in pixels, of the BarPlot wedge's shadow from the wedge
itself. The default for each of these resources is 2 pixels. Larger values increase
the separation between wedge and shadow, making the wedge appear three-
dimensionally further above the plotter background. Negative values are legal for
both of these resources; varying their values moves the position of the imaginary
light source that casts the shadows.

11.2.4 PiePlot Labels
Each PiePlot wedge can have a label associated with it. The following resources con-
trol the font, contents, position, and color of the label:

XmNlabelFontList
The font or fonts in which the PiePlot label should be displayed. If this resource
is unspecified, its value is inherited from the parent Plotter's XmNfontList
resource.

XmNlabelPSFontList
The list of PostScript fonts to be used to display the PiePlot's label in hardcopy. If
no value is specified for this resource, its default value is inherited from the par-
ent Plotter XmNpsFontList resource. You need only specify this resource if
XmNlabelFontList contains fonts outside of the "standard" font families--Adobe
Times, Helvetica, Courier, New Century Schoolbook, and Symbol. See Section
3.3, Fonts and Displayed Text for information on specifying PostScript font lists.
The PiePlot Widget 161

XmNlabelString
The XmString label to be displayed by the PiePlot. If no XmString is specified
for this resource, then one will be created using the XmNlabel string, and a font
list tag constructed from the XmNlabelStyle and XmNlabelSize resources, as
described in Section 3.3, Fonts and Displayed Text. By using this XmNlabel-
String resource to specify an XmString directly, you get the flexibility to display
labels with multiple fonts. What you give up, however is the formatting of the
XmNlabel resource which allows you to automatically display the value or per-
centage of any PiePlot wedge in the label. Setting XmNlabelString will override
any value previously created from the XmNlabel string. If you query this
resource, the Plotter returns its private, internal copy of the XmString, which you
must not modify or free.

XmNlabel
The label to be drawn for the wedge, if no XmNlabelString is specified. Note that
this resource is an ordinary null-terminated character string, not a Motif
XmString. The default value is NULL which specifies that the wedge will be
unlabeled. The specified string may contain a single printf() substitution for a
double value. (i.e., a %g, %f or %e substitution, with any legal modifiers.)
Depending on the XmNshowValues resource, the PiePlot widget will replace this
substitution string with either the absolute value of the wedge's data, or the per-
centage that the wedge comprises of the whole.
Once the value or percentage has been substituted into the XmNlabel string, the
resulting formatted string is converted to an XmString using a font list tag con-
structed from the XmNlabelStyle and XmNlabelSize resources, and this newly
created XmString becomes the new value of the XmNlabelString resource. See
Section 3.3 for details.
Note that XmNlabel is not the same as the Plotter constraint resource XmNleg-
endName--XmNlabel specifies a string to be displayed within the plotting area,
near an individual wedge, while XmNlegendName specifies a label to be dis-
played in the plotter legend.

XmNlabelSize
The point size of the PiePlot label. This value is used in the font list tag of the
XmNlabel resource, if no XmNlabelString is specified. The default is 12.

XmNlabelStyle
The typeface of the PiePlot label. This value is used in the font list tag of the
XmNlabel resource, if no XmNlabelString is specified. The default is NULL.
When you set this resource, the string value is copied, and when you query it, you
must not modify or free the returned value.
162 GraphPak Programmer’s Reference Manual

XmNlabelColor
The color in which the PiePlot label is to be drawn. If this resource is not set, its
value is inherited from the XmNforeground resource of the parent Plotter widget.

XmNlabelRadius
The distance between the center of the pie and the closest edge of the label,
expressed as a percentage of the width or height of the Plotter plotting area. The
default value is 38. If this resource is greater than XmNradius, then the labels
will appear outside of the wedges. If it is smaller than XmNradius, then the labels
will appear at least partially inside the wedges. See the XmNradius resource
below for more explanation of how the value of this resource is interpreted.

XmNshowValue
A Boolean resource that specifies whether the PiePlot should substitute its per-
centage, or its absolute value into the XmNlabel string. The default value is
False, which specifies that the PiePlot should substitute its percentage. If you set
XmNshowValue to True, the PiePlot widget will show its value in the label,
rather than its percentage.

11.2.5 PiePlot Data
Unlike all other Plot types, the PiePlot does not have any XiPlotData resources--each
wedge requires only a single data value, so no arrays of values are required. That
value is specified with a single resource:

XmNvalue
The absolute value that this slice of pie represents. This is "raw data," not a per-
centage; this value is added to the values of all the other PiePlot wedges in the
Plotter, and its portion of the total is used to determine the total size of the wedge.
Note that this is a double resource which requires some special care to set; see
Chapter 3, Plotter Data Types and Resources.
The PiePlot Widget 163

11.2.6 PiePlot Positioning
The PiePlot widget has resources that control the size and center position of the pie.
Rather than using absolute pixel positions and distances, these resources are percent-
ages of the space available, so that a piechart will grow or shrink when the Plotter
widget grows and shrinks. The resources that control horizontal position are inter-
preted as percentages of the plotting area width, and resources that control vertical
position are interpreted as percentages of the plotting area height. A number of
resources specify distance rather than position, however, and these distances are radii,
which are not necessarily horizontal or vertical. Since the PiePlot widget does not
allow elliptical pie charts, these distance resources are interpreted as a percentage of
the smaller of the plotting area width and height.
When displaying pie charts, you may want to make the Plotter widget a fair bit wider
than it is high, so that there is room for the legend, and the remaining plotting area is
still wider than high. The size of the pie chart will be measured in terms of the smaller
height, and there will be extra space available on the left and right for the PiePlot
labels, which are always drawn horizontally.
The resources that control PiePlot positioning are the following. PiePlot label posi-
tioning is controlled with the XmNlabelRadius resource described above.

XmNxPosition
The horizontal position of the center of the pie, expressed as a percentage of the
width of the Plotter plotting area. The default value is 50, which centers the pie-
chart horizontally. All PiePlot widgets that are to form part of the same pie chart
must have the same value for this resource. You can create two pie charts in the
same Plotter widget by creating two groups of PiePlot widgets which have differ-
ent center points.

XmNyPosition
The vertical position of the center of the pie, expressed as a percentage of the
height of the Plotter plotting area. The default value is 50, which centers the pie-
chart vertically. All PiePlot widgets that are part of the same pie chart must have
the same value for this resource.

XmNradius
The radius of the PiePlot wedge. This value is specified as a percentage of the
smaller of the width and height of the Plotter plotting area. The maximum rea-
sonable value for this resource depends on the center position of the pie, but must
obviously never exceed 50, or the piechart will not fit within the plotting area.
The default value of 35 leaves room for labels on all sides of the pie. All PiePlot
widgets that are part of the same pie chart must have the same value for this
resource.
164 GraphPak Programmer’s Reference Manual

XmNexplodeRadius
The distance by which an individual wedge within a pie chart should be
"exploded" away from the center of the pie. This distance is measured as a per-
centage of the smaller of the width and height of the plotting area, just as the
XmNradius resource is measured. The default is 0, which specifies that the
wedge should not be exploded at all. Reasonable values are between 5 and 15--
this value measures the distance between the center of the pie and the vertex of
the wedge, not the "new radius" between the center of the pie and the outside arc
of the wedge.

XmNstartAngle
The angle at which the PiePlot wedge should begin. This resource may only be
set for the first wedge in a pie chart, and the results will be undefined if it is set
for any other wedges. (The first wedge is the first one created, or the wedge with
the lowest value for its XmNdrawingOrder constraint resource.) This resource
may also only be set when the widget is created, and may not be set at any time
after that. Angles are measured counter-clockwise from the positive X axis, and
the units are 64ths of degrees (this is the standard for Xlib). The default is 5760
(90\(de \(mu 64), which specifies the 12 o'clock position. PiePlot wedges are
arranged clockwise around the circle beginning at this starting angle.
The PiePlot Widget 165

166 GraphPak Programmer’s Reference Manual

2

The HighLowPlot Widget

The HighLowPlot widget displays graphs of high-low-close data. This widget is typi-
cally used to display financial market data, such as the performance of a particular
stock or of a market average such as the Dow Jones Industrial Average. With the close
data omitted, the widget is also useful for displaying data such as the daily high and
low temperatures over some time period.

HighLowPlot Synopsis
Class Name: XiHighLowPlot
Class Hierarchy:RectObj → XiPlot → XiHighLowPlot
Header File: <Xi/HighLowPlot.h>
Class Pointer: xiHighLowPlotWidgetClass

Constructor: XiCreateHighLowPlot (Widget parent, String

 name, ArgList args,

 Cardinal num_args);

The high and low values for a data point are represented with a vertical bar drawn
between them. The close value for the data point is represented by a horizontal line
extending a short distance to the right of the bar. This is a standard display format for
market data, used, for example, by The Wall Street Journal. HighLowPlot resources
allow you to specify the color of the bar and line, the pixel width of the bar, the pixel
width of the line, and the horizontal length of the line.
As with all Plot widgets, the HighLowPlot will extract its high, low, and close values
from application data structures. You can set resources or use convenience functions
to specify how the data is to be extracted. If the X values for the data are evenly
spaced, you need only specify the starting point and the X interval between points.
You may also specify a complete set of X values, however, which means that you can
leave gaps in the data when, for example, there are market holidays and no trading
takes place.
This chapter explains how to create a HighLowPlot, documents the resources that
control the appearance of the HighLowPlot, and explains the resources and conve-
nience functions that you can use to specify high, low, and close data values for a plot.

1

GraphPak Programmer’s Reference Manual 167

12.1 Creating a HighLowPlot
You can create a HighLowPlot widget with the function XiCreateHighLowPlot(),
which is a standard Motif-style widget constructor, or you can use XtCreateWidget()
or XtVaCreateWidget() with the widget class pointer xiHighLowPlotWidgetClass.
Both the constructor function and the widget class pointer are declared in the header
file <Xi/HighLowPlot.h>.
Example 12-1 demonstrates how you might create a HighLowPlot.

Example 12-1. Creating a HighLowPlot widget

#include <Xi/Plotter.h> /* always include this */
#include <Xi/HighLowPlot.h> /* declares constructor and class
pointer */

Widget plotter; /* assume this is already created */
Widget plot; /* the plot we are creating */

/*
 * This plot won't have any meaningful close data, so we set the
 * line length to 0 so close values aren't displayed.
 */
plot = XtVaCreateWidget("temperature", xiHighLowPlotWidgetClass,
plotter,
 XmNlegendName, "Daily Temperature Extremes",
 XmNbarWidth, 4,
 XmNlineLength, 0,
 NULL);
XtManageChild(plot); /* Don't forget this! */
168 GraphPak Programmer’s Reference Manual

Table 12-1. HighLowPlot Resources

aInherited from the Plotter XmNforeground resource.
bDo not set these resources when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
Bars
XmNbarColor XmCForeground Pixel XmNforegrounda CSG 171
XmNbarWidth XmCLineWidth Dimension 5 CSG 171
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 171
XmNlineWidth XmCLineWidth Dimension 3 CSG 171
XmNlineLength XmCLineLength Dimension 6 CSG 171

Datab

XmNnumValues XmCNumValues Cardinal 0 CSG 171
XmNxValues XmCXValues Pointer NULL CSG 171
XmNxValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNxValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNxValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNxValueConstant XmCValueConstant Double 0.0 CSG 171
XmNxValueMultiplier XmCValueMultiplier Double 1.0 CSG 171
XmNhighValues XmCValues Pointer NULL CSG 171
XmNhighValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNhighValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNhighValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNhighValueConstant XmCValueConstant Double 0.0 CSG 171
XmNhighValueMultiplier XmCValueMultiplier Double CSG 171

XmNlowValues XmCValues Pointer NULL CSG 171
XmNlowValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNlowValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNlowValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNlowValueConstant XmCValueConstant Double 0.0 CSG 171
XmNlowValueMultiplier XmCValueMultiplier Double 1.0 CSG 171
XmNcloseValues XmCValues Pointer NULL CSG 171
XmNcloseValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNcloseValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNcloseValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNcloseValueConstant XmCValueConstant Double 0.0 CSG 171
XmNcloseValueMultiplier XmCValueMultiplier Double 1.0 CSG 171
The HighLowPlot Widget 169

12.2 HighLowPlot Resources
The HighLowPlot widget has resources that control the size and color of the "bars"
and "lines" that it draws. (The "bar" is the vertical portion of the mark it draw, which
indicates the high and low values; the "line" is the horizontal portion of the mark,
which indicates the close value.) The HighLowPlot widget also has four standard sets
of XiPlotData resources that you can use to specify the high, low, and close data val-
ues, and, optionally, an X axis value for each (high, low, close) triple.
These resources are summarized in Table 12-1 and are documented in detail in the
subsections below. Figure 12-1 depicts three data points in a HighLowPlot, and shows
the resources that control the visual appearance of the "bar" and "line".

12.2.1 Visual Resources
The following resource control the size and color of the lines drawn by the XiHighLo-
wPlot widget.

Figure 12-1. Visual resources of the HighLowPlot widget
170 GraphPak Programmer’s Reference Manual

XmNbarColor
The color of the vertical line drawn between the high and low data values. If this
resource is not set, its default value is inherited from the XmNforeground
resource of the parent Plotter widget.

XmNbarWidth
The width, in pixels, of the vertical line drawn between the high and low data
values. The default value is 5 pixels, which makes this line into a bold vertical
"bar".

XmNlineColor
The color of the horizontal "line" drawn to the right of the vertical "bar" to mark
the close position in the data. If this resource is not set, it inherits its value from
the XmNforeground resource of the parent Plotter widget.

XmNlineWidth
The width, in pixels, of the horizontal line drawn to mark the position of the close
value. The default is 3 pixels, which is a line wide enough to match the 5 pixel
wide bar, but narrow enough to mark the position of the close value with some
accuracy.

XmNlineLength
The length, in pixels, of the horizontal line drawn to the right of the bar to mark
the position of the close value. The default is 6 pixels. Note, however, that with
the default bar width of 5 pixels, the "bar" extends for two pixels on either side of
the X point, and only 4 pixels of the 6 pixel-long line will be visible to the right
of the bar.

12.2.2 Data Resources
By far the majority of HighLowPlot resources are data resources. Unlike the LinePlot
widget which takes an (x, y) pair of values for each data point, the HighLowPlot wid-
get takes an (x, high, low, close) tuple for each data point. The HighLowPlot widget,
therefore, has four complete sets of XiLinePlot resources. The resource names, types,
and default values are listed in Table 12-1. Chapter 4, Plot Data Representation
explains how to use the XiLinePlot abstraction, and if you have read that chapter, the
meaning of each of these resources will be evident.
Note that there is only a single XmNnumValues resource, not separate resources for
the number of high values, the number of low values, and so on. Since there must
always be the same number of values specified by each of the XiPlotData structures, a
single resource is sufficient. Be careful not to set or change XmNhighValues, XmN-
lowValues, or any of the other "Values" resources before you set the XmNnumValues
The HighLowPlot Widget 171

resource. If you set XmNhighValues to a new array with fewer values than the old
array, and if you did not change XmNnumValues in the same or a previous call, then
the widget might attempt to extract values beyond the end of the array you specified,
which could result in garbage data, or in a segmentation fault.
Very often when you use the HighLowPlot widget, your data will be uniformly
spaced along the X axis. In this case, you need not specify XmNxValues, XmNxVal-
ueSize, XmNxValueOffset, and so on. Instead, you can simply specify the first X
value, and the interval between the values, with XmNxValueConstant and XmNxVal-
ueMultiplier. There are times, however, when there will be gaps in your data (on mar-
ket holidays, for example, there are no high, low, and close values for stocks, because
no trading takes place) and you will want to explicitly specify an array of X values
along with your arrays of high, low, and close values.
The HighLowPlot widget can also be used to display (high, low) data without any
close values. A typical example would be a plot of daily temperature extremes over a
period of a month. In the current implementation of the HighLowPlot widget, you
must always specify a value for the XmNcloseValues and related resources, however.
Even though you must specify close data, you can prevent that data from being dis-
played by setting the XmNlineLength resource to 0. And, since the close data will not
be visible, you can use any valid array you choose. Perhaps the easiest thing to do is
to set the close data resources to the same values as the high data resources--then the
XiHighLowPlot widget will extract its valid (but invisible and meaningless) close
values from the same place it extracts its (actually meaningful) high values. This tech-
nique means that you do not have to create a dummy array of close values.

12.3 Specifying XiHighLowPlot Data
The most general way to specify data for a HighLowPlot widget is through the data
resources described in the previous section. It is often easier, however, to use one of
the convenience functions provided by the HighLowPlot for this purpose. There are
six convenience functions, documented in the subsections below.

12.3.1 Arrays of Doubles, Floats, or Ints
If your data values occur at uniform intervals along the X axis, and you store your
high, low, and close values in three separate arrays all of type double, float, or int,
then you can set your HighLowPlot data with one of the three functions shown in Fig-
ure 12-2.
172 GraphPak Programmer’s Reference Manual

void XiHighLowPlotSetDoubleValues(Widget w,

 double xmin, double xinterval,

 double *highvals, double *lowvals,

 double *closevals,

 Cardinal num_points);

void XiHighLowPlotSetFloatValues(Widget w,

 double xmin, double xinterval,

 float *highvals, float *lowvals,

 float *closevals,

 Cardinal num_points);

void XiHighLowPlotSetIntValues(Widget w,

 double xmin, double xinterval,

 int *highvals, int *lowvals,

 int *closevals,

 Cardinal num_points);

w The HighLowPlot widget that is having its data set.
xmin The X value for the first data point.
xinterval

The interval between X data values. If your X data points are not evenly
spaced, then you cannot use any of these convenience functions.

highvals, lowvals, closevals

Arrays of high, low, and close data points. The arrays must each be of the
same type (double, float, or int, depending on the function), and must each
have the same number of elements.

num_points

The number of values in each of the arrays.

Figure 12-2. Specifying data as arrays of doubles, floats, or ints
The HighLowPlot Widget 173

12.3.2 Using Arrays of Structures
Often it is more convenient for an application to store its high, low, and close values
in arrays of complex structures, rather than making a copy of the data into a special
array of double, for example. The functions XiHighLowPlotSetValues() and
XiHighLowPlotSetPoints(), shown in Figure 12-3 and Figure 12-4 provide the flexi-
bility to do this.

void XiHighLowPlotSetValues(Widget w, double xmin, double xinterval,

 XiPlotDataType ytype, Cardinal ysize,

 XtPointer highvals, Cardinal highoffset,

 XtPointer lowvals, Cardinal lowoffset,

 XtPointer closevals, Cardinal closeoffset,

 Cardinal num_points);

w The XiHighLowPlot widget that is having its data set.
xmin, xinterval

The X axis coordinate of the first (high, low, close) point, and the X inter-
val between adjacent points.

ytype, ysize

These arguments specify the type of the high, low, and close values (the "y
values"), and the size of the structures each is stored within.

highvals, lowvals, closevals

These arguments are pointers to arrays of structures that contain the high,
low, and close data. These may be three different arrays, but often they
will all be pointers to the same array. Each element of these arrays must be
of the size specified by the ysize argument.

highoffset, lowoffset, closeoffset

These arguments are the byte offsets of the high, low, and close value
fields within their respective data structures. You can compute these off-
sets with the standard Xt macro XtOffsetOf().

num_points

The number of data points to appear in the graph. Each of the highvals,
lowvals, and closevals arrays must have at least this many elements.

Figure 12-3. XiHighLowPlotSetValues()
174 GraphPak Programmer’s Reference Manual

The difference between XiHighLowPlotSetValues() and XiHighLowPlotSetPoints()
is that XiHighLowPlotSetValues() assumes evenly spaced X points, and XiHighLow-
PlotSetPoints() requires you to specify a complete set of X values. When the X coor-
dinates of your data points are all uniformly spaced, and there are no gaps in your
data, you can use the xmin and xinterval arguments of XiHighLowPlotSetValues() to
specify X positions without supplying an array of values.

void XiHighLowPlotSetPoints(Widget w,

 XtPointer xvals, XiPlotDataType xtype,

 Cardinal xsize, Cardinal xoffset,

 XiPlotDataType ytype, Cardinal ysize,

 XtPointer highvals, Cardinal highoffset,

 XtPointer lowvals, Cardinal lowoffset,

 XtPointer closevals, Cardinal closeoffset,

 Cardinal num_points);

w The XiHighLowPlot widget that is having its data set.
xvals, xtype, xsize, xoffset

These four arguments are used by XiHighLowPlotSetPoints() to explicitly
specify an array of X coordinates for your (high, low, close) data.

ytype, ysize

These arguments specify the type of the high, low, and close values (the "y
values"), and the size of the structures each is stored within.

highvals, lowvals, closevals

These arguments are pointers to arrays of structures that contain the high,
low, and close data. These may be three different arrays, but often they
will all be pointers to the same array. Each element of these arrays must be
of the size specified by the ysize argument.

highoffset, lowoffset, closeoffset

These arguments are the byte offsets of the high, low, and close value
fields within their respective data structures. You can compute these off-
sets with the standard Xt macro XtOffsetOf().

num_points

The number of data points to appear in the graph. Each of the highvals,
lowvals, and closevals arrays must have at least this many elements.

Figure 12-4. XiHighLowPlotSetPoints()
The HighLowPlot Widget 175

When your data does not have a regular sampling interval, or when there are gaps in
the data at which you do not want a bar drawn, you can use XiHighLowPlotSet-
Points(), with its xvals, xtype, xsize, and xoffset arguments. These arguments corre-
spond to the XmNxValues, XmNxValueType, XmNxValueSize and
XmNxValueOffset resources, and specify a pointer to an array of structures, the type
of the value to be extracted from each structure in the array, the size of each structure,
and the byte offset of the value within each structure.
Note that both of these functions make the assumption that your high, low, and close
values will always be stored in variables of the same type in structures of the same
size. This is a fairly reasonable assumption, since you will usually use this function
when you have stored your values together in the same structure. This type and size
are specified by the ytype and ysize arguments.

12.3.3 Notifying the Widget of Changed Data
Since the HighLowPlot widget extracts its data values directly from application data
structures, it needs to be notified when that data has changed underneath it. Some
applications will define static data structures, and leave them unchanged for the life-
time of the program. Other applications, however will update plot data dynamically.
One way to do this is to give the widget a pointer to new data arrays, and then free the
memory associated with the old ones. Another approach is to write the new plot data
into the existing arrays, and notify the widget that its data has changed and that it
needs to update itself. You can do this with XiHighLowPlotDataChanged(), shown in
Figure 12-5.

void XiHighLowPlotDataChanged(Widget w);

w The HighLowPlot widget that has had its data changed. Calling this func-
tion will cause that widget to extract and display new data from the appli-
cation data structures.

Figure 12-5. XiHighLowPlotDataChanged()
176 GraphPak Programmer’s Reference Manual

The HighLowPlot Widget 177

178 GraphPak Programmer’s Reference Manual

3

Annotating Plots

The TextPlot and ImagePlot widgets behave somewhat like a Motif XmLabel widget-
-they allow you to display arbitrary text (the TextPlot) or graphics (the ImagePlot)
within the Plotter widget. These textual or graphical "annotations" are associated with
a particular position in the plotter (an axis position, pixel position, or percentage posi-
tion) and either appear at that position, or are offset from it slightly, with an arrow
drawn from the annotation to the point that is being annotated.

TextPlot Synopsis
Class Name: XiTextPlot
Class Hierarchy:RectObj → XiPlot → XiTextPlot
Header File: <Xi/TextPlot.h>
Class Pointer: xiTextPlotWidgetClass

Constructor: XiCreateTextPlot (Widget parent, String name,

 ArgList args,

 Cardinal num_args);

ImagePlot Synopsis
Class Name: XiImagePlot
Class Hierarchy:RectObj → XiPlot → XiImagePlot
Header File: <Xi/ImagePlot.h>
Class Pointer: xiImagePlotWidgetClass

Constructor: XiCreateImagePlot (Widget parent,String name,

 ArgList args,

 Cardinal num_args);

Both the TextPlot and the ImagePlot widget are subclasses of the AnnotationPlot wid-
get class. While you will never use the AnnotationPlot directly, it provides the frame-
work for positioning and offsetting the annotation, drawing an arrow to the annotated

1

GraphPak Programmer’s Reference Manual 179

point, and drawing an optional border around the annotation, and an optional shadow
beneath it.
Text annotations, implemented with the TextPlot widget, can be used to "mark up" a
display, providing additional information about a point, a plot, or the entire Plotter.
For example, you can use a TextPlot widget to describe the significance of a particular
data point, or as a caption or sub-title for a Plotter. The TextPlot widget supports
multi-line text using the same wide range of fonts, styles, and point sizes supported by
the Plotter and axes.
The ImagePlot widget allows graphical annotations in the Plotter--you can use Image-
Plots to add logos and icons to your display. A clip mask can be provided to display
non-rectangular images.
The following sections demonstrate how to create TextPlot and ImagePlot annota-
tions, explain each of the resources of these widgets, and document functions for eas-
ily positioning and updating annotations.

13.1 Creating Annotations
You can create text and graphical annotations with the functions XiCreateTextPlot(),
and XiCreateImagePlot() which are standard Motif-style widget constructors. If you
prefer to use XtCreateWidget() or XtVaCreateWidget(), the class pointer for the Text-
Plot widget is xiTextPlotWidgetClass, and the class pointer for the ImagePlot widget
is xiImagePlotWidgetClass. These constructor functions and widget class pointers are
declared in the header files <Xi/TextPlot.h> and <Xi/ImagePlot.h>.
Example 13-1 demonstrates how you might create a text annotation and an image
annotation. Don't forget that you must manage any widgets you create with XtMan-
ageChild() or XtManageChildren().
180 GraphPak Programmer’s Reference Manual

Example 13-1. Creating annotations

#include <Xi/Plotter.h> /* always include this */
#include <Xi/TextPlot.h> /* declares constructor and class pointer
*/
#include <Xi/ImagePlot.h> /* ditto */
#include "my_bitmap.xbm" /* bitmap data created with the 'bitmap'
client */

Widget plotter; /* assume this is already created */
Widget textplot, imageplot;
Bitmap my_bitmap;
Arg args[10];
int i;

/* Create a text plot */
i = 0;
XtSetArg(args[i], XmNtext, "My first annotation"); i++;
XtSetArg(args[i], XmNxPercent, 50); i++;
XtSetArg(args[i], XmNyPercent, 50); i++;
XtSetArg(args[i], XmNxPercentOffset, -25); i++;
XtSetArg(args[i], XmNyPercentOffset, -25); i++;
textplot = XiCreateTextPlot(plotter, "textplot", args, i);

/* Create the bitmap for display by the image plot */
my_bitmap = XCreateBitmapFromData(XtDisplay(plotter), XtWin-
dow(plotter),
 my_bitmap_bits,
 my_bitmap_width, my_bitmap_height);

/* Create the image plot */
imageplot = XtVaCreateWidget("imageplot", xiImagePlotWidgetClass,
plotter,
 XmNbitmap, my_bitmap,
 XmNdrawShadow, True,
 XmNxPercent, 50,
 XmNyPercent, 50,
 XmNxPercentOffset, 25,
 XmNyPercentOffset, 25,
 XtVaTypedArg, XmNforeground, XmRString,
"red", 4,
 XtVaTypedArg, XmNbackground, XmR-
String,"green",6,
 NULL);

/* the plots must be managed before they are visible */
XtManageChild(textplot);
XtManageChild(imageplot);
Annotating Plots 181

13.2 TextPlot and ImagePlot Resources
The TextPlot and ImagePlot widgets are both subclasses of the AnnotationPlot wid-
get, and most of their resources come from this superclass. The AnnotationPlot has
lots of resources that control the position and size of the annotation, resources that
specify whether the annotation should have a border, an arrow, or a shadow, and
resources that specify the colors and other attributes of the border, arrow, and shadow.
The TextPlot widget only has a few resources of its own; these specify the text to be
displayed, its justification, and the font it is to be displayed in. Similarly, the Image-
Plot defines only a few new resources to specify the bitmap, pixmap or XImage to be
displayed, and an optional clip-mask for non-rectangular images.
Table 13-1 summarizes the resources of these three related widget classes, and the
subsections that follow explain each resource in more detail. For convenience, the
table of resources also appears in the quick reference section at the end of this man-
ual.

Table 13-1. AnnotationPlot Resources
Name Class Type Default CSG Pg

Position
XmNxPercent XmCXPercent XmRInt Computed CSG 184
XmNyPercent XmCYPercent XmRInt Computed CSG 184
XmNxPixel XmCXPixel XmRPosition 0 CSG 185
XmNyPixel XmCYPixel XmRPosition 0 CSG 185
XmNxPoint XmCXPoint XmRDouble Computed CSG 185
XmNyPoint XmCYPoint XmRDouble Computed CSG 185
Offset
XmNxPercentOffset XmCPercentOffset XmRInt Computed CSG 186
XmNyPercentOffset XmCPercentOffset XmRInt Computed CSG 186
XmNxPixelOffset XmCPixelOffset XmRPosition 0 CSG 185
XmNyPixelOffset XmCPixelOffset XmRPosition 0 CSG 185
XmNadjustOffset XmCAdjustOffset XmRBoolean TRUE CSG 186
Size and margins
XmNmarginWidth XmCMargin XmRDimension 2 CSG 187
XmNmarginHeight XmCMargin XmRDimension 2 CSG 187
XmNboxWidth XmCWidth XmRDimension Computed CSG 187
XmNboxHeight XmCHeight XmRDimension Computed CSG 187
Colors
XmNforeground XmCForeground XmRPixel XmNforegrounda CSG 187
XmNbackground XmCBackground XmRPixel XmNbackgroundb CSG 187

Arrows
XmNdrawArrow XmCDrawArrow XmRBoolean TRUE CSG 188
XmNarrowColor XmCArrowColor XmRPixel XmNforegrounda CSG 189
XmNarrowShaftPattern XmCArrowShaftPattern XmRLinePattern NULL CSG 189
XmNarrowShaftWidth XmCArrowShaftWidth XmRDimension 2 CSG 189
XmNarrowHeadWidth XmCArrowHeadSize XmRDimension 6 CSG 189
182 GraphPak Programmer’s Reference Manual

aInherited from the Plotter XmNforeground resource.
bInherited from the Plotter XmNbackground resource.
cWhen an XmString resource is unset, its value is created from the corresponding String resource, using a font
tag derived from the corresponding style and size resources.
dInherited from the Plotter XmNfontList resource.
eInherited from the Plotter XmNpsFontList resource.

13.2.1 Annotation Position
A traditional plot depicts a collection of (x,y) values. By contrast, an annotation plot
is associated with only one (x,y) pair, representing the point being annotated. By
default an annotation will be centered over the point it annotates. (Alternatively, the
annotation can be offset an arbitrary distance from the annotated point and an arrow
can be drawn from the annotation to the point annotated--offsets and arrows will be
discussed later in this chapter.)

XmNarrowHeadLength XmCArrowHeadSize XmRDimension 6 CSG 189
XmNarrowHeadDistance XmCArrowDistance XmRDimension 4 CSG 189
XmNarrowTailDistance XmCArrowDistance XmRDimension 2 CSG 189
Shadows and Trim
XmNdrawShadow XmCDrawShadow XmRBoolean FALSE CSG 189
XmNdrawArrowShadow XmCDrawShadow XmRBoolean FALSE CSG 190
XmNshadowColor XmCForeground XmRPixel XmNforegrounda CSG 190
XmNstippleShadow XmCStippleShadow XmRBoolean TRUE CSG 190
XmNshadowXOffset XmCShadowOffset XmRPosition 4 CSG 190
XmNshadowYOffset XmCShadowOffset XmRPosition 4 CSG 190
XmNtrimColor XmCForeground XmRPixel XmNforegrounda CSG 190
XmNtrimWidth XmCTrimWidth XmRDimension 0 CSG 190
TextPlot Resources
XmNfontList XmCFontList XmFontList XmNfontListd CSG 191
XmNpsFontList XmCPSFontList XiPSFontList XmNpsFontListe CSG 191
XmNtextString XmCTextString XmString NULLc CSG 191
XmNtext XmCText XmRString NULL CSG 191
XmNfontSize XmCFontSize XmRDimension 12 CSG 191
XmNfontStyle XmCFontStyle XmRString NULL CSG 191
XmNalignment XmCAlignment XmRAlignment XiALIGNMENT_

CENTER
CSG 192

XmNstringDirection XmCStringDirection StringDirection dynamic CSG 192
XmNopaque XmCOpaque XmRBoolean TRUE CSG 192
ImagePlot
Resources
XmNpixmap XmCPixmap XmRPixmap None CSG 192
XmNbitmap XmCBitmap XmRPixmap None CSG 192
XmNimage XmCImage XmRXImage NULL CSG 192
XmNclipMask XmCClipMask XmRPixmap None CSG 193
Annotating Plots 183

The AnnotationPlot widget provides three different ways to specify the point that is to
be annotated: in axis coordinates, pixel coordinates, or as a percentage of the size of
the plotting area. The following paragraphs explain the resources you use to set an
annotation position in each of these ways, and Figure 13-1 shows text annotations
positioned in each of these ways. Note that none of the resources documented below
are name XmNxPosition or XmNyPosition--those are PiePlot resources, not Annota-
tionPlot resources!

Figure 13-1. Positioning annotations

XmNxPercent, XmNyPercent
The horizontal and vertical positions of the point being annotated, as a percent-
age of the width and height of the Plotter. These resources are integers and should
be set to a value between 0 and 100. Annotations positioned with these resources
will remain at a fixed pixel position when the axis bounds change, and will
remain at the same proportional position in the plotting area when the Plotter
widget is resized. When these resources are set, the values of the XmNxPixel,
184 GraphPak Programmer’s Reference Manual

XmNyPixel, XmNxPoint, and XmNyPoint resources will be computed to match
(i.e. those resources can be meaningfully queried.)

XmNxPixel, XmNyPixel
The X and Y coordinates of the point being annotated, measured in pixels from
the upper left corner of the plot area. Annotations positioned with these resources
will remain at the same absolute position in the plotting area regardless of the
axis bounds and the size of the Plotter. Annotations positioned this way may be
suitable for titles or other displayed text. When these resources are set, the values
of the other positing resources will be computed to match.

XmNxPoint, XmNyPoint
The X and Y position of the point to be annotated, in axis coordinates. Annota-
tions positioned with these resources will move when the axis bounds or the Plot-
ter size change--this makes them ideal for annotating a particular data point.
When these resources are set, the values of the other position resource will be
computed to match.

13.2.2 Annotation Offsets
If you would like an arrow drawn from the annotation body to the point being anno-
tated, you must specify horizontal and vertical offsets for the annotation. These off-
sets represent the distance from the annotated point to the center of the annotation; the
arrow will be drawn in the intervening space. Offsets may be negative. If you do not
want an arrow drawn between the annotation and the annotated point, there is no real
reason to specify an offset. Instead, add the desired offset to the annotation's position
resources and leave its offsets at their default of zero.
You can specify an offsets either in pixels or as a percentage of the width and height
of the plotting area. The following paragraphs explain the applicable resources, and
Figure 13-2 shows three TextPlot widgets that annotate the same point but have dif-
ferent offsets. In addition, one additional resource, XmNadjustOffset specifies
whether offsets should be adjusted, when necessary, to ensure that the annotation fits
entirely within the plotting area.

XmNxPixelOffset, XmNyPixelOffset
The horizontal and vertical distance, in pixels, from the annotated point to the
center of the annotation. If these resources are set, the value of the XmNxPer-
centOffset and XmNyPercentOffset resources will be computed to match.
Annotating Plots 185

Figure 13-2. Annotation offsets

XmNxPercentOffset, XmNyPercentOffset
The horizontal and vertical distance from the annotated point to the center of the
annotation, measured as a percentage of the width of the Plotter. These resources
are integers and should be set to a value between 0 and 100. If these resources are
set, the values of the XmNxPixelOffset and XmNyPixelOffset resources will be
adjusted correspondingly.

XmNadjustOffset
Whether the annotation's offset should be adjusted if necessary to insure that it
fits completely within the plot area. If this resource is True (the default), then you
can be sure that your annotation will not move off the edge of the screen even if
the axis bounds or the plotter size change. With this resource you can also posi-
tion an annotation flush against an edge of the plot area by specifying a location
186 GraphPak Programmer’s Reference Manual

that would otherwise cause all or part of the annotation to appear beyond that
edge.

13.2.3 Annotation Size and Margins
The overall size of an annotation is, by default, its base size (i.e. the size required to
display its text or its image) plus its margins, plus the width of its "trim" (i.e. it bor-
der.) The resources described in this section allow you to set the margin size for an
annotation, and also provide a way to set a fixed absolute size for an annotation,
regardless of its base size.

XmNmarginWidth, XmNmarginHeight
XmNmarginWidth specifies the distance, in pixels, from the annotation's border
to its left and right edges. XmNmarginHeight specifies the distance, in pixels,
from the annotation's border to its top and bottom edges.

XmNboxWidth, XmNboxHeight
You can query these resources to determine the overall width and height, in pix-
els, of the annotation. Normally, you will not set these resources-- instead, you
can adjust the annotation's dimensions with the XmNmarginWidth and XmN-
marginHeight resources, which control the amount of space outside of the anno-
tation's contents. If you do set these resources directly, it will specify a fixed size
for the annotation that is not dependent on the base size of the annotation's text or
image. In this case, the annotation's margins will be adjusted as necessary to pro-
vide the specified size. If you set the XmNboxWidth or XmNboxHeight resource
to zero (the default), the annotation will be drawn at its default size (based on the
size of the text or image) and these resources will be changed to reflect that
default size.

13.2.4 Annotation Colors
The XmNforeground and XmNbackground resources described in this section specify
only the color of the annotation itself--i.e. the text or image of the annotation. The
colors of the annotation's arrow, trim, and shadow are specified by other resources,
described elsewhere.

XmNforeground, XmNbackground
These are AnnotationPlot resources, but are not used directly by the Annotation
plot--instead they are provided for use by the AnnotationPlot subclasses. For the
TextPlot, they specify the foreground color of the text to display, and the back-
ground color (for opaque TextPlots) of the box that surrounds the text. For the
ImagePlot, they specify the foreground and background color of bitmaps.
(Images specified as Pixmaps or XImages do not use these resources.) If you do
Annotating Plots 187

not set these resources, their values are inherited from the XmNforeground and
XmNbackground resources of the parent Plotter widget.

13.2.5 Arrows
Annotations can be drawn with an optional arrow between the body of the annotation
and the annotated point. By default, an arrow will be drawn whenever there is suffi-
cient space--i.e. whenever the X and Y offsets are large enough. To disable the arrow
altogether, set the XmNdrawArrow resource to False. The resources described in this
section control the appearance of the arrow.Figure 13-3 shows some arrow variations.

Figure 13-3. Annotation arrow styles

XmNdrawArrow
A Boolean that specifies whether to draw an arrow, if possible, between the anno-
tation and the point being annotated. If there is not enough space between the
annotation and the annotated point, no arrow will be drawn. The default is True.
188 GraphPak Programmer’s Reference Manual

XmNarrowColor
The color to use for the annotation's arrow. If you do not set this resource, its
value is inherited from the XmNforeground resource of the parent Plotter widget.

XmNarrowShaftPattern
The line pattern to use for the arrow shaft. The default is NULL, which specifies
a solid shaft. Chapter 3, Plotter Data Types and Resources explains how to spec-
ify line patterns.

XmNarrowShaftWidth
The width in pixels of the arrow shaft.

XmNarrowHeadWidth
The width in pixels of the arrow head. If set to zero, no arrow head will be drawn.
In general, the value of this resource should be less than or equal to that of the
XmNarrowHeadLength resource, and should be no more than three times larger
than the XmNarrowShaftWidth.

XmNarrowHeadLength
The distance in pixels from the tip of the arrow head to the shaft. If set to zero, no
arrow head will be drawn. In general, the value of this resource should be greater
than or equal to that of the XmNarrowHeadWidth resource.

XmNarrowHeadDistance
The distance in pixels from the tip of the arrow to the point being annotated. You
may wish to increase the value of this resource to prevent the arrow head from
overlapping a marker or a particularly thick line.

XmNarrowTailDistance
The distance in pixels from the tail of the arrow to the nearest edge of the annota-
tion, measured in the direction of the arrow shaft.

13.2.6 Shadows and Trim
The resources in this section control the appearance of the shadow optionally drawn
beneath the annotation and the appearance of the "trim" or border optionally drawn
around the annotation.

XmNdrawShadow
A Boolean that specifies whether the AnnotationPlot widget will draw shadows
beneath its contents and its trim. The default is False.
Annotating Plots 189

XmNdrawArrowShadow
A Boolean that specifies whether to draw a shadow under the annotation's arrow.
The default is False.

XmNshadowColor
The color of the shadow to be drawn. If you do not set this resource, its value is
inherited from the XmNforeground resource of the parent Plotter widget. Note
that if XmNstippleShadow is True, then the stippling will result in an apparent
shadow color that is significantly lighter than the value specified by this resource.

XmNstippleShadow
A Boolean that specifies whether the annotation's shadows should be drawn with
a solid color or with a stippled color. The default is True which specifies that a
stipple should be used. Note that on monochrome systems, stippling is required
because the shadow color and the line color will be the same.

XmNshadowXOffset, XmNshadowYOffset
The offset, in pixels, of the shadow from the annotation in the X and Y dimen-
sions. The default for each of these resources is 2 pixels. Larger values will pro-
duce a shadow further away from the actual annotation, increasing the apparent
three dimensional height of the annotation above the Plotter background. Note
that negative values are legal for this resource, and simply change the position of
the imaginary light source that is casting the shadow.

XmNtrimColor
The color of the annotation's trim (i.e. border). If you do not set this resource, its
value is inherited from the XmNforeground resource of the parent Plotter widget.

XmNtrimWidth
The width in pixels of the annotation's trim (i.e. the rectangle drawn around the
border of the annotation). If this resource is set to 0, then no trim will be drawn.

13.2.7 TextPlot Resources
The resources described in this section are TextPlot resources, and are not applicable
to the ImagePlot annotation type. They specify the text to appear in the annotation,
and how that text should be drawn. Note that the AnnotationPlot XmNforeground and
XmNbackground resources specify the color of the text annotation.
190 GraphPak Programmer’s Reference Manual

XmNfontList
The font or fonts in which the TextPlot textual annotation should be displayed. If
this resource is unspecified, its value is inherited from the parent Plotter's XmN-
fontList resource.

XmNpsFontList
The list of PostScript fonts to be used to display the TextPlot's textual annotation
in hardcopy. If no value is specified for this resource, its default value is inherited
from the parent Plotter XmNpsFontList resource. You need only specify this
resource if XmNfontList contains fonts outside of the "standard" font families--
Adobe Times, Helvetica, Courier, New Century Schoolbook, and Symbol. See
Section 3.3, Fonts and Displayed Text for information on specifying PostScript
font lists.

XmNtextString
The XmString to be displayed by the TextPlot widget. If no XmString is specified
for this resource, then one will be created using the XmNtext string, and a font
list tag constructed from the XmNfontStyle and XmNfontSize resources, as
described in Section 3.3, Fonts and Displayed Text. Setting this resource will
override any value previously created from the XmNtext string. If you query this
resource, the Plotter returns its private, internal copy of the XmString, which you
must not modify or free.

XmNtext
The text to appear in the annotation, if XmNtextString is not specified. Note that
this resource is an ordinary null-terminated character string, not a Motif
XmString. When you set this resource, the string is converted to an XmString
using a font list tag constructed from the XmNfontStyle and XmNfontSize
resources, and this newly created XmString becomes the new value of the XmN-
textString resource. See Section 3.3 for details. When you set this resource, the
TextPlot widget makes a private copy of the string, so the application may mod-
ify or free its copy of the string without affecting the widget. When you query
this resource, you obtain this internal copy, which you must not modify or free.

XmNfontStyle
The typeface of the annotation. This value is used in the font list tag of the XmN-
text resource, if no XmNtextString is specified. The default is NULL. When you
set this resource, the string value is copied, and when you query it, you must not
modify or free the returned value.

XmNfontSize
The point size of the annotation. This value is used in the font list tag of the
XmNtext, if no XmNtextString is specified. The default is 12.
Annotating Plots 191

XmNalignment
The justification of text that spans multiple lines. Possible values are
XmALIGNMENT_BEGINNING, XmALIGNMENT_CENTER, and
XmALIGNMENT_END. The default is XmALIGNMENT_CENTER.

XmNstringDirection
This resource is just like the XmLabel widget resource of the same name--it tells
the TextPlot whether the XmString it is to display is a left-to-right string or a
right-to-left string. Possible values for this resource are
XmSTRING_DIRECTION_L_TO_R and XmSTRING_DIRECTION_R_TO_L.
The default value depends on the locale. Note that setting this resource does not
affect the direction that the text is displayed in; it merely controls the interpreta-
tion of the XmNalignment resource value.

XmNopaque
If True (the default), the text will be drawn in a rectangular region filled with the
XmNbackground color. If False, the text will be drawn directly onto the plot area,
without erasing anything beneath it.

13.2.8 ImagePlot Resources
The resources described in this section are ImagePlot resources, and are not applica-
ble to the TextPlot widget. Three of these resources allow three different ways of
specifying the image to be displayed--as a bitmap, a pixmap, or as an XImage. The
fourth resource specifies a clip mask to be used to display non-rectangular image
annotations.

XmNpixmap
A Pixmap to draw. The depth of the Pixmap must match depth of Plotter window.
Call XiImagePlotUpdate() to update the ImagePlot if you change the contents of
the Pixmap without changing the value of the resource itself.

XmNbitmap
A bitmap to draw. Set bits in the bitmap will be drawn in the AnnotationPlot
XmNforeground color, and unset bits will be drawn in the XmNbackground
color. Call XiImagePlotUpdate() to update the ImagePlot if you change the con-
tents of the bitmap without changing the value of the resource itself.

XmNimage
An XImage to draw. The depth of the XImage must match depth of Plotter win-
dow. Call XiImagePlotUpdate() to update the ImagePlot if you change the con-
tents of the XImage without changing the value of the resource itself.
192 GraphPak Programmer’s Reference Manual

XmNclipMask
A bitmap to use as a clipping mask when drawing the image. This bitmap must
have the same width and height as the image, and is used as a stencil when the
image is rendered: the mask and image will be aligned, and only those pixels in
the image which fall under bits that have been set in the mask will be drawn. For
example, you could use a clip mask containing a filled circle to exclude the pixels
in a (rectangular) bitmap, pixmap or XImage that fall outside of the circle. If you
set the XmNbitmap and XmNclipMask resources of an ImagePlot widget to the
same bitmap, then only the set pixels of the bitmap will be drawn, in the widget's
foreground color. Full support for clipping masks is available for on-screen dis-
plays. Clipped bitmaps can be printed as they are displayed; however, clipped
pixmaps and XImages will be printed in their unclipped (rectangular) form.

13.3 Positioning Annotations
The most awkward detail of working with TextPlot and ImagePlot annotations is
positioning them appropriately on the display. This section documents convenience
functions that make it easier to position annotations, and in particular, makes it easier
to annotate particular points or elements of a LinePlot, BarPlot, PiePlot, or HighLow-
Plot.
When annotating data points, you'll almost always want to position your annotation
using axis coordinates, using the XmNxPoint and XmNyPoint resources. When set-
ting the offset for an annotation, XmNxPercentOffset and XmNyPercentOffset are
often more useful than XmNxPixelOffset and XmNyPixelOffset, because then the
size of the offset is proportional to the actual size of the Plotter widget. The function
XiAnnotationPosition(), shown in Figure 13-4 provides a convenient way to set these
four resources. In addition, it addresses another common difficulty in positioning
annotations: the decision about which side of the point the annotation should placed
on. XiAnnotationPosition() makes the assumption that there is more likely to be
important data near the center of the plotting area, and always attempts to position the
annotation on the "outside side" of the data point. The exception is when the point to
be annotated is close enough to the edge of the plotting area that the annotation would
not fit on the "outside". In this case, the annotation is placed towards the inside.
Annotating Plots 193

void XiAnnotationPosition(Widget annotation, double x, double y,

 int xoffset, int yoffset)

annotation

The TextPlot or ImagePlot widget that is to be positioned.
x, y The X and Y axis coordinates of the point that is being annotated. These

values will be set on the XmNxPoint and XmNyPoint resources of the
annotation widget.

xoffset, yoffset

The X and Y offset of the annotation from the point being annotated,
expressed as a percentage of the Plotter width and height. The absolute
value of these arguments is used, and in both the X and Y dimensions, the
annotation is offset towards the closest edge of the Plotter (i.e. away from
the center of the plotting area) unless it won't fit, in which case it is offset
towards the center of the plotting area.

Figure 13-4. XiAnnotationPosition()

The most common use of TextPlot and ImagePlot widgets is to annotate data points in
a LinePlot or HighLowPlot, bars in a BarPlot, or wedges in a PiePlot. The functions
shown in the following subsections provide a way of obtaining the coordinates of
these data points, bars, and lines, so that they can be annotated. These functions are
designed to work well with XiAnnotationPosition().

13.3.1 Querying LinePlot and HighLowPlot values
XiLinePlotGetPoint() returns the X and Y coordinates (the axis coordinates, not the
pixel coordinates) of a specified point in a LinePlot. Similarly, XiHighLowPlotGet-
Point() returns the X coordinate, and the high, low, and close values of a HighLow-
Plot. The signatures of these functions are shown in Figure 13-5.
194 GraphPak Programmer’s Reference Manual

Boolean XiLinePlotGetPoint(Widget w, int point,

 double *x_return, double *y_return)

Boolean XiHighLowPlotGetPoint(Widget w, int point,

 double *x_return, double *high_return,

 double *low_return, double *close_return)

w A LinePlot widget or an HighLowPlot widget.
point The index of the data point whose coordinates are to be returned. Pass 0 to

query the first data point, 1 to query the second, and so on.
x_return

For both LinePlots and HighLowPlots, this argument returns the X coordi-
nate of the specified point.

 y_return

For LinePlots, this argument returns the Y coordinate of the specified
point.

"high_return, low_return, close_return

For HighLowPlots, these arguments return the Y coordinate of the high,
low, and close values for the specified data point.

Figure 13-5. XiLinePlotGetPoint() and XiHighLowPlotGetPoint()

Note that you can query the X and Y coordinates of an ErrorPlot with XiLinePlotGet-
Point(). There is no way to query the values of the error bars in an ErrorPlot, however.
You'll have to do this by examining your plot data manually.

13.3.2 Querying the Bounds of a BarPlot Bar
XiBarPlotGetBar() is similar in function to XiLinePlotGetPoint(), but is more com-
plicated, because it returns the coordinates of a two-dimensional bar, rather than of a
zero-dimensional point. The signature for this function is shown in Figure 13-6.
Annotating Plots 195

Boolean XiBarPlotGetBar(Widget w, int bar,

 double *x0_return, double *y0_return,

 double *x1_return, double *y1_return)

w A BarPlot widget.
bar The index of the bar that is to have its coordinates queried. Pass 0 to query

the first bar in the BarPlot, 1 to query the second, and so on.
x0_return

This argument returns the left edge of the bar.
y0_return

This argument returns the origin of the bar plot, or the bottom edge of a
stacked bar. Note that when the value displayed by the bar is positive, the
origin is the lower edge of the bar. But when the bar displays a negative
value, it extends beneath the origin, and the origin returned by this argu-
ment is the upper edge of the bar.

x1_return

This argument returns the right edge of the bar. It is always greater than
the value returned by x0_return.

y1_return

This argument returns the value displayed by the bar, or the top edge of a
stacked bar. When the bar displays a positive value, this argument will
return a larger value than that returned by y0_return.

Figure 13-6. XiBarPlotGetBar()

XiBarPlotGetBar() returns the coordinates of two corners of a bar. You can use these
values to position your annotation wherever desired. You might position it centered
within the bar, for example, or slightly above the top of the bar. Note that you can use
XiBarPlotGetBar() to query the bar values for a HistoPlot widget as well.

13.3.3 Querying the Bounds of a PiePlot Wedge
Querying the coordinates of a wedge in a PiePlot is trickier than querying a BarPlot,
simply because a wedge is irregularly shaped. XiPiePlotGetPosition() returns the
coordinates of several interesting points on a PiePlot widget. (Recall that each wedge
of a pie chart is an individual PiePlot widget; thus there is no need to specify which
wedge is being queried within a PiePlot.) The signature of this function is shown in
Figure 13-7.
196 GraphPak Programmer’s Reference Manual

void XiPiePlotGetPosition(Widget pie,

 double *x0_return, double *y0_return, /*vertex */

 double *x1_return, double *y1_return, /*start of arc */

 double *x2_return, double *y2_return, /*end point of arc */

 double *x3_return, double *y3_return, /* mid-point of arc*/

 double *percent_return) /* wedge percentage */

pie A PiePlot widget; a single wedge in a piechart.
x0_return, y0_return

These arguments return the X and Y coordinates of the vertex of the
wedge.

x1_return, y1_return

These argument return the X and Y coordinates of the beginning of the arc
of the wedge.

x2_return, y2_return

These argument return the X and Y coordinates of the end of the arc of the
wedge.

x3_return, y3_return

These argument return the X and Y coordinates of the mid-point of the arc.
percent_return

This argument returns the percentage of the entire pie that this wedge rep-
resents. You might want to convert this value to a string and use it in your
annotation.

Figure 13-7. XiPiePlotGetPosition()

You might choose to use the return values of XiPiePlotGetPosition() directly and
position your annotation offset slightly from the mid-point of the arc of the wedge,
returned by x3_return and y3_return, for example. Or you might do a little computa-
tion on your own and position your annotation with zero offset two-thirds of the way
along the line between the vertex and the midpoint of the wedge.
Annotating Plots 197

13.3.4 Example: Annotating a PiePlot
Figure 13-2 shows a C procedure that uses XiAnnotationPosition() and XiPiePlotGet-
Position() to annotate four different points on a PiePlot wedge. You could write simi-
lar code to annotate data in a LinePlot, BarPlot, or HighLowPlot. Figure 13-8 t has
had three of its wedges labeled with the code in this procedure. Note how the annota-
tions are always offset towards the "outside" of the plotting area from the point they
annotate--this is the work of XiAnnotationPosition().

Figure 13-8. A thoroughly annotated pie chart
198 GraphPak Programmer’s Reference Manual

Example 13-2. Thoroughly annotating a PiePlot wedge

void AnnotateWedge(Widget pie)
{
 double x0, x1, x2, x3, y0, y1, y2, y3, percent;
 char percent_string[20];
 Widget annos[4];

 XiPiePlotGetPosition(pie, &x0, &y0, &x1, &y1,
 &x2, &y2, &x3, &y3, &percent);
 sprintf(percent_string, "%d%%", (int)percent);

 annos[0] = XtVaCreateWidget("anno", xiTextPlotWidgetClass,
 Plotter, XmNtext, "v", NULL);
 annos[1] = XtVaCreateWidget("anno", xiTextPlotWidgetClass,
 Plotter, XmNtext, "start", NULL);
 annos[2] = XtVaCreateWidget("anno", xiTextPlotWidgetClass,
 Plotter, XmNtext, "end", NULL);
 annos[3] = XtVaCreateWidget("anno", xiTextPlotWidgetClass,
 Plotter, XmNtext, percent_string, NULL);

 XiAnnotationPosition(annos[0], x0, y0, 8, 8);
 XiAnnotationPosition(annos[1], x1, y1, 8, 8);
 XiAnnotationPosition(annos[2], x2, y2, 8, 8);
 XiAnnotationPosition(annos[3], x3, y3, 8, 8);

 XtManageChildren(annos, 4);
}

13.4 Updating Image Annotations
There is one final point to note in this chapter, and one final function to introduce.
When using an ImagePlot widget, if you change the contents of a displayed bitmap,
pixmap, or XImage without actually changing the value of the XmNbitmap, XmNpix-
map, or XmNimage resources, you should call the function XiImagePlotUpdate() to
inform the ImagePlot that its image has changed and that it needs to redraw it.

void XiImagePlotUpdate(Widget w);

w An ImagePlot widget which needs to be redisplayed. This function should
be called after the contents (but not the value) of an image resource has
been changed.

Figure 13-9. XiImagePlotUpdate()
Annotating Plots 199

200 GraphPak Programmer’s Reference Manual

4

The FadePlot Widget

The FadePlot widget is designed for presentation graphics. It adds visual interest to
your graphs by drawing a background that "fades" smoothly from one color to
another. This effect is most impressive in color, so the figure on the facing page is not
representative of the capabilities of this widget.

FadePlot Synopsis
Class Name: XiFadePlot
Class Hierarchy:RectObj → XiPlot → XiFadePlot
Header File: <Xi/FadePlot.h>
Class Pointer: xiFadePlotWidgetClass

Constructor: XiCreateFadePlot (Widget parent, String name,

 ArgList args,

 Cardinal num_args);

The FadePlot widget can be used as a background plot which appears within the plot-
ting area, beneath the grid lines, or it can be used as a backdrop plot, and in this case it
provides the background for the entire Plotter, as pictured on the facing page. The
widget will automatically compute the colors of the "fade" it is to display, or it will
display a list of colors that you specify. It will display the colors in any of four possi-
ble directions, and can interpolate them linearly or non-linearly.
The next section explains the FadePlot resources in detail, and the section after that
shows an example of using the FadePlot and provides some hints for using it effec-
tively.

1

GraphPak Programmer’s Reference Manual 201

14.1 FadePlot Resources
The FadePlot resources specify the colors that are to be displayed, how many colors
there are, the direction they are displayed in, and how they are calculated. Other
resources control how and whether those colors are printed in hardcopy. The
resources are summarized in Table 14-1 and are explained in detail in the paragraphs
that follow.

Table 14-1. FadePlot Resources

aInherited from the Plotter XmNplotAreaColor resource.

XmNcolors
An array of XmNnumColors Pixel values which you can set to specify an explicit
list of colors for the FadePlot widget to display. If you do not specify a value for
this resource, then the FadePlot will compute its own colors, based on the value
of the XmNstartColor and XmNendColor resources. In this latter case, you can
query this XmNcolors resource to obtain the array of computed colors the widget
is displaying. When you set this resource, the widget does not make a copy of the
array, so your array must remain valid for the lifetime of the widget. Similarly,
when you query the resource, the returned array belongs to the widget, and
should not be modified or freed.

XmNstartColor, XmNendColor
If the XmNcolors resource is not set, then the FadePlot will automatically com-
pute its own colors to display by interpolating between the colors specified by
these two resources.

Name Class Type Default CSG Pg
Colors
XmNcolors XmCColors XmColorList NULL CSG 202
XmNstartColor XmCStartColor Pixel XmNplotAreaColora CSG 202
XmNendColor XmCEndColor Pixel XmNplotAreaColora CSG 202
XmNnumColors XmCNumColors Dimension 10 CSG 203
XmNfadeDirection XmCFadeDirection XiFadeDirection top_to_bottom CSG 203
Color Interpolation
XmNuseHSL XmCUseHSL Boolean FALSE CSG 203
XmNinterpolateFunc XmCInterpolateFunc XiInterpolateFunc NULL CSG 203
Printing
XmNdontPrint XmCDontPrint Boolean FALSE CSG 204
XmNpsNumColors XmCNumColors Dimension 100 CSG 204
202 GraphPak Programmer’s Reference Manual

XmNnumColors
If XmNcolors is set, then this resource must specify the number of Pixel entries
in that array of colors. If XmNcolors is not set, then this resource specifies the
number of colors that will be automatically computed for display. The number of
colors specified by this resource include the two colors specified by the XmN-
startColor and the XmNendColor resources, so, for example, if XmNnumColors
is ten, then the FadePlot will interpolate eight new colors between the specified
starting and ending colors.

XmNfadeDirection
The direction in which the colors will be displayed--the direction of the "fade".
This resource is of type XiFadeDirection, and has one of four possible values (the
meaning of which is self-explanatory): XiFADE_TOP_TO_BOTTOM,
XiFADE_BOTTOM_TO_TOP, XiFADE_LEFT_TO_RIGHT, and
XiFADE_RIGHT_TO_LEFT. The FadePlot registers a resource converter for
this data type, so you can set this resource from a resource file. The converter
recognizes the type names as you type them in C code, and it also allows you to
omit the Xi and FADE_ prefixes. Further, it is case insensitive, so you can spec-
ify values like "XiFADE_BOTTOM_TO_TOP", "FADE_LEFT_TO_RIGHT",
and even "top_to_bottom".

XmNuseHSL
This resource effects the way in which the FadePlot interpolates between XmN-
startColor and XmNendColor. If False, then the FadePlot simply uses the RGB
color coordinates of each color, and performs an interpolation between them. If
True, then the FadePlot first converts the starting and ending color to HSL coor-
dinates, and performs an interpolation in this Hue-Saturation-Lightness color
space. The results of this interpolation may vary slightly or significantly, depend-
ing on the starting and ending colors. Because colors in the HSL color space vary
in a more predictable fashion, you may find it easier to achieve particular fade
effects that you are interested in by setting the XmNuseHSL resource to True.
Note that the HSL color space is sometimes called the HSB (Hue-Saturation-
Brightness) color space, or the HVC (Hue-Value-Chroma) space.

XmNinterpolateFunc
This resource specifies a function to be used to perform the color interpolation. If
no function is specified, then the FadePlot will perform a straightforward linear
interpolation. If a function is specified, it should be of type XiInterpolateFunc--a
function that takes two integer arguments i, and n, and returns a double value
between 0.0 and 1.0. The function specified by this resource will be called
repeatedly to perform the interpolation; it will be called with a fixed n argument-
-the number of colors to be computed, and will be called with values for Ii that
range between 0 and n. A return value of 0.0 indicates that the XmNstartColor
should be used, and a return value of 1.0 indicates that the XmNendColor should
The FadePlot Widget 203

be used. A return value between 0 and 1 specifies a color proportionally between
the start and end colors. Specifying NULL for this resource is equivalent to spec-
ifying the following default function:

static double interpolate(int i, int n)
{
 return (double)i/(double)n;
}

XmNdontPrint
Because color "fades" may not be particularly interesting when printed on a
monochrome PostScript printer, this resource allows you to turn printing of the
FadePlot off. If set to True, then the FadePlot will not appear when the Plotter
widget is printed. This is particularly useful when using dark colors in the fade--
they would come out dark gray or black on a monochrome printer, and would
obscure any other plots that appear.

XmNpsNumColors
This resource specifies the number of colors to interpolate when printing the fade
in hardcopy. Because colors are a shared resource in X, and because many X dis-
plays can only display a limited number of distinct colors at one time, you may
have to set the XmNnumColors to a smaller value than you'd like. Because these
constraints do not exist in PostScript, it is possible (if your printer has sufficient
pixel and color resolution) to achieve much smoother fades in hardcopy--note
that the default value for this resource is 100, while the default for the XmNnum-
Colors resource is only 10. If you set XmNpsNumColors to 0, then the XmN-
numColors resource will be used when generating hardcopy instead. Note that
this resource is not used if you have set the XmNcolors resource to specify an
explicit array of colors to display in the fade.

14.2 Using the FadePlot
The FadePlot is a comparatively simple Plot type.Example 14-1shows a simple pro-
gram that creates a FadePlot and uses it as the Plotter background. Example 14-0 is
the resource file that was used with this program, to create the figure that appeared at
the start of this chapter. When studying Example 14-1, note especially how the Plotter
XmNbackdrop resource is set to indicate that the FadePlot should be drawn as the
Plotter background. Also note the use of the XmNinterpolateFunc resource.
204 GraphPak Programmer’s Reference Manual

Example 14-1. Using the FadePlot widget

#include <X11/Intrinsic.h>
#include <Xi/Plotter.h>
#include <Xi/FadePlot.h>

static double interpolate(int i, int n)
{
 int t = n*2/3;
 if (i <= t) return (double)i/(double)t;
 else return (double)(n-i)/(double)(n-t);
}

void main(int argc, char **argv)
{
 XtAppContext app;
 Widget toplevel, plotter, fade;

 toplevel = XtVaAppInitialize(&app, "Demo", NULL, 0,&argc, argv,
 NULL,NULL);

 /* Create the plotter */
 plotter =XtVaCreateManagedWidget("plotter",xiPlotterWidgetClass,
 XmNtitle, "Fade Demo",
 toplevel,
 NULL);

 /* set up the Axis titles */
 XtVaSetValues(XiPlotterXAxis(plotter), XmNtitle, "X Axis",NULL);
 XtVaSetValues(XiPlotterYAxis(plotter), XmNtitle, "Y Axis",NULL);

 /* Create the FadePlot */
 fade = XtVaCreateManagedWidget("fade", xiFadePlotWidgetClass,
 plotter,
 XmNinterpolateFunc, interpolate,
 NULL);

 /* And make it the backdrop plot */
 XtVaSetValues(plotter, XmNbackdrop, fade, NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

The FadePlot Widget 205

Example 14-2. FadePlot resources in a resource file

!! Use 50 colors interpolated between maroon2 and pink
*fade.startColor: maroon2
*fade.endColor: pink
*fade.numColors: 50

!! Draw the colors top-to-bottom (the default)
*fade.fadeDirection: top_to_bottom

!! Interpolate colors in the RGB color space, not the HSL color
space
*fade.useHSL: False

!! When printing, use 150 colors instead of 50.
*fade.psNumColors: 150

!! Set up other stuff in the plotter so it is visible
!! against a dark colored background.
*plotter.foreground: yellow
*plotter*LineWidth: 3
*plotter.legendBackground: lightblue

14.2.1 The FadePlot as Backdrop and Background
The FadePlot widget is generally most effective when used as a backdrop. As shown
in Example 14-1, you can make it into the backdrop by setting the Plotter XmNback-
drop resource to point to the FadePlot. What this does is to tell the Plotter that your
FadePlot needs to be drawn before anything else in the Plotter is drawn, and that it
needs to be drawn as large as the entire Plotter widget, instead of simply being drawn
within the plotting region.
You can also use the FadePlot as a background plot. A background plot is drawn
within the plotting area, as other plots are, but it is drawn before any other plots, and
is also drawn before any grid lines are. This effectively makes it the background of
the plotting area. To display a FadePlot as a background plot, simply set the XmN-
backgroundPlot constraint resource to True on the FadePlot. (Note this carefully: the
XmNbackdrop resource is set on the Plotter widget, but the XmNbackgroundPlot
resource is a constraint that is set on the FadePlot itself.) It is possible to have more
than one background plot drawn at a time, but if you do this, be sure to set the draw-
ing order of the plots carefully, as a FadePlot fills the entire plotting area, and will
obliterate any background plots drawn before it. For this same reason you will never
want to use a FadePlot unless you have made it a backdrop or a background plot--if
drawn as a regular plot, it will erase the grid lines and any plots that are drawn before
it is.
206 GraphPak Programmer’s Reference Manual

14.2.2 Non-Linear Color Interpolation
As we've seen the XmNinterpolateFunc resource can be used to produce fade colors
using a non-linear interpolation. Example 14-3 shows some sample interpolation
functions that you might use.
Example 14-3. Example non-linear interpolation functions

/* Default function -- linear interpolation */
double interpolate1(int i, int n)
{
 return (double)i/(double)n;
}

/* Interpolate based on a non-linear function: y = x*x */
double interpolate2(int i, int n)
{
 return (double)(i*i)/(double)(n*n);
}

/* Interpolate backwards -- same as changing the XmNfadeDirection
resource */
double interpolate3(int i, int n)
{
 return (double)(n-i)/(double)n;
}

/* Cycle through the colors twice */
double interpolate4(int i, int n)
{
 return (double)((i*2)%n) / (double)n;
}

/* interpolate forwards 2/3 of the screen, then backwards for 1/3 */
static double interpolate5(int i, int n)
{
 int t = n*2/3;
 if (i <= t) return (double)i/(double)t;
 else return (double)(n-i)/(double)(n-t);
}

The FadePlot Widget 207

14.2.3 Note on Color Usage
There are several interesting points about color usage that you should be aware of
when using the FadePlot.
First, note that because colors are a shared resource in X, the FadePlot may not
always be able to allocate the number of colors you specify in the XmNnumColors
resource. If this happens, the FadePlot will print a warning message to the standard
error stream, and will reuse the last color it was able to allocate for any remaining col-
ors.
On the other hand, however, you can sometimes set the XmNnumColors resource to
be larger than the number of colors available in the X colormap. This happens when
the XmNstartColor and XmNendColor are similar enough that the X server can only
display a small number of distinct colors between them. For example, many X servers
can only display about 40 distinct colors between "sea green" and "medium sea
green", so if you choose these colors as your starting and ending points, then you can
set XmNnumColors as large as you want, and the FadePlot will never actually allo-
cate more than 40 colors. A similar point is true of PostScript hardcopy--you can set
XmNpsNumColors as large as you want, but the actual number of distinct colors that
you see in the resulting output will depend on the color resolution of the output
device.
Throughout this chapter, we've been assuming that you'll set the XmNstartColor and
XmNendColor resources and have the FadePlot automatically compute the colors in
between. You can, of course, allocate your own colors, and specify them directly on
the XmNcolors resource. There are three situations in which you might like to do this.
The first is to achieve special effects--with the XmNcolors resource you can display
whatever colors you want, in whatever order you want. This gives you even more
flexibility than is possible with your own XmNinterpolateFunc.
The second reason to use the XmNcolors resource is if you want to animate the colors
of the background. If you allocate your colors in private read-write color cells, and
then use these colors in the XmNcolors array, you can use XStoreColors() to change
the RGB color associated with each color cell in the array. Doing this changes the dis-
played colors instantly. So, for example, by rotating a set of smoothly interpolated
colors through an array of private color cells, you can achieve the effect of a moving
background.
The third reason to use the XmNcolors resource is if you want both to have a FadePlot
background and allow the user to use the Plotter's crosshair and "rubberbanding"
capabilities. The plotter draws crosshairs and boxes regions swept out by the mouse
by using XOR drawing. This means that the color of the crosshair or the box is depen-
dent on the background color. With a FadePlot in the background, the color is never
constant, and the crosshairs and boxes are usually almost invisible and impossible to
use. A workaround to this problem is to use XAllocColorCells() to allocate your col-
ors and to allocate a plane mask for those colors. Suppose you needed 25 distinct col-
ors for your "fade". Your call to XAllocColorCells() would allocate 25 color cells,
and would then also allocate another 25 cells each of which has an additional bit set in
208 GraphPak Programmer’s Reference Manual

it. For example, if it allocated cells 10 through 34, it might also allocate cells 138
through 162. Then you can use the returned 25 cells for your interpolated fade colors,
and set each of the additional 25 cells to the fixed color that you want the crosshairs
and boxes to appear in. Finally, you use specify the returned "plane mask" on the
XmNcrosshairColor and related resources, and the Boolean algebra of XOR will
ensure that the proper color is displayed, regardless of the FadePlot background col-
ors.
The FadePlot Widget 209

210 GraphPak Programmer’s Reference Manual

5

Drawing Your Own: the
CallbackPlot

The CallbackPlot widget is a very simple widget class that displays no data of its
own, but instead provides callback hooks to enable you to display data in any format
you choose.

CallbackPlot Synopsis
Class Name: XiCallbackPlotPlot
Class Hierarchy:RectObj → XiPlot → XiCallbackPlot
Header File: <Xi/CallbackPlot.h>
Class Pointer: xiCallbackWidgetClass

Constructor: XiCreateCallbackPlot (Widget parent,

 String name, ArgList

 args, Cardinal num_args);

When you create a CallbackPlot, it will do nothing on its own. If you define an appro-
priate callback, however, you can make it do any kind of drawing you want. By defin-
ing another callback, you can have it draw a shadow for your custom plot type, or by
defining a third callback, you can tell the CallbackPlot how to draw your custom plot
type in PostScript.
Note that in order to draw your own custom plots on the screen with the CallbackPlot
widget, you'll need to be familiar with Xlib, and to transfer those custom plots to
hardcopy, you'll need to know how to write simple PostScript code.
The following section explains the CallbackPlot resources. It is followed by an exam-
ple of creating a CallbackPlot and defining callbacks that display a custom plot type.

1

GraphPak Programmer’s Reference Manual 211

15.1 CallbackPlot Resources
The CallbackPlot has 10 callback resources, 10 "data" resources that are untyped and
are for your own use, and a single "control resource" that you can use to tell the Call-
backPlot to redraw itself. These resources are summarized in Table 15-1 and are
explained in detail in the subsections that follow.

Table 15-1. CallbackPlot Resources

Name Class Type Default CSG Pg
Untyped Data
XmNdata0 XmCData XiUntyped NULL CSG 213
XmNdata1 XmCData XiUntyped NULL CSG 213
XmNdata2 XmCData XiUntyped NULL CSG 213
XmNdata3 XmCData XiUntyped NULL CSG 213
XmNdata4 XmCData XiUntyped NULL CSG 213
XmNdata5 XmCData XiUntyped NULL CSG 213
XmNdata6 XmCData XiUntyped NULL CSG 213
XmNdata7 XmCData XiUntyped NULL CSG 213
XmNdata8 XmCData XiUntyped NULL CSG 213
XmNdata9 XmCData XiUntyped NULL CSG 213
Callbacks
XmNchangeCallback XmCCallback Callback NULL C 217
XmNcreateCallback XmCCallback Callback NULL C 217
XmNdrawCallback XmCCallback Callback NULL C 217
XmNdrawPSCallback XmCCallback Callback NULL C 217
XmNfreeCallback XmCCallback Callback NULL C 218
XmNlegendCallback XmCCallback Callback NULL C 218
XmNlegendPSCallback XmCCallback Callback NULL C 219
XmNresizeCallback XmCCallback Callback NULL C 219
XmNshadowCallback XmCCallback Callback NULL C 219
XmNshadowPSCallback XmCCallback Callback NULL C 219
Control Resources
XmNrecalc XmCRecalc Boolean FALSE S 220
XmNredraw XmCRedraw Boolean FALSE S 220
XmNxMax XmCXMax double -DBL_MAX CSG 220
XmNxMin XmCXMin double DBL_MAX CSG 220
XmNyMax XmCYMax double -DBL_MAX CSG 220
XmNyMin XmCYMin double DBL_MAX CSG 220
212 GraphPak Programmer’s Reference Manual

15.1.1 Untyped Data Resources
The CallbackPlot has an unusual set of resources with no fixed data type, and no set
purpose. This is fitting, though, since the CallbackPlot itself has no fixed purpose,
either. When you write the callback procedures that will make a CallbackPlot widget
display some custom plot type, you can use the XmNdata0 through XmNdata9
resources for any purpose you want. Each callback procedure will be passed
call_data that allows it to easily get and set the values of these resources. You can use
them as scratch variables, as flags for communication between the various callback
routines.
You can also use these data resources more traditionally, as actual resources, so that
users of your custom plot type (i.e. you or other programmers) can specify parameters
that control the plots appearance or behavior. You might decide that the XmNdata0
resource will specify the foreground color for your custom plot, that the XmNdata1
resource will specify a XFontStruct*, for the plot, and that XmNdata2 will specify the
width, in pixels, of the lines to be drawn by the plot. Then, once you had written the
appropriate callback procedures that used these resource values, you could create
multiple instances of your custom plot type, which all used different colors, fonts, and
line widths.
There is nothing tricky about setting the value of these untyped data resources. When
you use argument lists, the XtSetArg() macro casts all resource values to an XtArgVal
anyway, so in effect all resources are untyped. Similarly, if you specify resources in a
call to XtVaCreateWidget(), all the resource values in the variable-length argument
list are implicitly cast to integers, anyway. (Do note, though, that setting resources
with XtSetValues() or XtVaSetValues() may only work if you've written a callback
that notices and handles these changes.) You can always query the value of these
resources with XtGetValues() or XtVaGetValues(), of course.
Note in Table 15-1 that the data resources all have representation type XmRXiUn-
typed. The CallbackPlot widget defines a String-to-XiUntyped resource converter,
which means that you (or your application's users) can actually set these untyped
resources from a resource file. The trick is that you must specify both resource value
and the type that the resource is to be converted to. For the purposes of
resource conversion, types are specified as the string values of their XtR representa-
tion types. For example, you could use the XiUntyped converter with resources like
the following:

! foreground color
*cbplot1.data0: Pixel: red
! font
*cbplot1.data1: FontStruct: *-helvetica-medium-r-*-*-*-140-*
! line width
*cbplot1.data2: 4
Drawing Your Own: the CallbackPlot 213

Note the use of a colon to separate the data type from the data value in the example.
Also note that in the last resource, we didn't specify a data type at all. If the XiUn-
typed converter can't find a type specification in the resource, it assumes that the
value is an integer.
The paragraphs above explain how to set resource values from "the outside"--as a
user of the custom plot type. But when you're writing the callbacks that define the
widget's behavior, you'll be able to read and write these data values directly, as ele-
ments in an array. While access is more direct in this case, casting is not handled auto-
matically. Each of the data values in the array is of type XtPointer, so you'll have to
cast to and from this type when setting or reading the values of these variables. You'll
see examples of this direct reading and setting of the untyped data variables in the
example at the end of the chapter.
An important shortcoming of these untyped data resources is that they are declared to
be XtPointer variables. On most architectures, this is not big enough to hold a double
value. If you want to specify floating-point values with these resources, you'll either
have to use float variables, or use pointers to double. If you use pointers, note that
your callback procedures should either make a private copy of the double value, or
you should be very careful to only specify the address of double variables that are
stored in static memory, or allocated memory that won't be freed. If you pass the
address of a double value that is an automatic variable (i.e. a variable on the stack) the
value of the resource you set will probably be trashed as soon as the current procedure
returns and a new procedure is called. The extended example that ends this chapter
shows how you might use pointers to double variables as resource values.
The CallbackPlot provides ten of these untyped data resources, which is enough for
simple plot types. More complicated plots may need more space than this, however,
to use as scratch variables or to maintain its internal state. If this is the case for your
custom plot type, simply define a data structure to contain all the extra fields you
need, allocate one of these structures for each widget instance, and then use one of the
existing data resources (XmNdata9, for example) to point to the allocated instance of
this data structure. You can even handle the allocation and deallocation of this extra
data structure from within the callbacks that you write for your custom plot type.

15.1.2 Callback Resources
The most significant resources of the CallbackPlot widget are, not surprisingly, its
callbacks. The widget class defines ten callback lists, each of which provides a hook
for a single aspect of plot behavior. Each of these callbacks are invoked from within
the various class methods of the CallbackPlot widget, so what they do is give you the
opportunity to insert arbitrary C code into each of the widget class methods--in effect,
defining your own widget class.
Each of the callbacks of the CallbackPlot is passed a pointer to an XiCallbackPlot-
Struct as its call_data argument. This structure is shown in Figure 15-1; descriptions
of the individual fields follow. Note that not all fields of this structure are defined for
214 GraphPak Programmer’s Reference Manual

each of the callbacks; the descriptions of the individual callbacks below specify
which fields are valid.

typedef struct {
 Display *display; /* The X display */
 Drawable drawable; /* What to draw into; usually a window */
 GC gc; /* A gc that is all yours to use */
 Region region; /* A clipping region for efficiency */
 FILE *file; /* The file to output PostScript to. */
 XRectangle rectangle; /* drawing area in pixels or PS points */
 double xmin, xmax, ymin, ymax;/* the axis bounds */
 XtPointer *data; /* address of XmNdata0 to XmNdata9 */
 XtPointer *olddata; /* old datavalues for XmNchangeCallback*/
} XiCallbackPlotStruct;

Figure 15-1. XiCallbackPlotStruct

The fields of the XiCallbackPlotStruct are the following:

display
This field is just the Xlib Display pointer. You'll use it for any drawing you do.

drawable
This is the X window to draw into. Note that in the XiCallbackPlotStruct, this
field is declared as type Drawable, rather than as type Window. This is because of
double-buffering--when double-buffering is turned on, you may actually end up
drawing into a Pixmap or a Multibuffer. A Drawable behaves almost just like a
Window, and you never need to know what kind of Drawable you are drawing
into. The only thing to look out for is that you cannot call XClearWindow() or
XClearArea() on a Drawable--instead, you have to use XFillRectangle().

gc
This field is an Xlib GC--a graphics context--that the CallbackPlot automatically
creates for your use. Each CallbackPlot widget gets its own private GC, which
you can use it for absolutely anything you want. The CallbackPlot never sets any
attributes in this GC--you set whatever attributes you need to whatever values
you want. Note that the GC is automatically created when the widget is created
and automatically destroyed when the widget is destroyed.
Drawing Your Own: the CallbackPlot 215

region
A Region is an opaque Xlib structure that defines an arbitrary region of the
screen. It is used in Xt to specify the area of a window that needs to be redrawn
when an Expose event (or a series of Expose events) occurs. If the region field is
non-NULL, you can use it to help make redrawing your plot more efficient--use
XRectInRegion() to find out if any part of your drawing needs to be redrawn. Or,
use XClipBox() and XSetClipRectangles() to define a clipping region so that the
X server doesn't do more drawing than is necessary.

file
This field is defined for the callbacks that allow you to generate PostScript hard-
copy of your custom plot type. It is a FILE * to which you should output your
PostScript commands.

rectangle
This field is an XRectangle structure, which contains x, y, width, and height
fields. These four values define a rectangle within which you should do your
drawing. The rectangle either gives the coordinates of the main plotting area of
the Plotter widget (i.e. the area between the axes), or it gives the coordinates of a
small rectangle in the legend into which your custom plot can draw an iconic rep-
resentation of itself. For the X drawing callbacks, the rectangle will be expressed
in X coordinates--i.e pixels. For the PostScript drawing callbacks, the coordi-
nates of the rectangle will be expressed in the PostScript coordinate system. In
any case, you should never draw anything that falls outside of this rectangle.

xmin, xmax, ymin, ymax
These four fields define the minimum and maximum values displayed on the x
and y axes. You can use these values along with the rectangle field to scale your
plot and position it appropriately in the plotting area.

data
This field gives the address of the XmNdata0 resource. Since the XmNdata0
through XmNdata9 resources are stored as an array of XtPointer, you can access
the value of each of these untyped resources just by using this data field with
array notation: data[0], data[9], etc. Note that you can both get and set the value
of these resources in this way.

olddata
This field is the address of a copy of all the data resources. It is only used for the
XmNchangeCallback, when the user has changed the value of a data resource by
calling XtSetValues() or XtVaSetValues().
216 GraphPak Programmer’s Reference Manual

Having explained all of the fields in the XiCallbackPlotStruct, we can finally explain
each of the callbacks themselves. The extended example at the end of this chapter
shows how you might implement many of these callbacks.

XmNchangeCallback
The XmNchangeCallback is invoked when XtSetValues() or XtVaSetValues() is
called on the widget, and one or more of the XmNdatan resource values has
changed. The display, gc, data, and olddata fields of the XiCallbackPlotStruct are
defined for this callback. The purpose of this callback is to allow you to make
any necessary updates to the widget's internal state to respond to the changes. For
example, if you are using XmNdata2 as the foreground color for your plot, then
you might want to update your GC if this resource changes. You could tell
whether this value has changed by comparing data[2] (the current value) to old-
data[2] (the value before the call to XtSetValues()).

XmNcreateCallback
This callback is called when an instance of a CallbackPlot is first created, but
after all of its resource values have been set to their initial values. Only the dis-
play, gc, and data fields of the XiCallbackPlotStruct valid for this callback. The
purpose of the callback is to give you an opportunity to initialize any internal
state of the widget. For example, you might set fields in the GC based on
resource values, and you might allocate and initialize any additional data struc-
tures that the widget will need. This callback resource need not actually be speci-
fied when the widget is created. It is legal to create the CallbackPlot widget, and
then specify the callback with XtAddCallback(), as long as this is done before
XtSetValues() or XtManageChild() is called for the widget. In any case, if the
XmNcreateCallback is invoked, it will be invoked before the XmNresizeCall-
back, and before the XmNchangeCallback, and it will never be invoked more
than once for any given widget.

XmNdrawCallback
This callback is invoked whenever any part of the plotting area of the Plotter
widget needs to be redrawn. The display, drawable, region, gc, rectangle, xmin,
xmax, ymin, ymax and data fields are all valid. You should use this callback to
make whatever Xlib calls are necessary to draw your custom plot. Be sure, how-
ever, that you do not draw anything outside of the region specified by the rectan-
gle field. If the region field is not NULL, then you can use it to check whether
you actually have to redraw your plot. Note that if your plot type has a shadow,
you should not draw that here--instead, use the XmNshadowCallback.

XmNdrawPSCallback
This callback is invoked when a Plotter widget that is displaying your Callback-
Plot is printed. The file, rectangle, xmin, xmax, ymin, ymax, and data fields are
valid for this callback. This callback should output the PostScript commands to
draw itself to the file specified by file. The PostScript commands you output will
Drawing Your Own: the CallbackPlot 217

automatically be surrounded by a gsave/grestore pair, so that nothing you do will
have any permanent effect on the PostScript graphics state. The xmin, xmax,
ymin, and ymax specify the bounds of the axes, as usual, but note that the rectan-
gle structure contains the bounds of the plotting area in PostScript coordinates,
rather than pixels. One important thing to note is that in PostScript, the Y coordi-
nate increases as you go up the page, rather than as you go down the screen, as in
X. Also note that the values in the rectangle structure will be much larger than
they are when you draw your custom plot type in X--in order to take advantage of
the high-resolution of PostScript, the Plotter widget sets up its coordinate system
so that 16 PostScript units take up the same size on the page as 1 pixel takes up
on the screen. This is quite important to remember. It means, for example, that if
you want to draw a line that is 2 pixels wide, you'll set the PostScript line width
with a command like:

fprintf(call_data->file, "32 setlinewidth\en");

Finally, note that there is no resize callback called before a CallbackPlot is
printed. This means that your XmNdrawPSCallback will have to be responsible
for doing any necessary scaling computation as well as doing the drawing. You
may find that you'll write your XmNdrawPSCallback by combining your XmN-
resizeCallback with your XmNdrawCallback, and converting your Xlib calls to
PostScript output.

XmNfreeCallback
This callback is called when a CallbackPlot is destroyed. Only the display and
data fields of the XiCallbackPlotStruct are valid. You might use this callback to
deallocate any memory or other resources that you have allocated for the widget.
Note that you do not have to deallocate the GC that the CallbackPlot provides--
this GC is freed automatically by the widget. Also note that this callback is dif-
ferent from the XmNdestroyCallback that the CallbackPlot widget inherits from
the RectObj class.

XmNlegendCallback
This callback is called when the Plotter legend needs to be redraw, if your Call-
backPlot has an entry in the legend. The callback's purpose is to allow you to
draw a small iconic representation of the plot within the legend. The display,
drawable, gc, rectangle, and data fields are all valid for this callback. The rectan-
gle structure will describe a fairly small rectangle within the legend. You should
be sure not to draw anything outside of this rectangle, but also be sure to use all
of the space provided for your plot icon. Your icon should use the same colors,
line patterns, fill patterns, or special marks that your plot uses, so users will be
able to recognize the plot that it refers to.
218 GraphPak Programmer’s Reference Manual

XmNlegendPSCallback
This callback is called when a Plotter containing a CallbackPlot is printed, and
that CallbackPlot has an entry in the legend. The file, rectangle, and data fields
are valid for this callback. In this callback, you should output the necessary Post-
Script commands to file to draw an icon for your plot within the rectangle speci-
fied by rectangle. Remember that the rectangle is in PostScript coordinates,
where 16 units equal one pixel, and where the direction of the Y coordinate is
reversed. As with the XmNdrawPSCallback, your output will automatically be
encapsulated within an gsave\grestore pair.

XmNresizeCallback
This callback is invoked whenever the size of the Plotter's plotting area changes
or when any of the axis bounds change. It is also invoked when the CallbackPlot
is first created, before the XmNdrawCallback is ever invoked. The display, gc,
rectangle, xmin, xmax, ymin, ymax, and data fields are valid. The purpose of this
callback is to do any scaling or other pre-computation that you have to do when
the widget changes size. For example, you might use this callback to compute the
pixel coordinates that correspond to a given floating-point data value. Then in the
XmNdrawCallback, you'll only have to draw your custom plot at these pixel
coordinates, rather than having to do the computation. The example at the end of
this chapter shows how you can perform this kind of scaling. You might also find
the functions XiConvertWorldToPixel() and XiConvertPixelToWorld() useful in
this callback. These functions are documented in Section 6.4, World <-> Pixel
Coordinate Conversion.

XmNshadowCallback
The XmNshadowCallback is invoked when the plotting area is redrawn in order
to give you the opportunity to draw a shadow beneath your plot. The valid fields
and their usage is identical to the XmNdrawCallback. The reason shadows must
be drawn separately, and not as part of the XmNdrawCallback is that plots may
overlap, but a plot shadow should not overlap another plot. Thus all plot shadows
must be drawn before any plots are drawn. To draw a shadow you generally just
draw your plot as you normally would, but draw it in gray, or with a stipple, and
draw it offset two or three pixels in each dimension from where you'd normally
draw it.

XmNshadowPSCallback
This procedure is called when a CallbackPlot is printed, to give you the opportu-
nity to draw a shadow beneath your plot. The valid fields of the XiCallbackPlot-
Struct, and their interpretation are exactly the same as for the
XmNdrawPSCallback. See XmNshadowCallback for more information on how
and why to draw a shadow.
Drawing Your Own: the CallbackPlot 219

15.1.3 Control Resources
Most ordinary widget resources are used to specify a parameter that modifies the wid-
get's appearance or behavior. The CallbackPlot is not an ordinary widget, however,
and the resources in this section are used to send a command to the widget.

XmNrecalc
If you set this resource to True, the XmNresizeCallback and the XmNdrawCall-
back will all called in order to recompute and redraw your custom plot. If you
also set any of the data resources in the same call to XtSetValues() or
XtVaSetValues(), then the XmNchangeCallback will be invoked before either the
above two. You would set this resource, for example, when you've changed the
data that is to be displayed, or when you've changed a resource that will effect
how that data is scaled. After you set this resource to True, its value is always
automatically reset to False.

XmNredraw
This resource is similar to the XmNrecalc resource. When you set it to True, it
causes the XmNdrawCallback() to be invoked, and your custom plot will be
redrawn. If you also set any of the data resources in the same call to XtSetVal-
ues() or XtVaSetValues(), then the XmNchangeCallback will be invoked before
the XmNdrawCallback is. You would set this resource, for example, when chang-
ing a data resource that specifies the color of the plot. This way, the XmNdraw-
Callback would be invoked to redraw the plot in the new color.

XmNxMax, XmNxMin, XmNyMax, XmNyMin
These four resources are variables of type double, and they specify the bounding
box, in axis coordinates, for your custom plot. This bounding box information is
necessary in order for Plotter autoscaling to work correctly. If you'll be using
autoscaling, set these resources to the largest and smallest X and Y values that
your plot displays. Do not confuse these with the xmax, xmin, ymax and ymin
fields that appear in the XiCallbackPlotStruct structure. Those fields specify the
bounds of the X and Y axes, which may be larger, or even smaller than the
bounds of any particular plot. Since the value of these resources is generally
computed based on the data to be plotted, you'll most often want to set these
resources from inside of the XmNcreateCallback or XmNchangeCallback. Set-
ting these bounding box resources will not cause the XmNchangeCallback to be
invoked (or re-invoked). Generally when these resources are set in response to a
data change, the XmNrecalc resource will also have been set, and in the ensuing
recalculation, the new bounding box will be taken into account for autoscaling. If
you ever set these resources from outside the widget callbacks, note that the
changes won't take effect until you also set the XmNrecalc resource.
220 GraphPak Programmer’s Reference Manual

15.2 CallbackPlot Example
Example 15-1 is a complete example of using the CallbackPlot to define a simple cus-
tom plot--one that draws a square around a given point, as a way of highlighting that
point. This program was used to generate the figure that began this chapter.Example
15-1 shows a resource file that you could run this program with. When studying this
example, note how the procedure used for the XmNcreateCallback and the XmN-
changeCallback updates GC fields. Note how the XmNresizeCallback scales axis
coordinates to pixel coordinates. And given the work done in those callbacks, notice
how simple the XmNdrawCallback is.

Example 15-1. Using the CallbackPlot widget

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <Xi/Plotter.h>
#include <Xi/LinePlot.h>
#include <Xi/CallbackPlot.h>

/*
 * The following are a set of callbacks that will make CallbackPlot
 * draw a rectangle around a specified point. The callbacks expect
 * and use the data resources as follows:
 * data0: pointer to a double--the x coordinate
 * data1: pointer to a double--the y coordinate
 * Those two resources can't be set from a resource file, and the
 * values must be stored in allocated or static memory.
 *
 * Other data values:
 * data2: a Pixel--the color of the box
 * data3: an int--the length of each edge of the box
 * data4: an int--the thickness of the lines of the box.
 *
 * Internally, the widget uses the following:
 * data5: the x pixel coordinate of the upper left.
 * data6: the y pixel coordinate of the upper left.
 */

/* This procedure used for both create and change callback */
static void create_and_change(Widget w, XtPointer tag, XtPointer
call_data)
{
 XiCallbackPlotStruct *data = (XiCallbackPlotStruct *)call_data;

 XSetForeground(data->display, data->gc, (Pixel)data->data[2]);
 XSetLineAttributes(data->display, data->gc, (int)data->data[4],
 LineSolid, CapButt, JoinRound);
}

/*
 * The resize callback. Note how we convert axis coordinates to
 * pixel coordinates, to save computation in the draw callback
 */
Drawing Your Own: the CallbackPlot 221

static void resize(Widget w, XtPointer tag, XtPointer call_data)
{
 XiCallbackPlotStruct *data = (XiCallbackPlotStruct *)call_data;
 double x, y;
 int x0, y0;
 int box_size;

 /*
 * Figure out the pixel coordinates of the center of the box
 * We do this coordinate conversion explicitly here, to show
 * how it is done. You could also call XiConvertWorldToPixel().
 */
 x = *(double *)data->data[0];
 y = *(double *)data->data[1];

 x0 = (x - data->xmin)/(data->xmax - data->xmin) * data->rectan-
gle.width
+ data->rectangle.x;
 y0 = (data->ymax - y)/(data->ymax - data->ymin) * data->rectan-
gle.height
+ data->rectangle.y;

 /* Convert to upper left of box */
 box_size = (int)data->data[3];
 x0 -= box_size/2;
 y0 -= box_size/2;

 /* store this away for later use */
 (int)data->data[5] = x0;
 (int)data->data[6] = y0;
}

/* Draw the plot */
static void draw(Widget w, XtPointer tag, XtPointer call_data)
{
 XiCallbackPlotStruct *data = (XiCallbackPlotStruct *)call_data;

 XDrawRectangle(data->display, data->drawable, data->gc,
 (int)data->data[5], (int)data->data[6],
 (int)data->data[3], (int)data->data[3]);
}

/* Draw the plot icon in the legend */
static void legend(Widget w, XtPointer tag, XtPointer call_data)
{
 XiCallbackPlotStruct *data = (XiCallbackPlotStruct *)call_data;
 int linewidth = (int) data->data[4];

 XDrawRectangle(data->display, data->drawable, data->gc,
 data->rectangle.x + linewidth/2,
 data->rectangle.y + linewidth/2,
 data->rectangle.width - linewidth,
 data->rectangle.height - linewidth);
}

/*
 * Draw the plot in Postscript. Note how we scale the points
 * again. And use an upside-down Y coordinate.
222 GraphPak Programmer’s Reference Manual

 */
static void drawps(Widget w, XtPointer tag, XtPointer call_data)
{
 XiCallbackPlotStruct *data = (XiCallbackPlotStruct *)call_data;
 double x, y;
 int x0, y0, width, height;
 int box_size, line_width;

 /*
 * For PostScript, we've got to do all the scaling in the same
 * way we did it in the resize callback. Except note that the
 * Y units increase up the page rather than down.
 * And don't forget, in the units we use, 1 pixel is 16 PS units,
 * so a 2 pixel wide line should have a PS width of 32.
 */
 x = *(double *)data->data[0];
 y = *(double *)data->data[1];

 x0 = (x - data->xmin)/(data->xmax - data->xmin) * data->rectan-
gle.width
+ data->rectangle.x;
 y0 = (y - data->ymin)/(data->ymax - data->ymin) * data->rectan-
gle.height
+ data->rectangle.y;

 box_size = (int)data->data[3] * 16;
 line_width = (int)data->data[4] * 16;

 x0 -= box_size/2;
 y0 -= box_size/2;

 fprintf(data->file, "%d setlinewidth\en %d %d %d %d rect-
stroke\en",
 line_width, x0, y0, box_size, box_size);
}

/* Draw the plot icon for the legend, in Postscript */
static void legendps(Widget w, XtPointer tag, XtPointer call_data)
{
 XiCallbackPlotStruct *data = (XiCallbackPlotStruct *)call_data;
 int line_width = (int)data->data[4] * 16;

 fprintf(data->file, "%d setlinewidth\en %d %d %d %d rect-
stroke\en",
 line_width,
 data->rectangle.x + line_width/2,
 data->rectangle.y + line_width/2,
 data->rectangle.width - line_width,
 data->rectangle.height - line_width);
}

/*
 * A convenience function for creating the widget and registering
callbacks
 */
Widget CreateSquareWidget(Widget parent, String name,
 ArgList args, Cardinal num_args)
{

Drawing Your Own: the CallbackPlot 223

 Widget w;

 w = XtCreateWidget(name, xiCallbackPlotWidgetClass, parent,
 args, num_args);

 XtAddCallback(w, XmNcreateCallback, create_and_change, NULL);
 XtAddCallback(w, XmNchangeCallback, create_and_change, NULL);
 XtAddCallback(w, XmNresizeCallback, resize, NULL);
 XtAddCallback(w, XmNdrawCallback, draw, NULL);
 XtAddCallback(w, XmNlegendCallback, legend, NULL);
 XtAddCallback(w, XmNdrawPSCallback, drawps, NULL);
 XtAddCallback(w, XmNlegendPSCallback, legendps, NULL);

 return w;
}

void main(int argc, char **argv)
{
 XtAppContext app;
 Widget toplevel, plotter, cbplot1, cbplot2, lineplot;
 double m, c;
 double x1, y1, x2, y2;
 Arg al[10];
 int ac;

 toplevel = XtVaAppInitialize(&app, "hello", NULL, 0,
 &argc, argv, NULL,
 NULL);

 plotter = XtVaCreateManagedWidget("plotter", xiPlotterWidget
 Class,
 toplevel,
 XmNwidth, 500,
 XmNheight, 400,
 XmNtitle, "Callback Plots",
 NULL);

 XiAxisAutoscale(XiPlotterXAxis(plotter));
 XiAxisAutoscale(XiPlotterYAxis(plotter));

 m = 1.0;
 c = 2.0;
 lineplot = XtVaCreateManagedWidget("lineplot", xiLinePlotWidget
 Class,
 plotter,
 XmNyValueMultiplier, &m,
 XmNyValueConstant, &c,
 XmNnumValues, 10,
 XmNmarkPoints, True,
 XmNlegendName, "line",
 NULL);

 /*
 * Remember: given the way we've defined the callbacks,
 * these data0 and data1 resources are not copied, and
 * the double that they point to must remain valid for
 * the life of the widgets
 */
224 GraphPak Programmer’s Reference Manual

 x1 = 3.0; y1 = 5.0;
 ac = 0;
 XtSetArg(al[ac], XmNdata0, &x1); ac++;
 XtSetArg(al[ac], XmNdata1, &y1); ac++;
 XtSetArg(al[ac], XmNlegendName, "square #1"); ac++;
 cbplot1 = CreateSquareWidget(plotter, "cb1", al, ac);
 XtManageChild(cbplot1);

 x2 = 6.0; y2 = 8.0;
 ac = 0;
 XtSetArg(al[ac], XmNdata0, &x2); ac++;
 XtSetArg(al[ac], XmNdata1, &y2); ac++;
 XtSetArg(al[ac], XmNlegendName, "square #2"); ac++;
 cbplot2 = CreateSquareWidget(plotter, "cb2", al, ac);
 XtManageChild(cbplot2);

 XtRealizeWidget(toplevel);

 /* print out the plotter to test the PostScript callbacks */
 XiPlotterPrint(plotter, "testcallback.ps", 0, 0, 1.0, False);

 XtAppMainLoop(app);
}

Example 15-2. Resources for the CallbackPlot Example

*cb1.data2: Pixel: red
*cb1.data3: Int: 15
*cb1.data4: 3

*cb2.data2: Pixel: navy
*cb2.data3: 20
*cb2.data4: 4
Drawing Your Own: the CallbackPlot 225

226 GraphPak Programmer’s Reference Manual

6

User Interaction with the
Plotter

The uses we've seen so far for the Plotter widget have all been static displays of data.
But the Plotter is not an output-only widget--it also allows user input. The user can
interact with the Plotter in six different ways:
• Clicking ("selecting") or double-clicking ("activating") items in the Plotter leg-

end.
• Clicking or double-clicking on a point in the plotting area.
• Dragging the mouse with no buttons down, in order to display crosshairs in the

plotting area.
• Dragging the mouse in the with the Ctrl key down, in order to drag out a rectan-

gle and select a region of the plotting area.
• Dragging the mouse in the with the Meta key down, to move a rectangle around

the screen, as a way of specifying how the plotting area should be scrolled.
• Clicking or double-clicking on the Plotter title, or on any of the axes.
When the user interacts with the Plotter in any of these six ways, the Plotter interacts
with your application by invoking any callback procedures you have registered on
any of its eleven callback lists. In addition to these callback lists, a number of other
Plotter resources control whether and how the user can interact with the plotter. The
following sections explain each of the six types of interaction, and explain the
resources and callbacks associated with each.
You can also customize the mouse button and keyboard bindings used for the various
types of user interaction by changing the default translation table. This chapter con-
cludes with an explanation of the Plotter widget's action procedures, and the default
Plotter translation table that binds user events to those actions.

1

GraphPak Programmer’s Reference Manual 227

16.1 Selecting Items in the Legend
The legend displayed by the Plotter behaves somewhat like a list widget: users can
select individual plots displayed in the plotter by clicking, shift-clicking or double-
clicking on them. In an application, for example, a user might select a plot by clicking
on its key in the legend and then select a "Delete Plot" menu item. Or, a user might
double-click on a plot in the legend as a shortcut to pop up a "Edit Plot Attributes"
dialog box.
When the user selects an item in the legend with a single click, the selection is
reported by the XmNselectCallback. When the user "activates" an item by double-
clicking on it, the activation is reported by the XmNactivateCallback. Both these call-
backs are passed a pointer to the following structure as their call_data.

/* callback reasons for the select and activate callbacks */
#define XmCR_SELECT 7 /* selection state changed in legend */
#define XmCR_ACTIVATE 8 /* double-click in legend */

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Boolean selected; /* True if an item was selected; False if de-
selected */
 Widget item; /* the item that was selected, if any */
 Widget *selected_plots; /* a complete list of selected plots
*/
 Cardinal num_selected_plots; /* # of elements in the list */
} XiSelectCallbackStruct, XiActivateCallbackStruct;

The following paragraphs describe the two callbacks and the meaning of the fields in
the above structure.

XmNselectCallback
The list of callback procedures to be called when the user selects or deselects an
item in the legend. (Note that if the user clicks on an already selected item, there
is no change to the selection state of the widget, and this callback list is not
invoked.) The call_data argument is of type XiSelectCallbackStruct* and points
to a structure that contains a pointer to the selected or deselected plot, as well as
an array of all currently selected plots.
The selected field of this structure specifies whether an item was selected or
deselected. If it is True, then the item field specifies the item that was just
selected. If selected is False, then item either specifies a single item that was
deselected (this can only be done by using a shift-click to toggle an item) or item
is NULL, which indicates that all the selected items were de-selected because the
user clicked in the title of the legend.
The selected_plots field of this callback structure is an array of all the selected
children in the widget, and num_selected_plots is the number of elements in that
array. If the user selected a widget with a click, then there will always be just one
228 GraphPak Programmer’s Reference Manual

element in this array. If the user selected a widget with a shift-click, then there
may be multiple elements in the array. The array exists in allocated memory
owned by the widget. The application must not modify or free this memory. The
array will be freed as soon as the callback returns, so if the application needs to
retain it, it must make a private copy.

XmNactivateCallback
The list of callback procedures to be called when the user double-clicks on an
item in the legend. The call_data argument is of type XiActivateCallbackStruct*
and points to a structure that contains a pointer to the selected or deselected plot,
as well as an array of all currently selected plots. This callback structure is the
same as the XiSelectCallbackStruct used by the XmNselectCallback, but the
fields are used slightly differently: when a plot is "activated", the selected field
will always be False, and the item field will always be set to the plot that was
double clicked on. The selected_plots and num_selected_plots fields are exactly
as for the XmNselectCallback; see the description above for cautions about using
these fields.

In addition to these two callback lists, the Plotter has one additional resource that is
applicable to selection in the Legend. Clicking in the legend will select any single
item and deselect all others. By default, however, holding down the Shift key while
clicking will select an item (or deselect a selected item) without changing the selec-
tion state of any other items. You can change this default with the XmNallowMulti-
pleSelect resource:

XmNallowMultipleSelect
A Boolean that specifies whether the Plotter will allow multiple plots to be
selected in the legend with shift-clicks. The default is True.

One last note about selecting items in the legend. To deselect all items in the legend,
simply click on the legend title.

16.1.1 Example: Highlighting a Selected Plot
Example 16-1 shows a callback procedure you could use with the XmNselectCall-
back to highlight a selected plot using a special color. It assumes that all the plots in
the Plotter are LinePlots, and that multiple-selection with shift-click is not allowed.
User Interaction with the Plotter 229

Example 16-1. Highlighting a selected plot

void HighlightLinePlot(Widget plotter,XtPointer tag,XtPointercall_data)
{
 XiSelectCallbackStruct *data = (XiSelectCallbackStruct) call_data;
 static Widget last_selected_plot = NULL;

 /* batch redisplays together */
 XiPlotterDisableRedisplay(plotter)

 /* First, unhighlight the last selected line plot */
 if (last_selected_plot) {
 XtVaSetValues(data->item,
 XtVaTypedArg, XmNlineColor, XmRString, "black", 6,
 NULL);
 last_selected_plot = NULL;
 }

 /* and now highlight the selected line plot, if there is one */
 if (data->selected) {
 XtVaSetValues(data->item,
 XtVaTypedArg, XmNlineColor, XmRString, "red", 4,
 NULL);
 last_selected_plot = data->item;
 }

 /* do the batch of redisplays */
 XiPlotterEnableRedisplay(plotter)
}
 .
 .
 .
XtAddCallback(plotter, XmNselectCallback, HighlightLinePlot, NULL);

16.2 Selecting Points
The user can select a point in the plotting area by clicking or double-clicking on it.
The Plotter doesn't take any action of its own in response to these clicks, nor does it
highlight the selected point in any way, but it does notify the application of the selec-
tion through the XmNclickCallback and XmNdoubleClickCallback callback lists. By
default, these callbacks will be invoked when the user clicks or double-clicks either
with no keys held down, or with the Shift key held down. While the user has the
mouse button down during the click or double-click, the XmNclickCursor will briefly
be displayed.
Both the XmNclickCallback and XmNdoubleClickCallback callbacks are invoked
with a pointer to the following structure as their call_data argument:
230 GraphPak Programmer’s Reference Manual

/* Motif-style reason codes for these callbacks */
#define XmCR_CLICK 1 /* button clicked in plotting area */
#define XmCR_DOUBLE_CLICK 2 /* double click in plotting area */

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Position px, py; /* pixel coordinates of the mouse */
 double x, y; /* plot coordinates of the mouse */
} XiClickCallbackStruct, XiDoubleClickCallbackStruct;

The callback lists that use this data structure are the following:

XmNclickCallback
The list of callback procedures to be called when the user clicks in the plotting
area. The call_data argument is of type XiClickCallbackStruct* and points to a
structure that contains the pixel coordinates (px and py) and axis coordinates (x
and y) of the point over which the click occurred. Some applications may want to
distinguish between a click and a shift-click; you can do this by examining the
state field of the XButtonEvent * structure passed in the event field of the call-
back structure. If (state & ShiftMask) is non-zero, then the Shift key was held
down for this click. See an Xlib reference manual for more information about X
Event structures.

XmNdoubleClickCallback
The list of callback procedures to be called when the user double-clicks in the
plotting area. The call_data argument is of type XiDoubleClickCallbackStruct*
and points to a structure that contains the pixel and plot coordinates of the point
over which the double-click occurred. The coordinates reported are actually
those of the point under the pointer when the first click occurred--since the
mouse is likely to move slightly during a double-click, the coordinates of the first
click are more likely to be what the user was aiming at. You can check whether
the Shift key was held down in the same way as described for the XmNclickCall-
back.

In addition to these two callback lists, the Plotter has one more resource that is appli-
cable to this form of interaction:

XmNdragThreshold
Since it is very difficult for a user to hold the mouse perfectly still while clicking,
this resource specifies a threshold value that allows the plotter to distinguish
between a click and a drag of some sort. If the mouse moves further than the
number of pixels specified by this resource between the time that the mouse but-
ton is pressed and the time that it is released, then the click is really a drag of
some sort, and neither the click callback nor the double-click callback will be
invoked. The default value is 4 pixels.
User Interaction with the Plotter 231

16.2.1 Example: Hit Detection
Hit detection is the process of determining what is under the mouse pointer when the
user clicks (i.e. what the user "hit" with the mouse.) Example 16-2 uses the XmNdou-
bleClickCallback and the function XiBarPlotGetBar() (introduced in Chapter 13,
Annotating Plots) to determine whether the user has double-clicked on a bar in a bar
chart. The callback procedure shown here doesn't do anything once it determines
which bar has been "hit", but an application that allows the user to edit plot data might
then ask the user to click again in order to set a new position for the bar.
Example 16-2. Hit detection

void HitDetectBarPlot(Widget plotter, XtPointer tag, XtPointer
call_data)
{
 XiDoubleClickCallbackStruct *data;
 Widget barplot;
 int num_bars, i;
 double x0, y0, x1, y1, tmp;

 barplot = (Widget) tag; /* the bar plot to check for hits on */
 data = (XiDoubleClickCallbackStruct *)call_data;

 /* figure out how many bars in the bar plot */
 XtVaGetValues(barplot, XmNnumValues, &num_bars, NULL);

 /* Now check each bar */
 for(i=0; i < num_bars; i++) {
 /* get the bounds of the bar */
 XiBarPlotGetBar(barplot, i, &x0, &y0, &x1, &y1);

 /* in some cases y0 may be > y1. Check for this and swap */
 if (y0 > y1) {tmp = y0; y0 = y1; y1 = tmp;}

 /* Now see if the click was inside the bar */
 if ((data->x >= x0) && (data->x <= x1) &&
 (data->y >= y0) && (data->y <= y1)) break;
 }

 /* if i == num_bars, then no bar was clicked on,so just return */
 if (i == num_bars) return;

 /* Otherwise, we found a hit, so do whatever we do */
 Hit(barplot, i);
}
 .
 .
 .
XtAddCallback(plotter, XmNdoubleClickCallback,
 HitDetectBarPlot, (XtPointer)barplot);
232 GraphPak Programmer’s Reference Manual

16.3 Crosshairs and Mouse Motion
When the user clicks mouse button 1 in the plotting area without the Shift or Meta
keys pressed, the Plotter will draw "crosshairs": vertical and horizontal lines between
the mouse pointer position and each edge of the plotting area. These crossed lines
make it easy for the user to precisely read the axis coordinates of the point the mouse
is over. While the user holds the mouse button down and crosshairs are being dis-
played, the Plotter also invokes the XmNmotionCallback each time the mouse moves.
The application might use this callback notification to update a numeric display of the
pointer position, for example. When the user releases the mouse button, the crosshairs
are erased, and the XmNleaveCallback is invoked, which might serve to notify the
application that it should erase its numeric display of the pointer position.
It is also possible to configure the Plotter to handle crosshairs differently. By adding
some translations to the widget and setting the XmNpermanentCrosshair resource,
you can have the Plotter widget display crosshairs and call the XmNmotionCallback
whenever the pointer is inside the plotting area. Also, by setting XmNdisplay-
Crosshair to False, you can have the Plotter invoke the XmNmotionCallback and
XmNleaveCallback to notify your application of mouse motion without ever actually
drawing the crosshair.
The XmNmotionCallback and XmNleaveCallback are invoked, respectively, with
pointers to the following two structures as their call_data arguments:

/* Motif-style callback reason codes */
#define XmCR_MOTION 9 /* the crosshairs moved */
#define XmCR_LEAVE 10 /* pointer has left plotting area */

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Position px, py; /* pixel coordinates of the mouse */
 double x, y; /* plot coordinates of the mouse */
} XiMotionCallbackStruct;

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
} XiLeaveCallbackStruct;

The callbacks themselves are the following:

XmNmotionCallback
The list of callback procedures to be invoked each time the mouse moves while
crosshairs are being displayed (or even when crosshairs are not being displayed,
if XmNdisplayCrosshair is False). The XiMotionCallbackStruct Callback struc-
ture is the same one passed to the XmNclickCallback: the px and py fields spec-
ify the pixel position of the mouse pointer, and the x and y fields specify the same
position in axis coordinates. This XmNmotionCallback list may be invoked
many times in rapid succession, so the procedures registered on it should not do
User Interaction with the Plotter 233

any time-intensive computations, or the Plotter widget will not be able to keep its
crosshairs displayed in sync with the mouse pointer.

XmNleaveCallback
The list of callback procedures to be invoked whenever crosshairs are erased--
when the user releases the mouse button or, for permanent crosshairs, when the
mouse pointer leaves the plotting area. Note that the XiLeaveCallbackStruct has
no fields other than the standard reason and event fields.

A number of other resources control the reporting of motion events, and how, and
whether crosshairs are drawn:

XmNallowCrosshair
This resource is a Boolean that specifies whether crosshairs should ever be dis-
played when the user clicks and drags the mouse in the plotting area. The default
is True. If you set this resource to False, then no crosshairs will be displayed, and
the XmNmotionCallback will never be invoked in response to a dragging the
mouse. Note however, that even if XmNallowCrosshair is False, crosshairs may
still be displayed in XmNpermanentCrosshair (documented below) is True.

XmNdisplayCrosshair
This resource specifies whether crosshairs should actually be drawn and updated
each time the XmNmotionCallback is invoked. The default is True. Some appli-
cations will want to receive notification of user motion events (i.e. they will have
either XmNallowCrosshair or XmNpermanentCrosshair set to True) but they will
not actually want the crosshairs to appear on the screen. These applications can
set this XmNdisplayCrosshair to False to have the Plotter invoke the XmNmo-
tionCallback and XmNleaveCallback without ever drawing the crosshairs.

XmNcrosshairLineWidth
The width, in pixels, of the lines used to draw the crosshairs. The default of 0
specifies a thin 1-pixel line width which is ideal for accurate reading of the cur-
rent position on the axes. In some cases, however, a 3-pixel width will be more
legible. (A 3 pixel line will be centered about the correct point; a 2 pixel line may
make accurate readings more difficult.)

XmNcrosshairColor
The color of the crosshairs to be displayed. On color displays, you should set this
resource to a value that is distinct from the axis grid lines. Note that the
crosshairs are drawn with XOR, which means that this color will only appear
where the crosshairs overlap the plotting area background color--when the
crosshairs cross a grid line or plot, other, seemingly random, colors will appear
(unless you have allocated your colors very carefully.)
234 GraphPak Programmer’s Reference Manual

XmNcrosshairCursor
The pointer cursor to be displayed while the crosshairs are displayed. The default
value of this resource is the cursor named "crosshair".

XmNpermanentCrosshair
Setting this resource to True tells the Plotter widget that you want crosshairs dis-
played and the XmNmotionCallback invoked whenever the pointer is within the
plotting region, even when no mouse buttons are down--i.e. you want crosshairs
displayed "permanently" When in "permanent crosshair" mode, the crosshairs
will be erased and the XmNleaveCallback will be invoked only when the mouse
leaves the plotting area. Setting XmNpermanentCrosshair is not actually suffi-
cient to turn on permanent crosshairs, however; you must also add the following
translations to the Plotter widget (use XtParseTranslationTable() and XtOverride-
Translations(), or use the #override directive and specify these translations in a
resource file):

<Motion>: motion()
<Leave>: leave()

Note that these translations require the X server to sent an X event to your appli-
cation any time the mouse moves anywhere within the Plotter widget. This can
increase X Protocol traffic between your application and server significantly, and
can result in poor performance with X terminals and other situations in which the
server and application are not running on the same host. See Section 16.7, Plotter
Translations and Actions for more information on Plotter translations and
actions.
A "permanent crosshair" will be displayed even if XmNallowCrosshair is False--
that resource only applied to crosshairs displayed in response to mouse drags.
Note, though, that if XmNdisplayCrosshair is False a permanent crosshair will
never be drawn, though the XmNmotionCallback and XmNleaveCallback will be
invoked as if it were.

16.3.1 Example: Displaying Mouse Coordinates
Example 16-3 shows a callback procedure you could use with the XmNmotionCall-
back and XmNleaveCallback to display the coordinates of the mouse in a Motif
XmLabel widget.
User Interaction with the Plotter 235

Example 16-3. Displaying Mouse Coordinates

void DisplayMouseCoords(Widget plotter, XtPointer tag,
XtPoinintercall_data)
{
 Widget labelwidget = (Widget) tag; /* the widget to display in */
 XiMotionCallbackStruct *data = (XiMotionCallbackStruct
*)call_data;
 int reason;
 char coords[50];
 XmString label;

 /* First go see if this is a motion callback of any kind */
 reason = ((XmAnyCallbackStruct *)call_data)->reason;
 if (reason == XmCR_MOTION) {
/*
 * If so, figure out the numbers to display, convert to
 * an XmString and set on the label widget.
 */
sprintf(coords, "X: %6.3f; Y: %6.3f", data->x, data->y);
label = XmStringCreateLocalized(coords);
XtVaSetValues(labelwidget, XmNlabelString, label, NULL);
XmStringFree(label);
 }
 else /* otherwise, just clear the label widget and we're done */
 XtVaSetValues(labelwidget, XmNlabelString, NULL, NULL);
}
 .
 .
 .
XtAddCallback(plotter, XmNmotionCallback,
 DisplayMouseCoords, (XtPointer) coord_label);
XtAddCallback(plotter, XmNleaveCallback,
 DisplayMouseCoords, (XtPointer) coord_label);

16.4 Selecting Regions
When the user holds down the Ctrl key and drags with mouse button 1 in the plotting
area, the plotter displays special mouse cursors and "rubberbands" out a rectangle to
indicate the bounds of the selected region. While the drag is in progress, the Plotter
reports all mouse motion to the application by invoking the XmNdragMotionCall-
back. When the user releases the mouse button, the Plotter erases the rubberbanded
rectangle, and reports the coordinates of the selected region through the XmNdrag-
Callback. The user can cancel a drag in progress by clicking the right mouse button.
An application might use this style of interaction to allow the user to "zoom-in" on a
plot--when the XmNdragCallback is invoked, the application would set new bounds
on the X and Y axes to match the selected region. The same application might use the
XmNdragMotionCallback to update a Label widget that displays the current bounds
of the selected region numerically.
236 GraphPak Programmer’s Reference Manual

Besides these two callback lists, the Plotter has several other resources that control
this kind of user interaction. These resources will be documented below. (Note that
the callbacks and resources that are used for this type of user interaction all have the
word "drag" in their names. These may be misleading names--there are several other
types of user interaction that involve dragging with mouse.)
Both the XmNdragCallback and the XmNdragMotionCallback are passed a pointer to
the following structure in their call_data argument:

/* Motif-style callback reason codes */
#define XmCR_DRAG 3 /* end of drag in plotting area */
#define XmCR_DRAG_MOTION 4 /* motion during drag in plotting
area */

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Position px1, py1; /* pixel coords of upper left */
 Position px2, py2; /* pixel coords of lower right */
 double x1, y1; /* plot coords of upper left */
 double x2, y2; /* plot coords of lower right */
} XiDragCallbackStruct, XiDragMotionCallbackStruct;

The callbacks are the following:

XmNdragCallback
The list of callback procedures to be called when the user drags and releases the
mouse over the plotting area. The call_data argument is of type XiDragCallback-
Struct* and points to a structure that contains the coordinates of the upper left and
lower right corners of the rectangle that was dragged out. The px1, py1 (upper-
left), px2, and py2 (lower-right) fields give these coordinates as pixel values, and
the x1, y1, x2, and y2 fields give these coordinates as axis values.

XmNdragMotionCallback
The list of callback procedures to be called for each mouse motion event that
occurs while the mouse is being dragged over the plotting area to select a region.
The call_data argument is of type XiDragCallbackStruct* and points to a struc-
ture that contains the pixel and plot coordinates of the upper left and lower right
corners of the rectangle that was dragged out. This callback might be used to dis-
play the coordinates of the rectangle in the application's mode line, for example,
but should not perform extensive computation, or the response time of the plotter
rubberbanding will be degraded.

The other resources that are applicable to this type of user interaction are the follow-
ing:
User Interaction with the Plotter 237

XmNallowDrag
A Boolean that specifies whether the Plotter will allow drags in the plotting area.
The default is True. If your application does not register a callback to respond to
drags, you should probably set this resource to False. This will stop the Plotter
from rubberbanding when the user drags, and prevent confusion that could arise
from a rubberbanded box that has no effect.

XmNdragLineWidth
This is the width, in pixels, of the lines drawn by the Plotter for the drag rubber-
band box. The default is 0, which is a special case for efficiently drawn one-pixel
wide lines. Since the rubberband box is drawn using XOR mode, it can be diffi-
cult to see a one-pixel wide line when it is directly on top of a grid line, or over-
laps a shaded bar plot or pie plot. Using lines that are two pixels wide can help to
make the box more visible.

XmNdragColor
This is the color of the rubberband which is drawn while dragging. If it is not set
when the widget is created, its value is inherited from the XmNforeground
resource. The grid lines drawn by the axes default to this same color, and on color
displays, it is useful to set these to different colors, so that the rubberband is visi-
ble even when it is directly over a grid line. Note that the "rubberband" box
drawn while the drag is in progress is drawn with XOR mode, the color you
request with the resource will only appear where the "rubberband" is directly
over the plotting area background color (XmNplotAreaColor)--where the rubber-
band intersects grid lines and plots, other, somewhat random, colors will appear.

XmNtopLeftCursor, XmNtopRightCursor, XmNbottomLeftCursor,
XmNbottomRightCursor

These resources specify the four cursors to be used when the user drags out a
rectangle. When the user is dragging out the upper-right corner of the rectangle,
the XmNtopRightCursor will be displayed, for example. The default values for
these cursor resources are right angles that match the appropriate corner of the
rectangle. If you change one of these resources, you will probably want to change
them all to provide a matching set.

16.4.1 Example: Zooming In
You can use the selected region reported by the XmNdragCallback in many ways.
Perhaps the most natural one, however is to zoom in on the selected area. Example
16-4 shows a callback procedure that does just this. It also shows another callback
procedure that uses the Plotter autoscaling feature to restore the Plotter display to its
original size. (These procedures assume that your plots are displaying a fixed set of
data, and that you are not computing new data at a higher resolution when the user
238 GraphPak Programmer’s Reference Manual

zooms in.) Note that you could also write a function similar to the DisplayMouseCo-
ords() shown in Example 16-3 for use with the XmNdragMotionCallback.
Example 16-4. Zooming In

void ZoomIn(Widget plotter, XtPointer tag, XtPointer call_data)
{
 XiDragCallbackStruct *data = (XiDragCallbackStruct *) call_data;
 Widget xaxis = XiPlotterXAxis(plotter);
 Widget yaxis = XiPlotterYAxis(plotter);

 /* Set the bounds on the axes, and batch the changes together */
 XiPlotterDisableRedisplay(plotter);
 XiAxisSetBounds(xaxis, data->x1, data->x2);
 XiAxisSetBounds(yaxis, data->y2, data->y1);
 XiPlotterEnableRedisplay(plotter);
}

/* A callback to register on a push button in a menu */
void ZoomRestore(Widget w, XtPointer tag, XtPointer call_data)
{
 Widget plotter = (Widget) tag; /* the plotter to zoom out */
 Widget xaxis = XiPlotterXAxis(plotter);
 Widget yaxis = XiPlotterYAxis(plotter);

 /* Set autoscaling on the axes, and batch the changes together */
 XiPlotterDisableRedisplay(plotter);
 XiAxisAutoscale(xaxis);
 XiAxisAutoscale(yaxis);
 XiPlotterEnableRedisplay(plotter);
}
.
.
.
XtAddCallback(plotter, XmNdragCallback, ZoomIn, NULL);
XtAddCallback(restore, XmNactivateCallback, ZoomRestore,
(XtPointer)plotter);
User Interaction with the Plotter 239

16.5 Panning or Scrolling
When the user holds down the Meta (sometimes Alt) key and drags with mouse but-
ton 1 in the plotting area, the Plotter displays a special mouse cursor, and draws the
outline of a large rectangle in the plotting area. This rectangle represents the plotting
area itself, and moves as the user moves the mouse--this is an intuitive way to allow
the user to pan (i.e. scroll) the visible area of the plot left, right, up, or down. While
the interaction is in progress, the Plotter reports all mouse motion events through the
XmNpanMotionCallback, and when the user releases the mouse button, the Plotter
reports the final delta-X and delta-Y motion through the XmNpanCallback. The user
can cancel the interaction in progress by clicking the right mouse button.
Note that the Plotter does not actually adjust the bounds of the axes in response to a to
this user interaction, but the application can easily do this in response to the XmNpan-
Callback. The application might also use the XmNpanMotionCallback to update a
numeric display of the adjusted coordinates, for example.
The two callbacks are passed a pointer to the following structure as their call_data:

/* Motif-style callback reason codes */
#define XmCR_PAN 5 /* end of pan in plotting area */
#define XmCR_PAN_MOTION 6 /* motion during pan in plotting area
*/

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Position pdx, pdy; /* delta x and delta y in pixel coords */
 double dx, dy; /* delta x and delta y in plot coords */
} XiPanCallbackStruct, XiPanMotionCallbackStruct;

The callbacks are the following:

XmNpanCallback
The list of callback procedures to be called when the user releases the mouse
after panning in the plotting area. The call_data argument is of type XiPanCall-
backStruct* and points to a structure that contains the delta-x and delta-y of the
pan, in both pixel and axis coordinates.

XmNpanMotionCallback
The list of callback procedures to be called for each mouse motion event that
occurs while the user pans over the plotting area. The call_data argument is of
type XiPanMotionCallbackStruct* and points to a structure that contains the
delta-x and delta-y of the pan, in both pixel and axis coordinates. This callback
might be used to display the size of the pan in the application's mode line, for
example, but should not perform extensive computation, or the response time of
the plotter will be degraded and the panning rectangle will be updated jerkily.
240 GraphPak Programmer’s Reference Manual

Besides these two callbacks, several other resources control this type of user interac-
tion:

XmNallowPan
A Boolean resource that specifies whether the Plotter will respond to panning in
the plotting area. The default is True, but if your application does not register any
callbacks to handle panning you should probably set this resource to False. This
will stop the Plotter from displaying the panning rectangle, and will prevent the
confusion that could result from an apparent pan that had no effect.

XmNpanLineWidth
The width, in pixels, of the lines to be used to draw the pan rectangle. The default
is 0 which is a special value meaning efficient one-pixel wide lines. As with the
XmNdragLineWidth resource, the pan rectangle will be more visible when over-
lapping grid lines if this resource is set to 2.

XmNpanColor
The color of the pan rectangle. If this value is not set when the widget is created,
it is inherited from the XmNforeground resource of the Plotter, and as with the
XmNdragColor resource, it is useful to set this to a distinct color on color dis-
plays.

XmNpanCursor
The cursor to display when the user pans the widget. The default is the cursor
named "fleur" in the standard cursor font. (This cursor displays arrows pointing
in each of the four cardinal directions.)

16.5.1 Example: Scrolling the Plotting Area
The panning described in this section is a specialized enough interaction that the only
callback you are likely to want to register on the XmNpanCallback is one that scrolls
the plotting area.Example 16-5 shows how you might implement such a callback.
User Interaction with the Plotter 241

Example 16-5. Scrolling the plotting area

void Scroll(Widget plotter, XtPointer tag, XtPointer call_data)
{
 XiPanCallbackStruct *data = (XiPanCallbackStruct *) call_data;
 Widget xaxis = XiPlotterXAxis(plotter);
 Widget yaxis = XiPlotterYAxis(plotter);
 double xmin, xmax, ymin, ymax;

 /* First, get the current bounds of the axes */
 XiAxisGetBounds(xaxis, &xmin, &xmax);
 XiAxisGetBounds(yaxis, &ymin, &ymax);

 /* Then set the new bounds on the axes, and batch the changes
 together */
 XiPlotterDisableRedisplay(plotter);
 XiAxisSetBounds(xaxis, xmin + data->dx, xmax + data->dx);
 XiAxisSetBounds(yaxis, ymin + data->dy, ymax + data->dy);
 XiPlotterEnableRedisplay(plotter);
}
.
.
.
XtAddCallback(plotter, XmNpanCallback, Scroll, NULL);

16.6 Selecting Title and Axes
When the user clicks or double-clicks with mouse button 1 (and optionally with the
Shift key down) on the Plotter title or on any of the Axes, the Plotter notifies the
application of this interaction by invoking the XmNeditCallback. The application
might use this notification to pop up a dialog box that allows the user to edit the
attributes of the selected axis, for example.
The XmNeditCallback is invoked with a pointer to the following structure as its
call_data argument:

#define XmCR_EDIT 11 /* A Motif-style callback reason code
*/

#define XiPlotterEditTitle 1 /* Values for the where field below
*/
#define XiPlotterEditXAxis 2
#define XiPlotterEditYAxis 3
#define XiPlotterEditYAxis2 4

typedef struct {
 int reason;
 XEvent *event;
 int where; /* one of the above constants */
 Boolean double_click; /* True if this was a double-click */
} XiEditCallbackStruct;
242 GraphPak Programmer’s Reference Manual

XmNeditCallback
The list of callback procedures to be invoked when the user clicks or double-
clicks on the Plotter title or on any of its axes. The where field indicates what the
user clicked on, and is one of the four constants shown above. The double_click
field indicates whether the user clicked or double-clicked--if True, then the user
double-clicked. You can determine whether the Shift key was held down during
the click or double-click by casting the event field to an XButtonEvent * and
examining the state field of that event structure to see if the ShiftMask flag is set.

16.7 Plotter Translations and Actions
In the X Toolkit, the user's mouse and keyboard events do not directly trigger the call-
back lists to be invoked. Instead, the X Toolkit looks up these user events in the
"translation table" of the appropriate widget and maps the events to named "action
procedures" defined by the widget. The Plotter widget uses this "translations and
actions" scheme, and so by changing the default translation table it is possible to mod-
ify the mapping of user events to widget actions and effectively change the widget's
key and mouse-button bindings. In order to do this, you need to understand the Plot-
ter's default translation table and each of the action procedures it supports.
Figure 16-1 shows the default Plotter translations.
As translation tables go, these default Plotter translations are exceptionally confusing.
This is because so many different kinds of interactions are supported through the
same basic mouse button 1 click-and-drag interaction. You need to understand the
individual action procedures in detail to make sense of these translations. As the
actions are explained below, you may find it useful to refer back to Figure 16-1 to see
how the actions are used.

arm()
This action is used with the activate() action, and together, the pair of actions is
responsible for selection in the legend, and selection of the Plotter title and axes.
The arm() action must be bound to a button-down event of some sort. The arm()
action will ignore any events that take place inside the plotting area of the Plotter.
This means that you can safely bind it to the same event as the begin() action--
begin() ignores any button down events that occur outside of the plotting area.
User Interaction with the Plotter 243

/*
 * These default translations are the following:
 * unmodified button 1 is for clicking, or displays crosshairs if
 dragged.
 * shift button 1 is for clicking, in case the app wants to use
 shift-click
 * ctrl-button 1 is for dragging a rectangle.
 * meta-button 1 is for panning.
 * button 1 over the legend selects or activates (double-click) an
 item
 * shift-button1 over the legend selects without deselecting others.
 *
 * These can easily be bound in other ways. If using other buttons,
 * then don't forget to bind motion() and end() to button motion and
 * button up for those buttons too.
 *
 * These translations will not work with a permanent crosshair. For
 * that, we also need these two:
 * <Motion>: motion()
 * <Leave>: leave()
 *
 * The begin() and arm() actions, and the end() and activate() actions
 * are designed not to interfere with each other; only one will have
 * any effect for any given event.
 */
static char defaultTranslations[] = "\
 Shift<Btn1Down>: begin(click) arm()\n\
 Ctrl<Btn1Down>: begin(drag)\n\
 Meta<Btn1Down>: begin(pan)\n\
 <Btn1Down>: begin(click,crosshair) arm()\n\
 <Btn1Motion>: motion()\n\
 Shift <Btn1Up>: end() activate(multiple)\n\
 <Btn1Up>: end() activate()\n\
 <Btn3Down>: cancel()\n\
 <Key>Escape: cancel()\n\
 <Key>osfCancel: cancel()";

Figure 16-1. The default translation table of the Plotter widget

activate()
This action must be invoked after the arm() action, and is responsible for calling
the XmNselectCallback, XmNactivateCallback, and XmNeditCallback. acti-
vate() must be bound to a button-up event that corresponds to a button-down
event to which the arm() action is bound.
The activate() action takes an optional argument--if you pass the argument "mul-
tiple", then clicking in the legend will toggle the selection of the item clicked on
and will not deselect other items. Without the "multiple" argument, clicking in
the legend selects the item clicked on an deselects all others. The default transla-
tions bind arm() to <Btn1Up>, and arm(multiple) to Shift<Btn1Up> to allow
244 GraphPak Programmer’s Reference Manual

both single and multiple selection. By modifying these translations you can allow
only single or only multiple selection.
Note that there are no special arm() or activate() bindings in the translation table
for double-clicks. The activate() action keeps track of the time it was last invoked
and checks the elapsed time to determine whether a given event is a click or a
double click. It uses the standard "system" multi-click interval, which the user
can set with the Xt application resource multiClickTime, and which you can set
with XtSetMultiClickTime() before you create the Plotter widget.
The activate() action ignores any button-up events if the corresponding button-
down event occurred within the Plotter's plotting area. This means you can safely
use it with the end() action which ignores all events that occur outside of the plot-
ting area.

begin()

The begin() action is used with the motion() and end() actions, and together, this
trio of actions is responsible for almost all user interaction that takes place within
the plotting area. begin() must be bound to a button-down event of some sort.
When invoked for an event that occurs outside of the plotting area, it ignores the
event, which means that you can safely bind it to the same events as the arm()
action.
The begin(), motion(), and end() actions handle four distinct types of user input:
clicks and double-clicks, crosshairs displayed while the user drags the mouse
(but not "permanent crosshairs"), region selection with a rubberbanded box
("dragging"), and panning. The begin() action doesn't invoke any callbacks, but
does get the plotter ready to perform these different kinds of interaction when
subsequent mouse motion and button-up events arrive. In order to do this, begin()
takes an argument that specifies what kind of input is "beginning". The argument
may be one of the strings "click", "crosshair", "drag" or "pan", which correspond
to the four types of user input described above. (Note that most of these input
types involve dragging the mouse. The "drag" argument really means "select
region".)
The "click" argument is a special one: when the user presses a mouse button,
there is no way of knowing whether she intends to release the button right away,
resulting in a click, or whether she intends to drag the mouse before releasing the
button. For this reason, if you specify the "click" argument to begin(), you may
also specify an optional second argument of "crosshair", "drag", or "pan" which
specifies what to do if the user ends up dragging the mouse instead of clicking.
The default translation table, for example, binds begin(click,crosshair) to
<Btn1Down>, which means that if the user presses and releases button 1, the
XmNclickCallback will be invoked, but, instead, if the user presses the button,
and then moves the mouse further than XmNdragThreshold, crosshairs will
appear instead, and the Plotter will begin to call XmNmotionCallback for each
mouse motion.
User Interaction with the Plotter 245

motion()
The motion() action is used after the begin() action and before the end() action. It
must be bound to a button motion event of some kind. The behavior of this action
will depend on the argument or arguments passed to the previous invocation of
the begin() action. motion() is responsible for updating the crosshairs, region
select rectangle or pan rectangle that the Plotter is displaying, and for calling the
XmNmotionCallback, the XmNdragMotionCallback, or the XmNpanMotion-
Callback().
Usually the motion() action is bound to button motion events, so it is only
invoked when the user moves the mouse while holding down a mouse button.
But when you want permanent crosshairs displayed, you must also bind this
action to the <Motion> event, so that the crosshairs are updated whenever the
mouse moves.

end()
This action is used after the begin() and motion() actions have been invoked. It
must be bound to a button-up event of some kind, and its behavior depends on the
argument or arguments passed to the previous invocation of the begin() action.
end() is responsible for erasing the crosshairs, region select rectangle or pan rect-
angle drawn by motion(), and for calling the appropriate callback: one of XmN-
clickCallback, XmNdoubleClickCallback, XmNleaveCallback,
XmNdragCallback, or XmNpanCallback. Note that no special bindings are
required to handle double-clicks. The end() action distinguishes clicks from dou-
ble-clicks in the same way that the activate() action does.
The end() action ignores any button-up events for which the corresponding but-
ton-down event occurred outside of the plotting area, which means that you can
safely bind it to the same events as the activate() action, which ignores all events
inside of the plotting area.

leave()
The leave() action is only necessary when you are displaying permanent
crosshairs. It is responsible for erasing the crosshairs and invoking the XmN-
leaveCallback. This action is not bound in the default translation table, but when
using permanent crosshairs, you should bind it to the <Leave> event.

cancel()
This action gives the user a way to cancel an interaction in progress without hav-
ing any of the callbacks called. Suppose the user has pressed a mouse button and
started dragging to select a region of the plotting area, for example, and then they
decide that they don't want to zoom in on that region (assuming the application
does a zoom in in response to the XmNdragCallback). By invoking the cancel()
action they can terminate the action in progress without having any callbacks
called. cancel() works to terminate any kind of user input in progress. In the
246 GraphPak Programmer’s Reference Manual

default translation table, it is bound to mouse button 3, and also to the Escape
key. Note, however, that Motif applications grab Escape for their own purposes,
so if you are using Motif, the Escape binding will not work.

16.7.1 Example Translation Tables
The default Plotter translation table is only one possible scheme for binding events to
actions. Example 16-6 shows some other translation tables that you might specify in a
resource file.

Example 16-6. Example Translation Tables

!!
!! Use Button 1 for clicking, Button 2 for crosshairs and
!! Button 3 for selecting regions. Panning is not allowed.
!! shift-click in the legend does multiple select, and Ctrl-G cancels.
!! (Note: for X11R4, use .translations instead of .baseTranslations)
!!
*XiPlotter.baseTranslations: \
 <Btn1Down>: begin(click) arm()\n\
 <Btn1Motion>: bac\n\
 Shift <Btn1Up>: end() activate(multiple)\n\
 <Btn1Up>: end() activate()\n\
 <Btn2Down>: begin(crosshair)\n\
 <Btn2Motion>: motion()\n\
 <Btn2Up>: end()\n\
 <Btn3Down>: begin(drag)\n\
 <Btn3Motion>: motion()\n\
 <Btn3Up>: end()\n\
 Ctrl<Key>G: cancel()

!!
!! Display crosshairs all the time.
!! Button 1 does clicks & region selection as well as legend selection
!! Shift-Button1 does panning and multiple legend selection
!!
*XiPlotter.permanentCrosshair: True
*XiPlotter.translations: \
 <Motion>: motion()\n\
 <Leave>: leave()\n\
 Shift<Btn1Down>: begin(pan) arm()\n\
 <Btn1Down>: begin(click,drag) arm()\n\
 <Btn1Motion>: motion()\n\
 Shift <Btn1Up>: end() activate(multiple)\n\
 <Btn1Up>: end() activate()\n\
 <Btn3Down>: cancel()
User Interaction with the Plotter 247

248 GraphPak Programmer’s Reference Manual

7

Defining Custom Markers

As explained in Chapter 3, Plotter Data Types and Resources, the XiMarker is an
abstraction that is capable of displaying a small glyph or "marker" both in X and in
PostScript. The XiPlotter library provides 12 standard markers, each in four different
sizes. These pre-defined markers are suitable for most purposes, but there may be
times when you will want to display a plot using some custom glyph to mark its
points. This chapter explains how to create your own XiMarker for use in X, how to
add PostScript support to your markers, and how to register a name for your custom
markers, so they can be used through the XiMarker resource converter.

1

GraphPak Programmer’s Reference Manual 249

17.1 Creating a Custom Marker
You can create your own custom markers with XiMarkerCreate(), shown in Figure
17-1.
The first two arguments to this function are the width and height of the marker, in pix-
els. The third argument, mark_bits, is an array of characters that define the marker in
XBM format. This is generally an array of characters defined in a XBM file produced
with the bitmap program that is part of the standard X distribution.
The fourth argument, mask_bits, is the "mask" for the marker. It is also an array of
characters that define a bitmap in XBM format. There is an important difference
between the marker bitmap and the mask bitmap, however. The mark_bits define
which bits of the marker should be drawn with the foreground color, and which
should be drawn in the background color, but the mask_bits define which bits should
be drawn at all. It is this "mask" which defines the overall shape of the marker. If a bit
is set in the mask, then the corresponding pixel on the screen will be drawn in either
the foreground or the background color, depending on the bits in the marker bitmap. If
a bit is not set in the mask, then the corresponding pixel on the screen will not be
modified; in effect, those unset bits are not part of the marker at all. A mask like this
is necessary for any marker that is not rectangular; the same technique is used to
define mouse cursors.Figure 17-2 shows a marker and a mask bitmap that might be
used to define a custom marker.

XiMarker XiMarkerCreate(int width, int height,

 char *mark_bits, char *mask_bits,

 String psmark, String psmask);

width, height

The size of the new marker in pixels.
mark_bits, mask_bits

XBM bitmap data for the marker and its mask.
psmark, psmask

PostScript language descriptions of how to draw the marker and its mask.
Returns

The newly created XiMarker.

Figure 17-1. XiMarkerCreate()
250 GraphPak Programmer’s Reference Manual

Figure 17-2. Marker and mask bitmaps for a custom XiMarker

Note that the marker bitmap is a hollow triangle, and the mask bitmap is a filled trian-
gle. This means that the bits inside the triangle will be drawn with the background
color, and the resulting marker will be opaque--when it is drawn over a line, that line
will not show through the hollow center. If the mask bitmap were the same as the
mark bitmap, then only the edges of the triangle would be part of the marker, and the
marker would not be opaque.
Having defined mark and mask bitmaps, we can define our custom triangle marker as
shown in Example 17-1.
Defining Custom Markers 251

Example 17-1. Creating a custom marker (X only)

/*
 * the following lines of code are the output of the standard
 * X 'bitmap' application. We could also just have included these
 * bitmaps files with #include
 */
#define triangle_width 9
#define triangle_height 9
static char triangle_bits[] = {
 0x03, 0x00, 0x0d, 0x00, 0x31, 0x00, 0xc1, 0x00, 0x01, 0x01, 0xc1,
 0x00, 0x31, 0x00, 0x0d, 0x00, 0x03, 0x00};

#define triangle_mask_width 9
#define triangle_mask_height 9
static char triangle_mask_bits[] = {
 0x03, 0x00, 0x0f, 0x00, 0x3f, 0x00, 0xff, 0x00, 0xff, 0x01, 0xff,
 0x00, 0x3f, 0x00, 0x0f, 0x00, 0x03, 0x00};

XiMarker triangle;

triangle = XiMarkerCreate(triangle_width, triangle_height,
 triangle_bits, triangle_mask_bits,
 NULL, NULL);

This custom marker will work on-screen, but will not print. Getting a marker to print
in Plotter PostScript output requires the remaining two arguments to XiCre-
ateMarker(), and is the subject of the next section.

17.2 PostScript Output of Custom Markers
To define a marker that can be printed, you must supply the two final arguments to
XiMarkerCreate(). These arguments are strings that give the PostScript drawing com-
mands for the marker itself, and for its mask. Since PostScript is a resolution-indepen-
dent language, we cannot simply use a bitmap to draw the marker in PostScript;
instead we must use PostScript drawing commands to actually draw it. Before you
read the rest of this section, you should have at least an elementary understanding of
the PostScript language. The PostScript Language Reference Manual, Second Edi-
tion, published by Addison-Wesley, is the definitive documentation on the language.
252 GraphPak Programmer’s Reference Manual

Figure 17-3. The bounding box and coordinate system for PostScript markers

The Plotter library defines markers as glyphs in a special marker font. The PostScript
strings you provide must meet some special requirements to work with this font. The
most noticeable of these requirements is the coordinate system. You must draw the
glyph using a coordinate system with units 100 times as small as the corresponding
pixels in the X bitmaps. So, to continue with our triangle marker example, since we
specified a triangle that was 9 pixels wide by 9 pixels high, our PostScript triangle
will be 900 units wide by 900 units high. (This doesn't mean we're defining a huge tri-
angle, of course; just giving ourselves lots of resolution to play with. The Plotter
library prints markers at approximately the same size that they appear on the screen.)
Markers are always centered over the point they mark, so the bounding box for our
PostScript version of the triangle is from -450 to 450 in the X dimension, and the
same in the Y dimension. Also, note that in PostScript units increase upwards in the Y
dimension; this is the reverse of the X coordinate system in which Y pixel coordinates
increase as you move downwards. Figure 17-3 shows the coordinate system and the
bounding box that the marker glyph and mask must be drawn within.
We must supply XiMarkerCreate() with a PostScript string that will draw our marker.
Example 17-2 shows the PostScript code we will use, and the left hand side of Figure
17-4 shows the output of these commands. Remember that we are using the coordi-
nate system pictured in Figure 17-3.
Defining Custom Markers 253

Example 17-2. PostScript code to draw the marker

-400 375 moveto % move to the upper left corner
-400 -375 lineto % draw a line to the lower left corner
350 0 lineto % draw a line to the vertex on the right
closepath % draw the remaining line
100 setlinewidth % specify a width for our lines
stroke % and actually draw the lines

Figure 17-4. PostScript marker and mask

It might seem unusual to specify a linewidth of 100, but remember that we're working
with an unusually detailed coordinate system. PostScript coordinate transforms affect
all aspects of drawing, including line widths. With a line width of 100 units, our lines
will extend for 50 units on either side of the coordinates we specify. For this reason,
we've moved the vertices of the triangle in from the edges of the bounding box. We've
moved them in more than 50 units in some cases, because when two line overlap in
PostScript, they are joined with a "miter" that can be wider than the line width. (Care-
ful trigonometric analysis and detailed graph paper can help when trying to figure out
coordinates for PostScript glyphs like this. Trial and error works well too.)
Note that we do not use the gsave or grestore operators while drawing this glyph,
even though we do things like changing the line width. The gsave and grestore are
necessary, but are automatically handled by the font setup mechanism.
We'll make this PostScript string more compact by removing the comments, and by
abbreviating the names of the PostScript operators. Figure 17-5 shows a standard set
of abbreviations that is included in every PostScript file generated by the Plotter. You
254 GraphPak Programmer’s Reference Manual

can use these abbreviations when defining markers. In particular, notice the definition
of the WIL operator. It expects a single value on the stack, and sets it as the line
width. It also sets all the other line attributes to their default values. These line
attributes may be in an arbitrary state when your PostScript marker code is executed,
so you must always set them to some known state. Usually, you can just use IL
instead of setlinewidth as we do here.

%%BeginResource: procset XiPSAbbrevs 1.2 0
%%Copyright: (c) 1995 Integrated Computer Solutions, Inc.
/M /moveto load def
/L /lineto load def
/RM /rmoveto load def
/RL /rlineto load def
/ST /stroke load def
/CP /closepath load def
/FL /fill load def
/GS /gsave load def
/GR /grestore load def
/SG /setgray load def
/IT {transform round exch round exch itransform} bind def
/m {IT M} bind def
/l {IT L} bind def
/am {IT RM} bind def
/re {IT RL} bind def
/S {M show} bind def
/IL {setlinewidth [] 0 setdash 0 setlinecap 0 setlinejoin} bind def
/SW /setlinewidth load def
/SLC /setlinecap load def
/RF /rectfill load def % or an emulation of rectfill for Level 1 PS
/RS /rectstroke load def % or an emulation of rectstroke for Level 1
PS
/RC /rectclip load def % or an emulation of rectclip for Level 1 PS
%%EndResource

Figure 17-5. Standard PostScript abbreviations used by the Plotter

Using these abbreviations, and removing the comments, our PostScript marker defini-
tion becomes the string:

String psmark = "-400 375 M -400 -375 L 350 0 L CP 100 IL ST";

This is the PostScript code used to define the custom marker pictured in the graphs of
the opening pages of this chapter.
XiMarkerCreate() also takes a psmask argument. This is another PostScript string,
and serves a similar purpose to the bitmap mask that we defined for the screen version
of the marker. In the X version of the marker, we used the mask to prevent pixels out-
side of the marker from being drawn. In PostScript, the problem is the reverse: we
need a way to force pixels that are part of the marker to be drawn. In the PostScript
Defining Custom Markers 255

code we defined above, only the pixels that are part of the three lines will be drawn in
black. We want our marker to be opaque, so we need a way to "erase" the pixels on
the inside of the triangle. We do this by defining a solid triangle as the mask--the Plot-
ter library will draw that solid triangle in white and then draw our triangle outline in
black; this erases anything that had previously been drawn under the marker.
We define our solid triangle with a fill command rather than a stroke command. Note
that since we aren't drawing lines, we don't have to take line width into account, and
can go all the way to the edges of the bounding box:

String psmask = "-450 450 M -450 -450 L 450 0 L FL";

The right-hand side of Figure 17-4 shows the results of these PostScript commands.
This string just fills the triangle, and does not use setgray to set the fill color to white;
this will be handled internally when the Plotter prints the marker. In fact, since both
the marker and its mask are stored as glyphs in a PostScript font, they are not allowed
to use the setgray operator, as this would break PostScript font caching. (Read about
user defined fonts in the PostScript reference manual for more information on opera-
tors that font glyphs are not allowed to use.)

Example 17-3. Defining and using custom markers for X and PostScript

#include "markers/triangle"
#include "markers/triangle_mask"

static String psmark = "-400 375 M -400 -375 L 400 0 L CP 100 IL ST";
static String psmask = "-450 450 M -450 -450 L 450 0 L FL";

XiMarker triangle, ftriangle;

triangle = XiMarkerCreate(triangle_width, triangle_height,
 triangle_bits, triangle_mask_bits,
 psmark, psmask);

ftriangle = XiMarkerCreate(triangle_width, triangle_height,
 triangle_mask_bits, triangle_mask_bits,
 psmask, NULL);

XtVaSetValues(lineplot1, XmNmarker, triangle, NULL);
XtVaSetValues(lineplot2, XmNmarker, ftriangle, NULL);

With these PostScript strings defined, we can create custom markers that will display
on the screen and print in PostScript.Example 17-4 shows code that does this. This
example defines the hollow triangle marker we've been using as an example, and also
reuses the X and PostScript masks to define a solid marker with the same shape. For
this second marker, notice that the psmask string is optional--since the marker is
already solid, there is nothing underneath it that needs to be erased first.
256 GraphPak Programmer’s Reference Manual

17.3 Naming and Looking Up Markers
When you have created a custom marker with XiMarkerCreate(), you can simply use
that marker directly in your C code. You can also register the marker with a name, so
that the String-to-Marker converter will recognize it and it can be used from resource
files. You can do this with XiMarkerRegister() which takes a string and an XiMarker.

void XiMarkerRegister(String name, XiMarker marker);

name The name by which the marker is to be registered.
marker The XiMarker that is being registered.

XiMarker XiMarkerLookup(String name);

name The name of the marker to be looked up.
Returns A predefined or registered marker with the specified name, or NULL if no

such marker is found.

Figure 17-6. XiMarkerRegister() and XiMarkerLookup()

We could register the markers we created in the previous example like this:

XiMarkerRegister("TriangleRight", triangle);
XiMarkerRegister("FilledTriangleRight", ftriangle);

The function XiMarkerLookup() looks up pre-defined and custom registered markers
by name. You can use it when you want to lookup a marker by name without using the
resource converter. This function looks up markers in exactly the same way that the
resource converter does, and so recognizes the same predefined names.
Defining Custom Markers 257

258 GraphPak Programmer’s Reference Manual

8

Defining Custom Fill
Patterns

The BarPlot and PiePlot widgets optionally use fill patterns to shade their bars and pie
wedges. The Plotter library provides 25 predefined patterns. Chapter 3, Plotter Data
Types and Resources, explains how to use fill patterns, and a table of predefined pat-
terns appears in the quick reference section at the end of this manual.
It is also possible to define your own custom patterns that will work with both X and
PostScript. This chapter explains how to do that.

1

GraphPak Programmer’s Reference Manual 259

18.1 Creating a Custom Fill Pattern
You create a custom fill pattern with the function XiFillPatternCreate(), declared in
<Xi/Plotter.h> and shown in Figure 18-1.

XiFillPattern XiFillPatternCreate(char *bits,

 int width, int height,

 String psglyph, String psfill);

bits XBM data that defines one cell of the fill pattern in X.
width, height

The size of the bitmap, in pixels.
psglyph

A string of PostScript commands to draw one cell of the pattern.
psfill An alternative PostScript string that sets parameters for the fill operator.
Returns

The newly created XiFillPattern.

Figure 18-1. XiFillPatternCreate()

The first three arguments to this function are required, and define a bitmap to be used
as the fill pattern for X. The final two arguments are optional, but one or the other of
them must be specified if the fill pattern is ever to be printed. The function returns a
value of type XiFillPattern, which you can use to set resources, exactly as you would
use any of the predefined fill patterns.
The following two subsections explain how to use XiFillPatternCreate() to create fill
patterns that work with X and with PostScript.

18.1.1 Defining a Fill Pattern for X
The first three arguments to XiFillPatternCreate() are simply an XBM bitmap specifi-
cation. XBM is the standard X bitmap format, and you can create XBM files using the
standard X bitmap application. An XBM file defines a static array of char that are the
raw data of the bitmap, and also provides symbolic definitions for the width and
height of the bitmap. In X, the XiFillPattern abstraction uses this rectangular bitmap
to tile the area to be filled. The bitmap client is not good at showing you what your
bitmap will look like when used repeatedly to fill an area, but you can use xsetroot -
bitmap for this purpose.
260 GraphPak Programmer’s Reference Manual

Figure 18-2 shows a bitmap you might create when defining a custom fill pattern, and
Example 18-1 shows the code you'd use to create an XiFillPattern from the bitmap.

Example 18-1. Creating an XiFillPattern (X only)

/*
 * The next 6 lines are an XBM bitmap file that has been
 * included into our code.
 */
#define weave_width 16
#define weave_height 16
static char weave_bits[] = {
 0x00, 0x1c, 0x00, 0x1c, 0xff, 0x9c, 0xff, 0x9c, 0xff, 0x9c, 0x00,
 0x1c, 0x00, 0x1c, 0x1c, 0x1c, 0x1c, 0x00, 0x1c, 0x00, 0x9c, 0xff,
 0x9c, 0xff, 0x9c, 0xff, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x1c};

static XiFillPattern weave_pattern;

weave_pattern = XiFillPatternCreate(weave_bits,
 weave_width, weave_height,
 NULL, NULL);
Defining Custom Fill Patterns 261

Figure 18-2. A bitmap fill pattern

The XiFillPattern created in this example will not work for any plot that is to be
printed. The next section explains how to define a PostScript fill pattern.

18.1.2 Defining a Fill Pattern for PostScript
Fill patterns are handled in PostScript in the same basic way that they are handled in
X--a single copy (or "cell") of the pattern is repeated over and over to tile the area to
be filled. Since PostScript is a resolution independent graphics language, however,
you cannot simply define a bitmap for the fill pattern--it would come out at a different
size on different printers. Instead, you must write PostScript commands to draw a sin-
gle cell of the pattern. The XiFillPattern abstraction will define a special font glyph
with these PostScript commands, and will automatically handle the tiling operation.
As when defining a custom marker, you define the cell of a fill pattern using a special
"high-resolution" coordinate system. Figure 18-3 shows this coordinate system for a
single cell of the pattern, and has our example pattern drawn into it.
262 GraphPak Programmer’s Reference Manual

Figure 18-3. A PostScript fill pattern and its coordinate system

As with the coordinate system for custom markers, 100 units in these coordinates are
approximately equal to the size of one pixel on an X display, and dimensions of the
PostScript cell are 100 times as large as the dimensions of the X bitmap that you spec-
ified with the second and third arguments to XiFillPatternCreate(). As with custom
markers, and all PostScript code, the coordinates on the Y axis increase upwards,
unlike coordinates in X which increase downwards. Unlike the coordinate system for
custom markers, however, this one has its origin at the lower left corner of the cell,
rather than in the middle of the cell.
Figure 18-3 also shows the PostScript code required to draw this cell of the fill pat-
tern. Note that we set the line width to 300, but that this does not result in extremely
wide lines, because line width is measured in the same coordinate system in which all
the lines are drawn. Recall that in PostScript the coordinates given for a line are the
centerpoint of the line, and half of the line width extends on either side. So the first
line drawn in this example is centered on the X coordinate 350 and extends for 150
units to either side--from 200 to 500. (By default, it is only the "sides" of the lines that
extend for 150 units on either side; the "end" or "caps" of the lines are flush against
Defining Custom Fill Patterns 263

the endpoints. This is controlled by the setlinecap operator.) To understand this Post-
Script, you must remember that the lineto operator does not actually draw lines; it
simply stores away lines to be drawn later by the stroke operator. This is why we can
set the line width after defining the lines to be drawn.
Using some PostScript abbreviations supplied by the Plotter library, we can translate
this fill pattern description to the following string. (You can find the standard set of
XiPlotter abbreviations at the top of any XiPlotter PostScript file, or listed in Chapter
17, Defining Custom Markers.)

static String weave_ps = "\
350 0 M 350 900 L \
700 450 M 1600 450 L \
0 1250 M 800 1250 L \
1150 1600 M 1150 800 L \
1150 0 M 1150 100 L \
1500 1250 M 1600 1250 L \
300 IL ST";

This is the PostScript code used to define the custom fill patterns used in the graphs
pictured on the opening page of this chapter. "M" and "L" are obviously abbreviations
for moveto and lineto. "IL" is an abbreviation for "initialize line". It sets the line
width to the specified value, and also initializes all the other line attributes (line pat-
tern, join style, and cap style) to their defaults--fill patterns are implemented as font
glyphs, and this line attribute initialization is a required step for font glyph descrip-
tions which is omitted from the PostScript code shown in the figure. Finally, "ST" is
an abbreviation for stroke, which actually draws the lines.
The XiPlotter set of PostScript abbreviations also includes "m" and "l", which are
alternate abbreviations for moveto and lineto. These m and l operators transform their
coordinates to device coordinates and then back again to the current transform. This
results in a rounding off, so that lines fall evenly onto device coordinates. If your fill
pattern has a number of evenly spaced lines that are close together, you may find,
using M and L that the lines are not spaced perfectly evenly--even at 300 dpi, this
effect is noticeable with some patterns. If you switch to using m and l, your lines will
be evenly spaced, but the trade-off will be that they may no longer have exactly the
same width as one another. You may want to try out both sets of operators--some pat-
terns look better with the first scheme, some look better with the other.
Now that we have defined a PostScript string for a single cell of our fill pattern, we
can use it as the fourth argument to XiFillPatternCreate() to create an XiFillPattern
that works with both X and PostScript. This is shown in Example 18-2.
264 GraphPak Programmer’s Reference Manual

Example 18-2. Creating an XiFillPattern for X and PostScript

/* the X version of the pattern */
#include "weave.xbm"

/* The PostScript version of the pattern */
static String weave_ps = "\
350 0 M 350 900 L \
700 450 M 1600 450 L \
0 1250 M 800 1250 L \
1150 1600 M 1150 800 L \
1150 0 M 1150 100 L \
1500 1250 M 1600 1250 L \
300 IL ST";

static XiFillPattern weave_pattern;

weave_pattern = XiFillPatternCreate(weave_bits,
 weave_width, weave_height,
 weave_ps, NULL);

Recall, though, that XiFillPatternCreate takes five arguments. The fifth argument is
an alternate method for defining a PostScript fill pattern, and is only used in special
cases. If you specify a string as the fifth argument to XiFillPatternCreate(), then the
Plotter library will fill the area using the standard PostScript fill operator. This fifth
argument allows you to set attributes that will affect this fill operation. In practice, the
only thing you are likely to use here is the setgray operator, which can be abbreviated
as "SG". The predefined fill patterns XiFillPatternGray1 through XiFillPatternGray5
use this scheme instead of defining a cell to be tiled (it would be hard to define a res-
olution-independent gray cell using lines.) You can use it when defining custom gray
patterns--just use a string like ".75 SG" You should never specify a string for both the
fourth and the fifth arguments, of course; pass NULL for one or the other.

18.2 Naming and Looking up Fill Patterns
Once you have created a custom fill pattern with XiFillPatternCreate(), you can use
that marker directly in your C code, without any further action. You can also give the
new marker a name, so that the String-to-XiFillPattern converter will recognize it and
it can be used from a resource file. (Assuming, of course, that you create the pattern
and register its name before you create any of the widgets that will be using it.) The
XiFillPattern resource converter is described in Chapter 3, Plotter Data Types and
Resources.
You can register a name for a marker you have created with the function XiFillPat-
ternRegister() which takes two arguments: the marker name, and the XiFillPattern
pointer.
Defining Custom Fill Patterns 265

void XiFillPatternRegister(String name, XiFillPattern pattern);

name The name under which the pattern is to be registered.
pattern The pattern that is being named.

XiFillPattern XiFillPatternLookup(String name);

name The name of the pattern that is to be looked up.
Returns The predefined or registered XiFillPattern with the specified name, or

NULL if no such pattern is found.

Figure 18-4. XiFillPatternRegister() and XiFillPatternLookup()

You might register the pattern defined in the previous example as follows:

XiFillPatternRegister("weave", weave_pattern);

Once a pattern is registered, the XiFillPattern resource converter will know about it.
You can also look up registered fill patterns by name directly by calling XiFillPattern-
Lookup() which takes a single string argument, and returns an XiFillPattern, if any is
found by the specified name, or NULL if none is found. You can use this function to
look up the predefined patterns by name as well--it recognizes exactly the same
names that the resource converter does.
266 GraphPak Programmer’s Reference Manual

Widget Resource
Reference

This appendix gathers together the widget resource tables that have appeared in this
manual for easy reference. The tables are organized alphabetically within this appen-
dix, but the items within the tables are generally arranged by functional group, rather
than alphabetically. If you need more information about a widget resource, the last
column of the tables contains the page number at which you can find a detailed expla-
nation. If you need to look something up, but do not know which table it would
appear in or which function group within that table, try the index.

A

GraphPak Programmer’s Reference Manual 267

A.1 Annotation Resources
Name Class Type Default CSG Pg

Position
XmNxPercent XmCXPercent XmRInt Computed CSG 184
XmNyPercent XmCYPercent XmRInt Computed CSG 184
XmNxPixel XmCXPixel XmRPosition 0 CSG 185
XmNyPixel XmCYPixel XmRPosition 0 CSG 185
XmNxPoint XmCXPoint XmRDouble Computed CSG 185
XmNyPoint XmCYPoint XmRDouble Computed CSG 185
Offset
XmNxPercentOffset XmCPercentOffset XmRInt Computed CSG 186
XmNyPercentOffset XmCPercentOffset XmRInt Computed CSG 186
XmNxPixelOffset XmCPixelOffset XmRPosition 0 CSG 185
XmNyPixelOffset XmCPixelOffset XmRPosition 0 CSG 185
XmNadjustOffset XmCAdjustOffset XmRBoolean TRUE CSG 186
Size and margins
XmNmarginWidth XmCMargin XmRDimension 2 CSG 187
XmNmarginHeight XmCMargin XmRDimension 2 CSG 187
XmNboxWidth XmCWidth XmRDimension Computed CSG 187
XmNboxHeight XmCHeight XmRDimension Computed CSG 187
Colors
XmNforeground XmCForeground XmRPixel XmNforegrounda CSG 187
XmNbackground XmCBackground XmRPixel XmNbackgroundb CSG 187

Arrows
XmNdrawArrow XmCDrawArrow XmRBoolean TRUE CSG 188
XmNarrowColor XmCArrowColor XmRPixel XmNforegrounda CSG 189
XmNarrowShaftPattern XmCArrowShaftPattern XmRLinePattern NULL CSG 189
XmNarrowShaftWidth XmCArrowShaftWidth XmRDimension 2 CSG 189
XmNarrowHeadWidth XmCArrowHeadSize XmRDimension 6 CSG 189
XmNarrowHeadLength XmCArrowHeadSize XmRDimension 6 CSG 189
XmNarrowHeadDistance XmCArrowDistance XmRDimension 4 CSG 189
XmNarrowTailDistance XmCArrowDistance XmRDimension 2 CSG 189
Shadows and Trim
XmNdrawShadow XmCDrawShadow XmRBoolean FALSE CSG 189
XmNdrawArrowShadow XmCDrawShadow XmRBoolean FALSE CSG 190
XmNshadowColor XmCForeground XmRPixel XmNforegrounda CSG 190
XmNstippleShadow XmCStippleShadow XmRBoolean TRUE CSG 190
XmNshadowXOffset XmCShadowOffset XmRPosition 4 CSG 190
XmNshadowYOffset XmCShadowOffset XmRPosition 4 CSG 190
XmNtrimColor XmCForeground XmRPixel XmNforegrounda CSG 190
XmNtrimWidth XmCTrimWidth XmRDimension 0 CSG 190
TextPlot Resources
XmNfontList XmCFontList XmFontList XmNfontListd CSG 191
XmNpsFontList XmCPSFontList XiPSFontList XmNpsFontListe CSG 191
XmNtextString XmCTextString XmString NULLc CSG 191
XmNtext XmCText XmRString NULL CSG 191
XmNfontSize XmCFontSize XmRDimension 12 CSG 191
268 GraphPak Programmer’s Reference Manual

aInherited from the Plotter XmNforeground resource.
bInherited from the Plotter XmNbackground resource.
cWhen an XmString resource is unset, its value is created from the corresponding String resource, using a font
tag derived from the corresponding style and size resources.
dInherited from the Plotter XmNfontList resource.
eInherited from the Plotter XmNpsFontList resource.

XmNfontStyle XmCFontStyle XmRString NULL CSG 191
XmNalignment XmCAlignment XmRAlignment XiALIGNMENT_

CENTER
CSG 192

XmNstringDirection XmCStringDirection StringDirection dynamic CSG 192
XmNopaque XmCOpaque XmRBoolean TRUE CSG 192
ImagePlot
Resources
XmNpixmap XmCPixmap XmRPixmap None CSG 192
XmNbitmap XmCBitmap XmRPixmap None CSG 192
XmNimage XmCImage XmRXImage NULL CSG 192
XmNclipMask XmCClipMask XmRPixmap None CSG 193
Widget Resource Reference 269

A.2 Axis Resources
Name Class Type Default CSG Pg

Title
XmNtitleFontList XmCFontList XmFontList XmNfontLista CSG 82
XmNtitlePSFontList XmCPSFontList XiPSFontList XmNpsFontListb CSG 82
XmNtitleString XmCTitleString XmString NULLc CSG 82
XmNtitle XmCTitle String NULL CSG 83
XmNtitleSize XmCFontSize Dimension 14 CSG 83
XmNtitleStyle XmCFontStyle String NULL CSG 84
XmNtitleColor XmCForeground Pixel XmNforegroundd CSG 84

Labels
XmNdrawLabels XmCDrawLabels Boolean TRUE CSG 84
XmNlabelFontList XmCFontList XmFontList XmNfontLista CSG 84
XmNlabelPSFontList XmCPSFontList XiPSFontList XmNpsFontListb CSG 84
XmNlabelSize XmCFontSize Dimension 10 CSG 85
XmNlabelStyle XmCFontStyle String NULL CSG 85
XmNlabelColor XmCForeground Pixel XmNforegroundd CSG 85

Axis and Tick
Marks
XmNlineColor XmCForeground Pixel XmNforegroundd CSG 85
XmNlineWidth XmCLineWidth Dimension 0 CSG 85
XmNmarkWidth XmCLineWidth Dimension 0 CSG 86
XmNmarksInside XmCMarksInside Boolean FALSE CSG 86
XmNmarksOutside XmCMarksOutside Boolean TRUE CSG 86
XmNmarkLength XmCMarkLength Dimension 5 CSG 86
XmNsubmarkLength XmCMarkLength Dimension 2 CSG 86
Frame and
Origin
XmNdrawFrame XmCDrawFrame Boolean TRUE CSG 87
XmNdrawOrigin XmCDrawOrigin Boolean TRUE CSG 87
XmNoriginWidth XmCLineWidth Dimension 0 CSG 87
XmNoriginColor XmCForeground Pixel XmNforegroundd CSG 87

Grid
XmNdrawGrid XmCDrawGrid Boolean TRUE CSG 88
XmNgridColor XmCForeground Pixel XmNforegroundd CSG 88
XmNgridWidth XmCLineWidth Dimension 0 CSG 88
XmNgridPattern XmCGridPattern LinePattern "\001" CSG 88
XmNdrawSubgrid XmCDrawSubgrid Boolean FALSE CSG 89
XmNsubgridColor XmCForeground Pixel XmNforegroundd CSG 89
XmNsubgridWidth XmCLineWidth Dimension 0 CSG 89
XmNsubgridPattern XmCGridPattern LinePattern "\003" CSG 89
Layout
XmNmargin XmCMargin Dimension 2 CSG 89
XmNaxisWidth XmCAxisWidth Dimension 0 CSG 89

Auto Scalinge

XmNautoScaleMin XmCAutoScale Boolean TRUE CSG 91
270 GraphPak Programmer’s Reference Manual

aInherited from the XmNfontList resource
bInherited from the XmNpsFontList resource
cWhen an XmString resource is unset, its value is created from the corresponding String resource using a font tag
derived from the corresponding style and size resources.
dInherited from the Plotter SmNforeground resource
eDo not set these resources when using a DBPak subclass of this widget.

XmNautoScaleMax XmCAutoScale Boolean TRUE CSG 92
XmNautoScaleMargin XmCAutoScaleMargin Dimension 5 CSG 92
Bounds and
Transforme

XmNmax XmCMax Double 10.00 CSG 93
XmNmin XmCMin Double 0.00 CSG 93
XmNunitMultiplier XmCUnitMultiplier Double 1.00 CSG 94
XmNunitConstant XmCUnitConstant Double o.0 CSG 94
XmNlog XmCLog Boolean FALSE CSG 96

Auto Markinge

XmNautoMark XmCAutoMark Boolean TRUE CSG 97
XmNroundEndpoints XmCRoundEndpoints Boolean TRUE CSG 97
XmNpixelsPerLabel XmCPixelsPerLabel Dimension 50 CSG 98
XmNpixelsPerMark XmCPixelsPerMark Dimension 10 CSG 98
Manual Axis
Markinge

XmNlabelInterval XmCLabelInterval Short 1 CSG 100
XmNlabelOffset XmCLabelOffset Short 0 CSG 100
XmNmarkValues XmCMarkValues DoubleList NULL CSG 100
XmNnumMarks XmCNumMarks Cardinal 0 CSG 100
XmNmarkMultiplier XmCMarkMultiplier Double 1.0 CSG 100
XmNmarkConstant XmCMarkConstant Double 0.0 CSG 100
XmNmarkValueType XmCMarkValueType PlotDataType XiPlotDataDouble CSG 101
XmNmarkRecordSize XmCMarkRecordSize Cardinal sizeof(double) CSG 101
XmNmarkRecordOff-
set

XmCMarkRecordOff-
set

Cardinal 0 CSG 101

Auto Labelinge

XmNautoLabel XmCAutoLabel Boolean TRUE CSG 101
XmNlabelFormat XmCLabelFormat String "%g" CSG 101
XmNlabelFunction XmCLabelFunction AxisLabelProc NULL CSG 101
Manual Axis
Labelinge

XmNlabels XmCLabels XmStringTable NULL CSG 105
XmNnumLabels XmCNumLabels Dimension 0 CSG 105
XmNlabelRecordSize XmCLabelRecordSize Cardinal sizeof(String) CSG 105
XmNlabelRecordOff-
set

XmCLabelRecordOff-
set

Cardinal 0 CSG 105
Widget Resource Reference 271

A.3 BarPlot Resources

aInherited from the Plotter XmNforeground resource.
bInherited from the Plotter XmNplotAreaColor resource.
cDo not set these resources when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
FillPattern
XmNfillColor XmCForeground Pixel XmNforegrounda CSG 137
XmNfillBackground XmCBackground Pixel XmNplotAreaColorb CSG 137
XmNfillPattern XmCFillPattern FillPattern XiFillPatternSolid CSG 137
XmNfillOpaque XmCFillOpaque Boolean TRUE CSG 137
Lines
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 139
XmNlineWidth XmCLineWidth Dimension 0 CSG 139
Shadows
XmNdrawShadow XmCDrawShadow Boolean FALSE CSG 139
XmNshadowColor XmCForeground Pixel XmNforegrounda CSG 139
XmNshadowPattern XmCShadowPattern FillPattern XiFillPatternGray3 CSG 139
XmNshadowXOffset XmCShadowOffset Position 4 CSG 139
XmNshadowYOffset XmCShadowOffset Position 4 CSG 139
Bars
XmNbarSize XmCBarSize Short 80 CSG 142
XmNbarPosition XmCBarPosition Short 0 CSG 142
XmNstacked XmCStacked Boolean FALSE CG 142
XmNorigin XmCOrigin Double 0.0 CSG 142

Datac

XmNnumValues XmCNumValues Cardinal 0 CSG 143
XmNxMin XmCXMin Double 1.0 CSG 143
XmNxInterval XmCXInterval Double 1.0 CSG 143
XmNvalues XmCValues Pointer NULL CSG 143
XmNvalueType XmCValueType PlotDataType XiPlotDataDouble CSG 143
XmNvalueSize XmCValueSize Cardinal sizeof(double) CSG 143
XmNvalueOffset XmCValueOffset Cardinal 0 CSG 143
XmNvalueConstant XmCValueConstant Double 0.0 CSG 143
XmNvalueMultiplier XmCValueMultiplier Double 1.0 CSG 143
272 GraphPak Programmer’s Reference Manual

A.4 CallbackPlot Resources
Name Class Type Default CSG Pg

Untyped Data
XmNdata0 XmCData XiUntyped NULL CSG 213
XmNdata1 XmCData XiUntyped NULL CSG 213
XmNdata2 XmCData XiUntyped NULL CSG 213
XmNdata3 XmCData XiUntyped NULL CSG 213
XmNdata4 XmCData XiUntyped NULL CSG 213
XmNdata5 XmCData XiUntyped NULL CSG 213
XmNdata6 XmCData XiUntyped NULL CSG 213
XmNdata7 XmCData XiUntyped NULL CSG 213
XmNdata8 XmCData XiUntyped NULL CSG 213
XmNdata9 XmCData XiUntyped NULL CSG 213
Callbacks
XmNchangeCallback XmCCallback Callback NULL C 217
XmNcreateCallback XmCCallback Callback NULL C 217
XmNdrawCallback XmCCallback Callback NULL C 217
XmNdrawPSCallback XmCCallback Callback NULL C 217
XmNfreeCallback XmCCallback Callback NULL C 218
XmNlegendCallback XmCCallback Callback NULL C 218
XmNlegendPSCallback XmCCallback Callback NULL C 219
XmNresizeCallback XmCCallback Callback NULL C 219
XmNshadowCallback XmCCallback Callback NULL C 219
XmNshadowPSCallback XmCCallback Callback NULL C 219
Control Resources
XmNrecalc XmCRecalc Boolean FALSE S 220
XmNredraw XmCRedraw Boolean FALSE S 220
XmNxMax XmCXMax double -DBL_MAX CSG 220
XmNxMin XmCXMin double DBL_MAX CSG 220
XmNyMax XmCYMax double -DBL_MAX CSG 220
XmNyMin XmCYMin double DBL_MAX CSG 220
Widget Resource Reference 273

A.5 ErrorPlot Resources

aInherited from the Plotter XmNforeground resource.
bDo not set these resources when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
Error Bars
XmNerrorBarColor XmCForeground Pixel XmNforegrounda CSG 127
XmNerrorBarWidth XmCLineWidth Dimension 0 CSG 127
XmNerrorCapLength XmCErrorCapLength Dimension 3 CSG 127
Fixed Errors
XmNfixedError XmCFixedError Double 0.0 CSG 128
XmNpercentError XmCPercentError Double 0.0 CSG 128

Variable Errorsb

XmNnumErrorValues XmCNumValues Cardinal 0 CSG 129
XmNhighValues XmCValues Pointer NULL CSG 129
XmNhighValueType XmCValueType PlotDataType XiPlotDataDouble CSG 129
XmNhighValueSize XmCValueSize Cardinal sizeof(double) CSG 129
XmNhighValueOffset XmCValueOffset Cardinal 0 CSG 129
XmNlowValues XmCValues Pointer NULL CSG 129
XmNlowValueType XmCValueType PlotDataType XiPlotDataDouble CSG 129
XmNlowValueSize XmCValueSize Cardinal sizeof(double) CSG 129
XmNlowValueOffset XmCValueOffset Cardinal 0 CSG 129
274 GraphPak Programmer’s Reference Manual

A.6 FadePlot Resources

aInherited from the Plotter XmNplotAreaColor resource.

Name Class Type Default CSG Pg
Colors
XmNcolors XmCColors XmColorList NULL CSG 202
XmNstartColor XmCStartColor Pixel XmNplotAreaColora CSG 202
XmNendColor XmCEndColor Pixel XmNplotAreaColora CSG 202
XmNnumColors XmCNumColors Dimension 10 CSG 203
XmNfadeDirection XmCFadeDirection XiFadeDirection top_to_bottom CSG 203
Color Interpolation
XmNuseHSL XmCUseHSL Boolean FALSE CSG 203
XmNinterpolateFunc XmCInterpolateFunc XiInterpolateFunc NULL CSG 203
Printing
XmNdontPrint XmCDontPrint Boolean FALSE CSG 204
XmNpsNumColors XmCNumColors Dimension 100 CSG 204
Widget Resource Reference 275

A.7 HighLowPlot Resources

aInherited from the Plotter XmNforeground resource.
bDo not set these resources when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
Bars
XmNbarColor XmCForeground Pixel XmNforegrounda CSG 171
XmNbarWidth XmCLineWidth Dimension 5 CSG 171
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 171
XmNlineWidth XmCLineWidth Dimension 3 CSG 171
XmNlineLength XmCLineLength Dimension 6 CSG 171

Datab

XmNnumValues XmCNumValues Cardinal 0 CSG 171
XmNxValues XmCXValues Pointer NULL CSG 171
XmNxValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNxValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNxValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNxValueConstant XmCValueConstant Double 0.0 CSG 171
XmNxValueMultiplier XmCValueMultiplier Double 1.0 CSG 171
XmNhighValues XmCValues Pointer NULL CSG 171
XmNhighValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNhighValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNhighValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNhighValueConstant XmCValueConstant Double 0.0 CSG 171
XmNhighValueMultiplier XmCValueMultiplier Double CSG 171

XmNlowValues XmCValues Pointer NULL CSG 171
XmNlowValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNlowValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNlowValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNlowValueConstant XmCValueConstant Double 0.0 CSG 171
XmNlowValueMultiplier XmCValueMultiplier Double 1.0 CSG 171
XmNcloseValues XmCValues Pointer NULL CSG 171
XmNcloseValueType XmCValueType PlotDataType XiPlotDataDouble CSG 171
XmNcloseValueSize XmCValueSize Cardinal sizeof(double) CSG 171
XmNcloseValueOffset XmCValueOffset Cardinal 0 CSG 171
XmNcloseValueConstant XmCValueConstant Double 0.0 CSG 171
XmNcloseValueMultiplier XmCValueMultiplier Double 1.0 CSG 171
276 GraphPak Programmer’s Reference Manual

A.8 HistoPlot Resources

aAn unspecified value; will be computed based on XmNbinSize.
bThis is a BarPlot resource; HistoPlot changes the default value.
cDo not set these resources when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
Bounds
XmNmin XmCMin Double 0.0 CSG 149
XmNmax XmCMax Double 100.0 CSG 149
XmNcomputeBounds XmCComputeBounds Boolean FALSE CSG 149
Bins
XmNnumBins XmCNumBins Short -1a CSG 150
XmNbinSize XmCBinSize Double 10.0 CSG 150
XmNbarSizeb XmCBarSize Short 100 CSG

Datac

XmNnumRawValues XmCNumValues Cardinal 0 CSG 150
XmNrawValues XmCValues Pointer NULL CSG 150
XmNrawValueType XmCValueType PlotDataType XiPlotDataDouble CSG 150
XmNrawValueSize XmCValueSize Cardinal sizeof(double) CSG 150
XmNrawValueOffset XmCValueOffset Cardinal 0 CSG 150
XmNrawValueConstant XmCValueConstant Double 0 CSG 150
XmNrawValueMultiplier XmCValueMultiplier Double 1.0 CSG 150
Widget Resource Reference 277

A.9 LinePlot Resources

aInherited from the Plotter XmNforeground resource.
bInherited form the Plotter XmNplotAreaColor resource.
cDo not set these resources when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
Lines
XmNconnectPoints XmCConnectPoints Boolean TRUE CSG 111
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 111
XmNsegmentWidth XmCLineWidth Dimension 0 CSG
XmNlinePattern XmCLinePattern LinePattern XiLinePatternSolid CSG 111
Markers
XmNmarkPoints XmCMarkPoints Boolean FALSE CSG 112
XmNmarker XmCMarker Marker XiMarkerCircle CSG 112
XmNmarkerColor XmCForeground Pixel XmNforegrounda CSG 113
XmNmarkerBackground XmCBackground Pixel XmNplotAreaColorb CSG 113

FillPattern
XmNfillPattern XmCFillPattern FillPattern XiFillPatternNone CSG 114
XmNfillColor XmCForeground Pixel XmNforegrounda CSG 114
XmNfillBackground XmCBackground Pixel XmNplotAreaColorb CSG 114
XmNfillOpaque XmCFillOpaque Boolean TRUE CSG 114
Impulses
XmNdrawImpulses XmCDrawImpulses Boolean FALSE CSG 115
Shadows
XmNdrawShadow XmCDrawShadow Boolean FALSE CSG 115
XmNshadowColor XmCForeground Pixel XmNforegrounda CSG 115
XmNstippleShadow XmCStippleShadow Boolean TRUE CSG 116
XmNshadowXOffset XmCShadowOffset Position 2 CSG 116
XmNshadowYOffset XmCShadowOffset Position 2 CSG 116

Datac

XmNnumValues XmCNumValues Cardinal 0 CSG 116
XmNxValues XmCXValues Pointer NULL CSG 116
XmNxValueType XmCValueType PlotDataType XiPlotDataDouble CSG 116
XmNxValueSize XmCValueSize Cardinal sizeof(double) CSG 116
XmNxValueOffset XmCValueOffset Cardinal 0 CSG 116
XmNxValueConstant XmCValueConstant Double 0.0 CSG 116
XmNxValueMultiplier XmCValueMultiplier Double 1.0 CSG 116
XmNyValues XmCYValues Pointer NULL CSG 116
XmNyValueType XmCValueType PlotDataType XiPlotDataDouble CSG 116
XmNyValueSize XmCValueSize Cardinal sizeof(double) CSG 116
XmNyValueOffset XmCValueOffset Cardinal 0 CSG 116
XmNyValueConstant XmCValueConstant Double 0.0 CSG 116
XmNyValueMultiplier XmCValueMultiplier Double 1.0 CSG 116
278 GraphPak Programmer’s Reference Manual

A.10 PiePlot Resources

aInherited from the Plotter XmNforeground resource.
bInherited from the Plotter XmNplotAreaColor resource.
cInherited from the Plotter XmNfontList resource.
dInherited from the Plotter XmNpsFontList
edWhen an XmString resource is unset, its value is created from the corresponding String resource, using a font
tag derived from the corresponding style and size resources.
fThis resource is ignored except for the first wedge in a pie chart.
gDo not set this resource when using a DBPak subclass of this widget.

Name Class Type Default CSG Pg
Fill Pattern
XmNfillColor XmCForeground Pixel XmNforegrounda CSG 159
XmNfillBackground XmCBackground Pixel XmNbackgroundb CSG 159
XmNfillPattern XmCFillPattern FillPattern XiFillPatternSolid CSG 159
XmNfillOpaque XmCFillOpaque Boolean TRUE CSG 159
Lines
XmNlineColor XmCForeground Pixel XmNforegrounda CSG 160
XmNlineWidth XmCLineWidth Dimension 0 CSG 160
XmNdrawRadius XmCDrawRadius Boolean TRUE CSG 160
Labels
XmNlabelFontList XmCFontList XmFontList XmNfontListc CSG 161
XmNlabelPSFontListf XmCPSFontList XiPSFontList XmNpsFontListd CSG 161
XmNlabelString XmCLabelString XmString NULLe CSG 162
XmNlabel XmCLabel String NULL CSG 162
XmNlabelSize XmCFontSize Dimension 12 CSG 162
XmNlabelStyle XmCFontStyle String NULL CSG 162
XmNlabelColor XmCForeground Pixel XmNforegrounda CSG 163
XmNlabelRadius XmCLabelRadius Dimension 38 CSG 163
XmNshowValue XmCShowValue Boolean FALSE CSG 163
Shadows
XmNdrawShadow XmCDrawShadow Boolean FALSE CSG 160
XmNshadowColor XmCForeground Pixel XmNforegrounda CSG 160
XmNshadowPattern XmCShadowPattern FillPattern XiFillPatternSolid CSG 161
XmNshadowOpaque XmCShadowOpaque Boolean TRUE CSG 161
XmNshadowXOffset XmCShadowOffset Position 4 CSG 161
XmNshadowYOffset XmCShadowOffset Position 4 CSG 161
Layout
XmNxPosition XmCXPosition Dimension 50 CG 164
XmNyPosition XmCYPosition Dimension 50 CG 164
XmNradius XmCRadius Dimension 35 CG 164
XmNexplodeRadius XmCExplodeRadius Dimension 0 CSG 165
XmNstartAnglef XmCStartAngle Position 90 CG 165

Data
XmNvalueg XmCValue Double 0.0 CSG 163
Widget Resource Reference 279

A.11 Plotter Resources
Name Class Type Default CSG Pg
Colors
XmNforeground XmCForeground Pixel black CSG 56
XmNbackground XmCBackground Pixel white CSG 56
XmNplotAreaColor XmCBackground Pixel XmNbackgrounda CSG 56
XmNbackdrop XmCBackdrop Widget NULL SG 57
Fonts
XmNfontList XmCFontList XmFontList see below CG 57
XmNtitleFontList XmCFontList XmFontList XmNfontListc CSG 58
XmNlegendTitleFontList XmCFontList XmFontList XmNfontListc CSG 58
XmNlegendFontList XmCFontList XmFontList XmNfontListc CSG 58
XmNpsFontList XmCPSFontList XiPSFontList NULL CG 58
XmNtitlePSFontList XmCPSFontList XiPSFontList XmNpsFontListd CG 58
XmNlegendTitlePS-
FontList

XmCPSFontList XiPSFontList XmNpsFontListd CG 59

XmNlegendPSFontList XmCPSFontList XiPSFontList XmNpsFontListd CG 59

Axes
XmNxAxise XmCXAxis Widget NULL G 59

XmNyAxise XmCYAxis Widget NULLf G 59

XmNyAxis2e XmCYAxis Widget NULL G 59
XmNsecondYAxis XmCSecondYAxis Boolean FALSE CSG 59
Title
XmNshowTitle XmCShowTitle Boolean TRUE CSG 61
XmNtitleString XmCTitleString XmString NULL CSG 60
XmNtitle XmCTitle String NULL CSG 60
XmNtitleSize XmCFontSize Dimension 18 CSG 60
XmNtitleStyle XmCFontStyle String NULL CSG 60
XmNtitleColor XmCForeground Pixel XmNforegroundb CSG 61

Legend
XmNshowLegend XmCShowLegend Boolean TRUE CSG 61
XmNlegendTitleString XmCLegendTitle-

String
XmString NULLf CSG 62

XmNlegendTitle XmCLegendTitle String "Legend" CSG 62
XmNlegendTitleSize XmCFontSize Dimension 14 CSG 63
XmNlegendTitleStyle XmCFontStyle String NULL CSG 63
XmNlegendTitleColor XmCForeground Pixel XmNforegroundb CSG 63
XmNlegendSize XmCFontSize Dimension 12 CSG 63
XmNlegendStyle XmCFontStyle String NULL CSG 63
XmNlegendColor XmCForeground Pixel XmNforegroundb CSG 63
XmNlegendBackground XmCBackground Pixel XmNbackgrounda CSG 63
XmNlegendSelectFore-
ground

XmCBackground Pixel XmNbackgrounda CSG 63

XmNlegendSelectBack-
ground

XmCForeground Pixel XmNforegroundb CSG 64

XmNlegendSpacing XmCMargin Dimension 4 CSG 64
280 GraphPak Programmer’s Reference Manual

XmNlegendIconWidth XmCLegendIcon-
Width

Dimension 20 CSG 64

XmNlegendUnderline XmCLegend-
Underline

Boolean TRUE CSG 64

XmNlegendBox XmCLegendBox Boolean TRUE CSG 64
XmNlegendBoxWidth XmCLineWidth Dimension 2 CSG 64
XmNlegendBoxColor XmCForeground Pixel XmNforegroundb CSG 64

Layout
XmNmarginWidth XmCMargin Dimension 10 CSG 65
XmNmarginHeight XmCMargin Dimension 10 CSG 65
XmNtitleMinHeight XmCTitleM-

inHeight
Dimension 5 CSG 65

XmNlegendMinWidth XmCLegendMin-
Width

Dimension 5 CSG 65

XmNlegendMargin XmCLegendMargin Dimension 10 CSG 65
Double Buffering
XmNdoubleBuffer XmCDoubleBuffer Boolean FALSE CSG 66
XmNdoubleBufferFre-
quencyHint

XmCDoubleBuffer-
FrequencyHint

DoubleBuffer-
FrequencyHint

Frequent CSG 66

XmNbackingStore XmCBackingStore BackingStore FALSE CSG 67
User Interaction
XmNallowCrosshair XmCAl-

lowCrosshair
Boolean TRUE CSG 234

XmNcrosshairLineWidth XmCLineWidth Dimension 0 CSG 234
XmNcrosshairColor XmCForeground Pixel XmNforegroundb CSG 234
XmNpermanentCrosshair XmCPermanent-

Crosshair
Boolean FALSE CSG 235

XmNcrosshairMotion-
Only

XmCCrosshairMot-
ionOnly

Boolean FALSE CSG

XmNallowDrag XmCAllowDrag Boolean TRUE CSG 238
XmNdragThreshold XmCDragThres-

hold
Dimension 4 CSG 231

XmNdragLineWidth XmCLineWidth Dimension 0 CSG 238
XmNdragColor XmCForeground Pixel XmNforegroundb CSG 238
XmNallowPan XmCAllowPan Boolean TRUE CSG 241
XmNpanLineWidth XmCLineWidth Dimension 0 CSG 241
XmNpanColor XmCForeground Pixel XmNforegroundb CSG 241
XmNallowMultipleSelect XmCAllowMultip-

leSelect
Boolean TRUE CSG 229

Callbacks
XmNactivateCallback XmCCallback Callback NULL C 229
XmNclickCallback XmCCallback Callback NULL C 231
XmNdoubleClickCallback XmCCallback Callback NULL C 231
XmNdragCallback XmCCallback Callback NULL C 237
XmNdragMotionCallback XmCCallback Callback NULL C 237
XmNeditCallback XmCCallback Callback NULL C 243
XmNleaveCallback XmCCallback Callback NULL C 234
XmNmotionCallback XmCCallback Callback NULL C 233
Widget Resource Reference 281

aInherited from the XmNbackground resource.
bInherited from the Xmforeground resource.
cInherited from the XmNfontList resource.
dInherited from the XmNpsFontList resource
ePlotter axes are implemented as independent Axis objects, each with a full set of its own resources.
fWhen an XmString resource is unset, its value is created from the corresponding String resource, using a font tag
derived from the corresponding style and size resources.

XmNpanCallback XmCCallback Callback NULL C 240
XmNpanMotionCallback XmCCallback Callback NULL C 240
XmNselectCallback XmCCallback Callback NULL C 228
Cursors
XmNplotterCursor XmCCursor ColoredCursor None CSG 68
XmNclickCursor XmCCursor ColoredCursor crosshair CSG 68
XmNpanCursor XmCCursor ColoredCursor fleur CSG 241
XmNtopLeftCursor XmCCursor ColoredCursor ul_angle CSG 68
XmNtopRightCursor XmCCursor ColoredCursor ur_angle CSG 68
XmNbottomLeftCursor XmCCursor ColoredCursor ll_angle CSG 68
XmNbottomRightCursor XmCCursor ColoredCursor lr_angle CSG 68
Printing
XmNforceColorPrinting XmCForceColor-

Printing
Boolean FALSE CSG

XmNcustomPSPrefix XmCCustomPS-
Prefix

String NULL CSG 69

XmNcustomPSSuffix XmCCustomPS-
Suffix

String NULL CSG 69

Constraint
Resources
XmNbackgroundPlot XmCBackground-

Plot
Boolean FALSE CSG 70

XmNlegendString XmCLegendString XmString NULLf CSG 70
XmNlegendName XmCLegendName String NULL CSG 70
XmNdrawingOrder XmCDrawingOrder Short 1 CSG 70
XmNselected XmCSelected Boolean FALSE CSG 71
282 GraphPak Programmer’s Reference Manual

Function Reference

This appendix shows the signatures for all of the public functions in the Plotter
library. They are organized alphabetically by widget or module, rather than by alpha-
betically by name.

B

GraphPak Programmer’s Reference Manual 283

B.1 Annotation Functions
Widget XiCreateTextPlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

Widget XiCreateImagePlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

void XiAnnotationPosition(Widget annotation, double x, double y,
 int xoffset, int yoffset)

Boolean XiLinePlotGetPoint(Widget w, int point,
 double *x_return, double *y_return)

Boolean XiHighLowPlotGetPoint(Widget w, int point,
 double *x_return, double *high_return,
 double *low_return, double *close_return)

Boolean XiBarPlotGetBar(Widget w, int bar,
 double *x0_return, double *y0_return,
 double *x1_return, double *y1_return)

void XiPiePlotGetPosition(Widget pie,
 double *x0_return, double *y0_return, /* vertex */
 double *x1_return, double *y1_return, /* start of arc */
 double *x2_return, double *y2_return, /* end point of arc */
 double *x3_return, double *y3_return, /* mid-point of arc */
 double *percent_return) /* wedge percentage */

void XiImagePlotUpdate(Widget w);
284 GraphPak Programmer’s Reference Manual

B.2 Axis Functions
Widget XiPlotterXAxis(Widget plotter);

Widget XiPlotterYAxis(Widget plotter);

Widget XiPlotterYAxis2(Widget plotter);

void XiAxisAutoscale(Widget w);

void XiAxisSetBounds(Widget w, double min, double max);

void XiAxisGetBounds(Widget w, double *min, double *max);

void XiAxisSetMarks(Widget w, double min, double max,
 double mark_interval, double first_mark,
 int label_interval, label_offset);

void XiAxisSetLabels(Widget w, double min, double max,
 double mark_interval, double first_mark,
 int label_interval, label_offset,
 String *labels, Cardinal num_labels);

void XiAxisSetLabelStrings(Widget w, double min, double max,
 double mark_interval, double first_mark,
 int label_interval, label_offset,
 XmString *label_strings, Cardinal
 num_labels);

void XiConvertWorldToPixel(Widget plotter, double x, double y,
 int *px_return, int *py_return);

void XiConvertPixelToWorld(Widget plotter, int px, int py,
 double *x_return, double *y_return);
Function Reference 285

B.3 BarPlot Functions
Widget XiCreateBarPlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

void XiBarPlotSetDoubleValues(Widget w, double xmin, double xinterval,
 double *values, Cardinal num);

void XiBarPlotSetFloatValues(Widget w, double xmin, double xinterval,
 float *values, Cardinal num);

void XiBarPlotSetIntValues(Widget w, double xmin, double xinterval,
 int *values, Cardinal num);

void XiBarPlotSetValues(Widget w, double xmin, double xinterval,
 XtPointer vals, XiPlotDataType type,
 Cardinal size, Cardinal offset, Cardinal num);

void XiBarPlotDataChanged(Widget w);

B.4 CallbackPlot Functions
Widget XiCreateCallbackPlot(Widget parent, String name,
 ArgList args, Cardinal num_args);
286 GraphPak Programmer’s Reference Manual

B.5 ErrorPlot Functions
Widget XiCreateErrorPlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

void XiErrorPlotSetDoubleErrors(Widget w, double *highvals, double
*lowvals,
 Cardinal num_values);

void XiErrorPlotSetFloatErrors(Widget w, float *highvals, float
*lowvals,
 Cardinal num_values);

void XiErrorPlotSetIntErrors(Widget w, int *highvals, int *lowvals,
 Cardinal num_values);

void XiErrorPlotSetErrors(Widget w,
 XiPlotDataType type, Cardinal size,
 XtPointer highvals, Cardinal highoffset,
 XtPointer lowvals, Cardinal lowoffset,
 Cardinal num_values);

void XiErrorPlotDataChanged(Widget w);

B.6 FadePlot Functions
Widget XiCreateFadePlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

B.7 FillPattern Functions
XiFillPattern XiFillPatternCreate(char *bits,
 int width, int height,
 String psglyph, String psfill);

void XiFillPatternRegister(String name, XiFillPattern pattern);

XiFillPattern XiFillPatternLookup(String name);
Function Reference 287

B.8 HighLowPlot Functions
Widget XiCreateHighLowPlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

void XiHighLowPlotSetDoubleValues(Widget w,
 double xmin, double xinterval,
 double *highvals, double *lowvals,
 double *closevals,
 Cardinal num_points);

void XiHighLowPlotSetFloatValues(Widget w,
 double xmin, double xinterval,
 float *highvals, float *lowvals,
 float *closevals,
 Cardinal num_points);

void XiHighLowPlotSetIntValues(Widget w,
 double xmin, double xinterval,
 int *highvals, int *lowvals,
 int *closevals,
 Cardinal num_points);

void XiHighLowPlotSetValues(Widget w, double xmin, double xinterval,
 XiPlotDataType ytype, Cardinal ysize,
 XtPointer highvals, Cardinal highoffset,
 XtPointer lowvals, Cardinal lowoffset,
 XtPointer closevals, Cardinal closeoffset,
 Cardinal num_points);

void XiHighLowPlotSetPoints(Widget w,
 XtPointer xvals, XiPlotDataType xtype,
 Cardinal xsize, Cardinal xoffset,
 XiPlotDataType ytype, Cardinal ysize,
 XtPointer highvals, Cardinal highoffset,
 XtPointer lowvals, Cardinal lowoffset,
 XtPointer closevals, Cardinal closeoffset,
 Cardinal num_points);

void XiHighLowPlotDataChanged(Widget w);
288 GraphPak Programmer’s Reference Manual

B.9 HistoPlot Functions
Widget XiCreateHistoPlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

void XiHistoPlotSetDoubleValues(Widget w,double *values,Cardinalnum);

void XiHistoPlotSetFloatValues(Widget w, float *values, Cardinal num);

void XiHistoPlotSetIntValues(Widget w, int *values, Cardinal num);

void XiHistoPlotSetValues(Widget w,
 XtPointer vals, XiPlotDataType type,
 Cardinal size, Cardinal offset,Cardinal num);

void XiHistoPlotDataChanged(Widget w);
Function Reference 289

B.10 LinePlot Functions
Widget XiCreateLinePlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

void XiLinePlotSetDoublePoints(Widget w,
 double *xvals, double *yvals, Cardinal num);

void XiLinePlotSetFloatPoints(Widget w,
 float *xvals, float *yvals, Cardinal num);

void XiLinePlotSetIntPoints(Widget w,int *xvals,int *yvals,Cardinal
 num);

void XiLinePlotSetDoubleYValues(Widget w, double xmin, double
 xinterval, double *yvals, Cardinal num);

void XiLinePlotSetFloatYValues(Widget w, double xmin, double
 xinterval, float *yvals, Cardinal num);

void XiLinePlotSetIntYValues(Widget w, double xmin, double xinterval,
 int *yvals, Cardinal num);

void XiLinePlotSetPoints(Widget w, XtPointer xvals, XiPlotDataType
xtype,
 Cardinal xsize, Cardinal xoffset,
 XtPointer yvals, XiPlotDataType ytype,
 Cardinal ysize, Cardinal yoffset, Cardinal
 num);

void XiLinePlotSetYValues(Widget w, double xmin, double xinterval,
 XtPointer yvals, XiPlotDataType ytype,
 Cardinal ysize, Cardinal yoffset, Cardinal
 num);

void XiLinePlotDataChanged(Widget w);

void XiLinePlotDataAdded(Widget w, Cardinal new_num);
290 GraphPak Programmer’s Reference Manual

B.11 Marker Functions
XiMarker XiMarkerCreate(int width, int height,
 char *mark_bits, char *mask_bits,
 String psmark, String psmask);

void XiMarkerRegister(String name, XiMarker marker);

XiMarker XiMarkerLookup(String name);

B.12 PiePlot Functions
Widget XiCreatePiePlot(Widget parent, String name,
 ArgList args, Cardinal num_args);

B.13 Plotter Functions
Widget XiCreatePlotter(Widget parent, String name,
 ArgList args, Cardinal num_args);

Widget XiPlotterXAxis(Widget plotter);

Widget XiPlotterYAxis(Widget plotter);

Widget XiPlotterYAxis2(Widget plotter);

void XiPlotterDisableRedisplay(Widget w);

void XiPlotterEnableRedisplay(Widget w);

void XiPlotterRelayout(Widget plotter);

void XiPlotterPrint(Widget plotter, char *filename,
 int width, int height,
 double scale, int landscape);
Function Reference 291

292 GraphPak Programmer’s Reference Manual

Data Type Reference

This appendix lists the definitions of the public data structures used by the Plotter
library, and contains tables of predefined markers, fill patterns, and line patterns.

C

GraphPak Programmer’s Reference Manual 293

C.1 Callback Structures
typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Position px, py; /* pixel coordinates of the mouse */
 double x, y; /* plot coordinates of the mouse */
} XiClickCallbackStruct, XiDoubleClickCallbackStruct,XiMotionCall-
backStruct;

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Position px1, py1; /* pixel coords of upper left */
 Position px2, py2; /* pixel coords of lower right */
 double x1, y1; /* plot coords of upper left */
 double x2, y2; /* plot coords of upper left */
} XiDragCallbackStruct, XiDragMotionCallbackStruct;

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Position pdx, pdy; /* delta x and delta y in pixel coords */
 double dx, dy; /* delta x and delta y in plot coords */
} XiPanCallbackStruct, XiPanMotionCallbackStruct;

typedef struct {
 int reason; /* the type of the callback */
 XEvent *event; /* the event that triggered it */
 Boolean selected; /* True if an item was selected; False if
 de-selected */
 Widget item; /* the item that was selected, if any */
 Widget *selected_plots; /* a complete list of selected plots */
 Cardinal num_selected_plots;/* # of elements in the list */
} XiSelectCallbackStruct, XiActivateCallbackStruct;

typedef struct {
 int reason;
 XEvent *event;
} XiLeaveCallbackStruct;
.bp
#define XiPlotterEditTitle 1
#define XiPlotterEditXAxis 2
#define XiPlotterEditYAxis 3
#define XiPlotterEditYAxis2 4

typedef struct {
 int reason;
 XEvent *event;
 int where; /* one of the above constants */
 Boolean double_click; /* True if this was a double-click */
} XiEditCallbackStruct;
294 GraphPak Programmer’s Reference Manual

C.2 Callback Reasons
#define XmCR_CLICK 1 /* button clicked in plotting area */
#define XmCR_DOUBLE_CLICK 2 /* double click in plotting area */
#define XmCR_DRAG 3 /* end of drag in plotting area */
#define XmCR_DRAG_MOTION 4 /* motion during drag in plotting area */
#define XmCR_PAN 5 /* end of pan in plotting area */
#define XmCR_PAN_MOTION 6 /* motion during pan in plotting area */
#define XmCR_SELECT 7 /* selection state changed in legend */
#define XmCR_ACTIVATE 8 /* double-click in legend */
#define XmCR_MOTION 9 /* all motion events */
#define XmCR_LEAVE 10 /* pointer has left plotting area */
#define XmCR_EDIT 11 /* button clicked on title or axes */

C.3 Data Types
typedef enum {
 XiPlotDataDouble,
 XiPlotDataFloat,
 XiPlotDataUnsignedLong,
 XiPlotDataLong,
 XiPlotDataUnsignedInt,
 XiPlotDataInt,
 XiPlotDataUnsignedShort,
 XiPlotDataShort,
 XiPlotDataUnsignedChar
} XiPlotDataType;

typedef struct {
 XtPointer values;
 Cardinal num;
 Cardinal size;
 Cardinal offset;
 unsigned char type;
 double constant;
 double multiplier;
} XiPlotData;
Data Type Reference 295

C.4 Fill Patterns

A String-to-XiFillPattern converter is automatically registered by the BarPlot and
PiePlot widgets. It recognizes the names shown in the table, with the "XiFillPattern"
prefix removed, and all letters converted to lowercase. It is case-sensitive.

LeftHatch RightHatch Crosshatch

XiFillPatternLefthatch1
XiFillPatternLefthatch2
XiFillPatternLefthatch3
XiFillPatternLefthatch4
XiFillPatternLefthatch5

XiFillPatternRighthatch1
XiFillPatternRighthatch2
XiFillPatternRighthatch3
XiFillPatternRighthatch4
XiFillPatternRighthatch5

XiFillPatternCrosshatch1
XiFillPatternCrosshatch2
XiFillPatternCrosshatch3
XiFillPatternCrosshatch4
XiFillPatternCrosshatch5

Grid Gray Special

XiFillPatternGrid1
XiFillPatternGrid2
XiFillPatternGrid3
XiFillPatternGrid4
XiFillPatternGrid5

XiFillPatternGray1
XiFillPatternGray2
XiFillPatternGray3
XiFillPatternGray4
XiFillPatternGray5

XiFillPatternNone
XiFillPatternSolid
296 GraphPak Programmer’s Reference Manual

C.5 Line Patterns

A String-to-LinePattern converter is registered by the Plotter widget. It recognizes the
pattern names shown in the table and is case-sensitive. This converter can also con-
vert custom line patterns specified as a whitespace-separated list of integers (as
shown in the third column of the table).

Predefined Line Patterns

C Resource File Pattern

XiLinePatternSolid
XiLinePatternDotted1
XiLinePatternDotted2
XiLinePatternDotted3
XiLinePatternDashed1
XiLinePatternDashed2
XiLinePatternDashed3
XiLinePatternDotDashed1
XiLinePatternDotDashed2
XiLinePatternDotDashed3

Solid
Dotted1
Dotted2
Dotted3
Dashed1
Dashed2
Dashed3
DotDashed1
DotDashed2
DotDashed3

none
1 2
1 4
1 6
3 3
5 5
7 7
3 1 1 1
5 2 1 2
7 3 1 3
Data Type Reference 297

C.6 Markers

A String-to-XiMarker resource converter is registered by the LinePlot widget. It rec-
ognizes the names shown in the table, with the "XiMarker" prefix removed, and capi-
talization retained. It is case-sensitive.

Tiny Markers Small Markers

XiMarkerTinySquare
XiMarkerTinyFilledSquare
XiMarkerTinyCircle
XiMarkerTinyFilledCircle
XiMarkerTinyTriangle
XiMarkerTinyFilledTriangle
XiMarkerTinyTriangle2
XiMarkerTinyFilledTriangle2
XiMarkerTinyDiamond
XiMarkerTinyFilledDiamond
XiMarkerTinyPlus
XiMarkerTinyX

XiMarkerSmallSquare
XiMarkerSmallFilledSquare
XiMarkerSmallCircle
XiMarkerSmallFilledCircle
XiMarkerSmallTriangle
XiMarkerSmallFilledTriangle
XiMarkerSmallTriangle2
XiMarkerSmallFilledTriangle2
XiMarkerSmallDiamond
XiMarkerSmallFilledDiamond
XiMarkerSmallPlus
XiMarkerSmallX

Normal Markers Large Markers

XiMarkerSquare
XiMarkerFilledSquare
XiMarkerCircle
XiMarkerFilledCircle
XiMarkerTriangle
XiMarkerFilledTriangle
XiMarkerTriangle2
XiMarkerFilledTriangle2
XiMarkerDiamond
XiMarkerFilledDiamond
XiMarkerPlus
XiMarkerX

XiMarkerLargeSquare
XiMarkerLargeFilledSquare
XiMarkerLargeCircle
XiMarkerLargeFilledCircle
XiMarkerLargeTriangle
XiMarkerLargeFilledTriangle
XiMarkerLargeTriangle2
XiMarkerLargeFilledTriangle2
XiMarkerLargeDiamond
XiMarkerLargeFilledDiamond
XiMarkerLargePlus
XiMarkerLargeX
298 GraphPak Programmer’s Reference Manual

	GraphPak for
	GraphPak for MotifTOC.pdf
	Table of Contents

	GraphPak for MotifLOF.pdf
	Figures

	GraphPak for MotifLOEX.pdf
	Examples

	GraphPak for MotifLOT.pdf
	Tables

	GraphPakPreface.pdf
	Preface
	About the Software
	About This Book
	Assumptions and Recommended Reading
	Motif widget set

	GraphPak for Motif.pdf
	Introduction: XiPlotter Architecture
	1.1 XiPlotter Architecture
	1.2 XiPlotter Data Types
	1.3 Plot Data Representation

	Hello, World
	2.1 The Program
	2.2 Compiling and Linking the Program

	Plotter Data Types and Resources
	3.1 Double Resources
	3.2 String And XmString Resources
	3.3 Fonts and Displayed Text
	3.3.1 Font List Inheritance
	3.3.2 Automatically Created XmStrings
	3.3.3 PostScript Font Lists
	3.3.4 Internationalized Text Display

	3.4 Markers
	3.5 Fill Patterns
	3.6 Line Patterns
	3.7 Line Widths
	3.8 Colors
	3.9 Cursors
	3.10 Inherited Resource Values

	Plot Data Representation
	4.1 The XiPlotData Abstraction
	4.2 Data in Arrays of Values
	4.3 Data in Arrays of Structures
	4.4 Data of Mixed Types
	4.5 Linear Data
	4.6 Linear Transformations of Data
	4.7 String Data

	The Plotter Widget
	5.1 Creating an XiPlotter Widget
	5.2 Plotter Resources
	5.2.1 Default Colors and Background Resources
	5.2.2 Fonts
	5.2.3 The Axes
	5.2.4 The Title
	5.2.5 The Legend
	5.2.6 Plotter Layout
	5.2.7 Double Buffering and Backing Store
	5.2.8 Interaction Resources and Callbacks
	5.2.9 Cursor Resources
	5.2.10 Printing Resources
	5.2.11 Constraint Resources

	5.3 Plotter Redisplay
	5.4 Printing the Plotter Widget
	5.4.1 Printout Size and Orientation
	5.4.2 Printout Scale
	5.4.3 Spooling a PostScript File to a Printer

	The Axis Widget
	6.1 Querying the Axes of a Plotter
	6.2 Axis Resources
	6.2.1 The Title
	6.2.2 The Labels
	6.2.3 The Axis and Tick Marks
	6.2.4 The Frame and the Origin
	6.2.5 The Grid
	6.2.6 Axis Layout

	6.3 Controlling Axis Numbering
	6.3.1 Computing Axis Bounds Automatically
	6.3.2 Setting Axis Bounds Manually
	6.3.3 Setting Secondary Y Axis Bounds
	6.3.4 Specifying Logarithmic Axes
	6.3.5 Computing Axis Marks Automatically
	6.3.6 Specifying Axis Marks Explicitly
	6.3.7 Computing Axis Labels Automatically
	6.3.8 Specifying Axis Labels Explicitly

	6.4 World <--> Pixel Coordinate Conversion

	The LinePlot Widget
	7.1 Creating a LinePlot
	7.2 LinePlot Resources
	7.2.1 Lines
	7.2.2 Markers
	7.2.3 Fill Patterns
	7.2.4 Impulses
	7.2.5 Shadows
	7.2.6 Data Resources

	7.3 Specifying LinePlot Data
	7.3.1 Arrays of Doubles, Floats, or Ints
	7.3.2 Specifying Data in Structures
	7.3.3 Changing Data in Place
	7.3.4 Adding Data Points Dynamically

	The ErrorPlot Widget
	8.1 Creating an ErrorPlot
	8.2 ErrorPlot Resources
	8.2.1 Error Bar Resources
	8.2.2 Fixed Error Resources
	8.2.3 Variable Error Resources

	8.3 Specifying ErrorPlot Data
	8.3.1 Arrays of Doubles, Floats, or Ints
	8.3.2 Specifying Error Values from Structures
	8.3.3 Changing Data in Place

	The BarPlot Widget
	9.1 Creating a BarPlot
	9.2 BarPlot Resources
	9.2.1 Bar Color and Pattern
	9.2.2 Bar Outline
	9.2.3 Bar Shadows
	9.2.4 Bar Positioning, Grouping and Stacking
	9.2.5 Data Resources

	9.3 Specifying BarPlot Data
	9.3.1 Arrays of Doubles, Floats, and Ints
	9.3.2 Specifying Data in Structures
	9.3.3 Changing Data in Place

	The HistoPlot Widget
	10.1 Creating a HistoPlot
	10.2 HistoPlot Resources
	10.2.1 Boundary and Bin Resources
	10.2.2 Data Resources

	10.3 Specifying HistoPlot Data
	10.3.1 Arrays of Doubles, Floats, and Ints
	10.3.2 Specifying Data from Structures

	10.3.3 Changing Data in Place

	The PiePlot Widget
	11.1 Creating PiePlot Widgets
	11.2 PiePlot Resources
	11.2.1 PiePlot Fill Pattern
	11.2.2 PiePlot Outline
	11.2.3 PiePlot Shadows
	11.2.4 PiePlot Labels
	11.2.5 PiePlot Data
	11.2.6 PiePlot Positioning

	The HighLowPlot Widget
	12.1 Creating a HighLowPlot
	12.2 HighLowPlot Resources
	12.2.1 Visual Resources
	12.2.2 Data Resources

	12.3 Specifying XiHighLowPlot Data
	12.3.1 Arrays of Doubles, Floats, or Ints

	12.3.2 Using Arrays of Structures
	12.3.3 Notifying the Widget of Changed Data

	Annotating Plots
	13.1 Creating Annotations
	13.2 TextPlot and ImagePlot Resources
	13.2.1 Annotation Position
	13.2.2 Annotation Offsets
	13.2.3 Annotation Size and Margins
	13.2.4 Annotation Colors
	13.2.5 Arrows
	13.2.6 Shadows and Trim

	13.2.7 TextPlot Resources
	13.2.8 ImagePlot Resources

	13.3 Positioning Annotations
	13.3.1 Querying LinePlot and HighLowPlot values
	13.3.2 Querying the Bounds of a BarPlot Bar
	13.3.3 Querying the Bounds of a PiePlot Wedge
	13.3.4 Example: Annotating a PiePlot

	13.4 Updating Image Annotations

	The FadePlot Widget
	14.1 FadePlot Resources
	14.2 Using the FadePlot
	14.2.1 The FadePlot as Backdrop and Background
	14.2.2 Non-Linear Color Interpolation
	14.2.3 Note on Color Usage

	Drawing Your Own: the CallbackPlot
	15.1 CallbackPlot Resources
	15.1.1 Untyped Data Resources
	15.1.2 Callback Resources
	15.1.3 Control Resources

	15.2 CallbackPlot Example

	User Interaction with the Plotter
	16.1 Selecting Items in the Legend
	16.1.1 Example: Highlighting a Selected Plot

	16.2 Selecting Points
	16.2.1 Example: Hit Detection

	16.3 Crosshairs and Mouse Motion
	16.3.1 Example: Displaying Mouse Coordinates

	16.4 Selecting Regions
	16.4.1 Example: Zooming In

	16.5 Panning or Scrolling
	16.5.1 Example: Scrolling the Plotting Area

	16.6 Selecting Title and Axes
	16.7 Plotter Translations and Actions
	16.7.1 Example Translation Tables

	Defining Custom Markers
	17.1 Creating a Custom Marker
	17.2 PostScript Output of Custom Markers
	17.3 Naming and Looking Up Markers

	Defining Custom Fill Patterns
	18.1 Creating a Custom Fill Pattern
	18.1.1 Defining a Fill Pattern for X
	18.1.2 Defining a Fill Pattern for PostScript

	18.2 Naming and Looking up Fill Patterns

	Widget Resource Reference
	A.1 Annotation Resources
	A.2 Axis Resources
	A.3 BarPlot Resources
	A.4 CallbackPlot Resources
	A.5 ErrorPlot Resources
	A.6 FadePlot Resources
	A.7 HighLowPlot Resources
	A.8 HistoPlot Resources
	A.9 LinePlot Resources
	A.10 PiePlot Resources
	A.11 Plotter Resources

	Function Reference
	B.1 Annotation Functions
	B.2 Axis Functions
	B.3 BarPlot Functions
	B.4 CallbackPlot Functions
	B.5 ErrorPlot Functions
	B.6 FadePlot Functions
	B.7 FillPattern Functions
	B.8 HighLowPlot Functions
	B.9 HistoPlot Functions
	B.10 LinePlot Functions
	B.11 Marker Functions
	B.12 PiePlot Functions
	B.13 Plotter Functions

	Data Type Reference
	C.1 Callback Structures
	C.2 Callback Reasons
	C.3 Data Types
	C.4 Fill Patterns
	C.5 Line Patterns
	C.6 Markers

	GraphPakTitlePage.pdf
	GraphPak for OSF Motif

