
epak30TOC.fm Page i Thursday, January 22, 2009 12:43 PM
EnhancementPak 3.0
Programmer’s Reference

Integrated Computer
Solutions, Incorporated

epak30TOC.fm Page ii Thursday, January 22, 2009 12:43 PM
Copyright © 1997-2009 Integrated Computer Solutions, In
The EnhancementPak Programmer’s Reference™ is copyrighted by Integrated Computer
Solutions, Inc., with all rights reserved. No part of this book may be reproduced,
transcribed, stored in a retrieval system, or transmitted in any form or by any means
electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 B Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060
Fax: 617.621.9555
E-mail: info@ics.com

Trademarks
EnhancementPak, EPak PRO, EPak, Builder Xcessory, BX, BX/Ada, Builder Xcessory
PRO, BX PRO, BX/Win Software Development Kit, BX/Win SDK, Database Xcessory,
DX, DatabasePak, DBPak, ViewKit ObjectPak, VKit, ICS Motif, and Ada/Motif are
trademarks of Integrated Computer Solutions, Inc.
All other trademarks are properties of their respective owners.

Second printing
January 2009

Contents

epak30TOC.fm Page iii Thursday, January 22, 2009 12:43 PM
How to Use This Manual
Overview ... ix
Introduction to EnhancementPak.. x
Notation Conventions .. xi
epak-talk Mailing List .. xii

Chapter 1—Widget Documentation Format
Overview .. 1
Widget Summary.. 2

Class Name... 2
Class Pointer... 2
Superclass Name .. 2
Creation Routine... 3

Geometry Management .. 3
Classes and Inherited Resources... 4
Resources.. 4

Resources Table Format... 5
Data Types.. 6
Using Resource Names .. 6
Class Names ... 7
Resource Values ... 7

Constraint Resources .. 8
Translations and Actions .. 8
Compound Widget Hierarchy... 9
Callback Routines... 9
Convenience Routines .. 10

Chapter 2—Programming with EnhancementPak
Overview .. 11
External Symbol and Resource Naming... 12
Compound Widgets .. 12
Building UNIX Applications with EnhancementPak... 13

Standard Installation Example.. 14
Custom Installation Example ... 14

Version Information ... 14
Subclassing EnhancementPak Widgets .. 14
Programming Resolution-independent Interfaces .. 14
Strings and Memory Management ... 15
Utility Routine XiGetVersionInfo() ... 16
EnhancementPak Programmer’s Reference iii

epak30TOC.fm Page iv Thursday, January 22, 2009 12:43 PM
Chapter 3—Widget Reference
Overview ... 17
XiButtonBox ...18
Classes and Inherited Resources ... 19
Resources .. 19
Translations and Actions... 21
XiColorSelector ..22
Classes and Inherited Resources ... 23
Resources .. 23
Compound Widget Hierarchy ... 25
XiColumn ..26
Classes and Inherited Resources ... 27
Resources .. 27
Constraint Resources... 29
Translations and Actions... 30
XiCombinationBox...31
Geometry Management ... 33
Global Translations ... 33
Classes and Inherited Resources ... 34
Resources .. 34
Compound Widget Hierarchy ... 38
Callback Routines ... 39
Convenience Routine .. 39
XiDataField ...40
Classes and Inherited Resources ... 40
Resources .. 41
Callback Routines ... 43
XiExtended18List ...44
Using the Resource Database.. 46
Classes and Inherited Resources ... 46
Resources .. 46
Translations and Actions... 51
Compound Widget Hierarchy ... 52
XiExt18ListCallbackStruct Structure.. 52
Xi18RowInfo Structure ... 53
Callback Routine ... 54
Sort Function ... 54
Convenience Routines... 54
iv EnhancementPak Programmer’s Reference

epak30TOC.fm Page v Thursday, January 22, 2009 12:43 PM
XiFontSelector ... 57
Basic Features... 57
Advanced Features ... 58

Non XLFD Fonts.. 58
Resolution Control ... 59
Fixed or Proportional.. 59
Font Scaling.. 59
Encoding... 59
XLFD Name Display.. 59

Classes and Inherited Resources... 60
Resources.. 60
Compound Widget Hierarchy... 64
XiHierarchy.. 66
Classes and Inherited Resources... 66
Resources.. 67
Constraint Resources .. 69
Callback Routine .. 70
Convenience Routines .. 70
Class Methods... 71
XiIconBox ... 73
Classes and Inherited Resources... 74
Resources.. 75
Constraint Resources .. 76
Convenience Routine.. 76
XiIconButton .. 77
Classes and Inherited Resources... 77
Resources.. 78
Translations and Actions .. 81
Callback Routines... 82
XiOutline .. 83
Outline Node Types.. 84

XiOpen ... 84
XiClosed... 84
XiAlwaysOpen ... 85
XiHidden .. 85

Geometry Management .. 85
Classes and Inherited Resources... 85
Resources.. 86
EnhancementPak Programmer’s Reference v

epak30TOC.fm Page vi Thursday, January 22, 2009 12:43 PM
XiPaned ...87
Geometry Management ... 88
Classes and Inherited Resources ... 89
Resources .. 90
Constraint Resources... 92
Translations and Actions... 93
Convenience Routine .. 94
XiPanner ...95
Classes and Inherited Resources ... 97
Resources .. 97
Translations and Actions... 99
XiScrollReport .. 100
Callback Routine ... 101
Convenience Routine .. 101
XiPixmapEditor..102
Selecting and Adding Colors... 104
Resizing the Pixmap.. 104
Panning and Zooming ... 105
Input and Output.. 105
Classes and Inherited Resources ... 106
Resources .. 106
Translations and Actions... 111
Compound Widget Hierarchy ... 111
Convenience Routines... 113
XiPorthole ...114
Geometry Management ... 116
Classes and Inherited Resources ... 116
Resources .. 117
Callback Routine ... 118
Convenience Routines... 119
XiStretch ...120
Classes and Inherited Resources ... 120
Resources .. 121
Translations and Actions... 122
Callback Routine ... 122
XiStretchWidgetInfo Structure ... 123
vi EnhancementPak Programmer’s Reference

epak30TOC.fm Page vii Thursday, January 22, 2009 12:43 PM
XiTabStack... 124
Classes and Inherited Resources... 125
Resources.. 125
Constraint Resources .. 129
Translations and Actions .. 130
XiTabStackCallbackStruct Structure.. 131
Convenience Routines .. 131
XiToolbar ... 132
Toolbar Popup Labels... 132
Specifying Groups and Positions.. 133
Classes and Inherited Resources... 133
Resources.. 133
Constraint Resources .. 135
XiToolbarCallbackStruct Structure .. 136
Convenience Routines .. 136
XiToolTip ... 138
Resources.. 139
Convenience Routines .. 141
XiTree ... 146
User Interaction .. 147

XiOpen ... 147
XiClosed... 147
XiAlwaysOpen ... 147
XiHidden .. 148

Geometry Management .. 148
Classes and Inherited Resources... 148
Resources.. 149
Constraint Resources .. 150

Appendix
Classes and Inherited Resources... 153
Core Resources ... 153
Composite Resources ... 155
XmBulletinBoard Resources .. 155
XmFrame Resources... 157
XmManager Resources... 157
XmPrimitive Resources.. 159
XmTextField Resources ... 160

Index.. 163
EnhancementPak Programmer’s Reference vii

epak30TOC.fm Page viii Thursday, January 22, 2009 12:43 PM
viii EnhancementPak Programmer’s Reference

howto.fm5 Page ix Wednesday, January 21, 2009 4:06 PM
How to Use This Manual

Overview
This chapter includes the following sections:

• Introduction to EnhancementPak on page x

• Notation Conventions on page xi

• epak-talk Mailing List on page xii
EnhancementPak Programmer’s Reference ix

HOW TO USE THIS MANUAL
Introduction to EnhancementPak

howto.fm5 Page x Wednesday, January 21, 2009 4:06 PM
Overview The following table provides an overview of each chapter of the EnhancementPak
3.0 Programmer’s Reference manual:

Introduction to EnhancementPak
OSF/Motif™ has become the industry-standard graphical user interface toolkit. It is
now shipped by many major hardware vendors as part of both user and development
environments. Although Motif is a fine base, the basic widgets are insufficient for
many development projects.

The ICS EnhancementPak™ provides a sophisticated and usable interface and very
flexible widgets. The availability of sources for each EnhancementPak widget allows
you to use the EPak widgets to build your own widgets. This helps you meet the
requirements unique to your application and to your customer base, and will often save
you time and money.

The widgets in EnhancementPak were designed to satisfy a variety of application
needs, including both the need to provide the end user with additional controls and
also to lay out those controls in ways that cannot easily be accomplished with the
basic Motif widget set.

 Chapter 1—Widget Documentation
Format

Presents the format used to describe
the EPak widgets listed in Chapter
3—Widget Reference, and describes
the common EPak widget informa-
tion.

 Chapter 2—Programming with
EnhancementPak

Discusses specifics of programming
with EPak, including resource nam-
ing, compound widgets, strings, and
memory management.

 Chapter 3—Widget Reference Technical reference section for the
complete set of Epak widgets, classes,
and callback and convenience routines
x EnhancementPak Programmer’s Reference

HOW TO USE THIS MANUAL
Notation Conventions

howto.fm5 Page xi Wednesday, January 21, 2009 4:06 PM
EPak widget
categories

The widgets in EnhancementPak fit into these general categories:

• Data-Selection and Data-Presentation Widgets
These widgets provide the end user with the ability to directly manipulate data
that your application presents, including simply selecting from existing items
in a list or interactively creating data as complicated as a multi-color pixmap.
Widgets that fall into this category are the XiColorSelector, XiCombination-
Box, XiDataField, XiExtended18List, XiFontSelector, XiIconButton, and
XiPixmapEditor.

• Layout Widgets
These widgets provide various means of arranging their children, including
into hierarchical layouts and other space-saving layouts. Widgets that fall into
this category are the XiButtonBox, XiColumn, XiHierarchy, XiIconBox,
XiOutline, XiPaned, XiPanner, XiPorthole, XiStretch, XiTabStack, XiToolbar,
and XiTree.

• Utility Widgets
These widgets or other pieces of code provide additional functionality. Wid-
gets that fall into this category are the XiToolTip.

Notation Conventions
The following conventions are used throughout the EnhancementPak
Programmer’s Reference:

• Italic denotes variable names, book or chapter titles, and also indicates
emphasis:
“The header files must be in a directory path that terminates with the path-
name.”

• Fixed width denotes verbatim code entries. Text delimited by angle
brackets indicates where you should substitute specific information:
“subscribe <your_email_address_here>”

• Bold denotes resources. The name, class, default value, type, and access for
each resource are presented in each widget section as two tables, Resources
and Constraint Resources. All resource names begin with XmN and all
resource class names begin with XmC.
EnhancementPak Programmer’s Reference xi

HOW TO USE THIS MANUAL
epak-talk Mailing List

howto.fm5 Page xii Wednesday, January 21, 2009 4:06 PM
epak-talk Mailing List
You can subscribe to the epak-talk mailing list to communicate with other users
of the ICS EnhancementPak™ and Builder Xcessory™ widgets.1 This mailing list
provides tips on different ways to use EnhancementPak widgets and how to integrate
them into your development environment.

Subscribing

To subscribe to epak-talk, send the following in the body (not the subject line)
of an e-mail message to epak-talk-request@ics.com:
subscribe

To subscribe to epak-talk, send e-mail to epak-talk-request@ics.com and
include the following line in the body (not the subject line) of your message:
subscribe <your_email_address_here>

If you wish to subscribe to another address instead, such as a local redistribution list,
you can use a command of the form:
subscribe other-address@your_site.your_net

Once you receive confirmation of your subscription request, all messages sent to
epak-talk@ics.com are received by all subscribers. You might want to set up
local redistribution lists within your organization, or have your system administrator
set up this list for accessibility from within your news system.

Unsubscribing

To unsubscribe from epak-talk, send the following in the body (not the subject
line) of an e-mail message to epak-talk-request@ics.com:
unsubscribe

This will unsubscribe the account from which you send the message. If you are
subscribing with some other address, send a command of the following form instead:
unsubscribe other-address@your_site.your_net

Contributing

To contribute a comment, question, or suggestion to the mailing list, send an e-mail
message to epak-talk@ics.com. The message will automatically be distributed

1. With version 3.0 of EnhancementPak, the name of the mailing list widget-talk has been changed
to epak-talk. Mail sent to widget-talk and widget-talk-request will be rerouted to
epak-talk and epak-talk-request.
xii EnhancementPak Programmer’s Reference

HOW TO USE THIS MANUAL
epak-talk Mailing List

howto.fm5 Page xiii Wednesday, January 21, 2009 4:06 PM
to all members of the epak-talk mailing list.

Further Help

For a full list of commands that the mailing list server understands, send the
following in the body (not the subject line) of an e-mail message to
epak-talk-request@ics.com.

help
EnhancementPak Programmer’s Reference xiii

HOW TO USE THIS MANUAL
epak-talk Mailing List

howto.fm5 Page xiv Wednesday, January 21, 2009 4:06 PM
xiv EnhancementPak Programmer’s Reference

docformat.fm5 Page 1 Wednesday, January 21, 2009 4:07 PM
Widget Documentation
Format 1

Overview
This chapter includes the following sections:

• Widget Summary on page 2

• Geometry Management on page 3

• Classes and Inherited Resources on page 4

• Resources on page 4

• Constraint Resources on page 8

• Translations and Actions on page 8

• Compound Widget Hierarchy on page 9

• Callback Routines on page 9

• Convenience Routines on page 10
EnhancementPak Programmer’s Reference 1

WIDGET DOCUMENTATION FORMAT
Widget Summary1

docformat.fm5 Page 2 Wednesday, January 21, 2009 4:07 PM
Widget Summary
Each widget reference section begins with a table summarizing the following
information:

Class Name
The class name is the formal name for the widget class. The documentation describing
each widget uses either the full class name (such as "XiButtonBox") or the less formal
nickname ("ButtonBox" or "Button Box").

The formal name is used only to set resources on all widgets of this class. The full
class name is the string which is common for all widget instances.

For example, the following specification in a defaults file
*XiButtonBox.marginWidth: 10

sets the XmNmarginWidth resource on all instances of XiButtonBox widgets that
have no more specific setting to the value 10.

Class Pointer
The class pointer is the pointer to the data structure defining the widget. It is the value
that is passed to Xt functions to create the widget. Both XtCreateWidget() and
XtCreateManagedWidget() take the class pointer to the widget as a function argument.
The widget’s creation routine uses this value.

Superclass Name
The "Superclass Name" specifies the widget class from which this widget inherits most
of its behavior. It is a shortcut reference to the "Classes and Inherited Resources"
description (see “Classes and Inherited Resources” on page 4).

Application Header File Public header file that you should include in any application
that uses the widget.

Class Header File Private header file required to subclass the widget.

Class Name Widget’s class name.

Class Pointer Pointer to the widget’s class.

Superclass Name Widget from which this widget was subclassed.

Creation Routine Routine that creates an instance of the widget.
2 EnhancementPak Programmer’s Reference

WIDGET DOCUMENTATION FORMAT
Geometry Management 1

docformat.fm5 Page 3 Wednesday, January 21, 2009 4:07 PM
Creation Routine
Each EnhancementPak widget offers a simple function that can be used to create the
widget. These functions follow the format established by the Motif widget set. The
name of the function is always based on the widget class name, with the word
"Create" inserted after the "Xi" prefix (the exact name is listed in the summary table
on the first manual page for the widget). All creation functions take the same set of
arguments; they all return the identifier of the created widget.

Note: Unlike the Motif widget creation routines, the Xi creation routines are
simply wrappers around the Xt functions that create widgets. The creation routines
do not perform any additional processing on the widget. They are equivalent to
calling XtCreateWidget() with the class pointer of the widget. However, it is
preferable to use the creation routine in case it does do extra resource setting on the
widgets in future versions of EnhancementPak.

Note: The creation routines, like the Motif creation routines, create the widgets in
an unmanaged state. It is necessary to call XtManageChild() or
XtManageChildren(), passing the widget identifier, to have the widget's parent
allocate space to display the widget.

Widget XiCreateWidget(Widget parent,
String name,
ArgList args,
Cardinal num_args)

parent Parent widget ID.

name Name of the created widget. This name is the one used in a
defaults file to define certain resource values for the widget
instance.

args Argument list naming resources to be set on the widget at its
creation. (After creation, use XtSetValues() or XtVaSetValues() to
change resource values, as normal.)

num_args Number of attribute/value pairs in the argument list.

Geometry Management
The EnhancementPak widgets that handle layout offer very specialized behavior in
arranging their child widgets. This section describes the mechanism by which the
widget affects the size and location of its children.
EnhancementPak Programmer’s Reference 3

WIDGET DOCUMENTATION FORMAT
Classes and Inherited Resources1

docformat.fm5 Page 4 Wednesday, January 21, 2009 4:07 PM
Classes and Inherited Resources
The ICS EnhancementPak, like the Motif widget set, is based on the X Toolkit
Intrinsics (Xt). Xt is a subclassing toolkit. It defines a base class, called Core, which
provides a certain amount of functionality and a basic set of resources— the size and
location of the widget and its background color, for example, are resources defined by
Core. Additional widget classes subclass from Core and define additional resources
and functionality. The complete set of resources and behavior for a widget is defined
by "adding up" those of all its superclasses.

A section titled "Classes and Inherited Resources" appears in the description for
widgets in EnhancementPak. It lists the full hierarchy of classes that defines each
widget. The hierarchy always starts with Core, which is defined by Xt. Other parts
of the hierarchy are defined by the Motif widget set, which provides the
XmPrimitive and XmManager. Widgets that the end-user interacts with directly
and that are fairly simple are subclassed from XmPrimitive. Widgets that do layout
of other widgets, including children that they create themselves for the end-user to
interact with, are subclassed from additional Xt classes, Composite and Constraint,
and then from XmManager. Several widgets in the ICS EnhancementPak are
subclassed from other Xi widgets; most are subclassed directly from XmPrimitive
and XmManager, so only those class descriptions need to be referred to determine
the complete capabilities of a widget in EnhancementPak.

The resources inherited from each Motif superclass are listed in the Appendix at the back
of this book. For a complete description of each resource, refer to the OSF/Motif
Programmer's Reference (Version 1.2 or better) published by The Open Group (formerly
The Open Software Foundation) and Prentice-Hall.

Resources
The Resources table summarizes information about each resource that is new for the
widget. The widget also contains any significant resources defined in any ancestor
widget, but redefined in this widget. For information about the superclass resources,
refer to the section “Classes and Inherited Resources” for the respective widgets.
4 EnhancementPak Programmer’s Reference

WIDGET DOCUMENTATION FORMAT
Resources Table Format 1

docformat.fm5 Page 5 Wednesday, January 21, 2009 4:07 PM
Resources Table Format
The Resources table uses the following table template:

Definitions The following table defines each table item:

The resource table is followed by an explanation of each resource. The descriptions
are generally alphabetical, except where two closely-related resources are discussed
together (for example, XmNhorizontalMargin and XmNverticalMargin for a
widget supporting margin padding).

The resource name follows the conventions established by the Motif widget set. The name
begins with the Xm prefix; because the Xi widgets are subclassed from Motif widgets, all
resources use Xm universally (preferable to mixing Xm and Xi prefixes). The prefix is
followed by "N" (for Name). The rest of the resource name describes its purpose. The
initial letter is always in lower-case. The name can be composed of multiple words; if so,
the name contains inter-caps.

Name
Class

Default
Type

Access

Table Item Definition

Name Resource name.

Class Class of resource.

Type Data type of resource.

Default Default value of resource.

Access Access permissions of the resource:
C indicates resource can be set at widget creation time.
S indicates resource can be set at any time by using XtSetValues or a rou-
tine provided by the widget supporting the resource.
G indicates resource value can be retrieved by using XtGetValues().

For resources of type XtCallbackList, "S" and "G" imply that special
functions appropriate to callback resources can be used: XtAddCall-
back() and XtRemoveCallback(), most notably. XtSetValues replaces the
list, so these special Xt functions should always be used for callback
resources.
EnhancementPak Programmer’s Reference 5

WIDGET DOCUMENTATION FORMAT
Resources1

docformat.fm5 Page 6 Wednesday, January 21, 2009 4:07 PM
Data Types
Generally, geometry resources (offsets, margins, spacings) are of the Xt type
Dimension, while location resources (x and y) are of the Xt type Position. However,
occasionally some position and location resources are of type int; these cannot be
changed because of issues of backward compatibility.

Resources which are of type "unsigned char" are of size unsigned char, but the valid
values for the resources are typically values chosen from a set of enumerated values
or constants (which are documented).

In other cases, widgets that have defined their own types name the resource type as
being of that type, which is defined in the widget's public header file. The valid
values are documented.

It is important to use the correct type, especially in calls to XtGetValues(). The internal
mechanism that Xt uses to read and write resource values into a widget depends greatly
on the size of the resource value's being computed correctly.

Using Resource Names
For resources other than those of type XtCallbackList, the resource name is used in
calls to the Xt functions XtSetValues() and XtGetValues() (among others) to change
the resource value of a widget. For example, to change the XmNmarginWidth
resource of a widget which is an XiButtonBox, the following call can be made:

Widget bbox = XiCreateButtonBox(shell, "topBox", NULL, 0);
Dimension margin = 15;

.

.

.
XtVaSetValues(bbox, XmNmarginWidth, margin, NULL);

It is important that the data type used for a resource match that in the resource table,
particularly when you use XtGetValues().

In addition, the resource name can be used in a defaults file (such as
$HOME/.Xdefaults, which can be picked up automatically) to set the initial
value of a resource. In this case, the ButtonBox could be created with an initial value
of XmNmarginWidth with this line in a defaults file:
*topBox.marginWidth: 15

Strip off the "XmN" prefix to get the resource name to use in this specification.
6 EnhancementPak Programmer’s Reference

WIDGET DOCUMENTATION FORMAT
Class Names 1

docformat.fm5 Page 7 Wednesday, January 21, 2009 4:07 PM
Class Names
The resource class names also begin with the Xm prefix. The prefix is followed by
"C" (for Class). The rest of the resource name describes its purpose. The initial letter
is always in upper-case. The name can be composed of multiple words; if so, the
name contains inter-caps. When more than one resource is in a class, setting a value
for the resource class sets both resources. For example, both XmNmarginWidth
and XmNmarginHeight are listed in resource pages as being of class
XmCMargin. Setting this resource specification sets both resources to the value
named:
*topBox.Margin: 15

Resource Values
Some resources provided by EnhancementPak have values which are not basic data
types. For example, the XiButtonBox provides a resource XmNfillOption, which
names how children are arranged within the ButtonBox. The legitimate values of
XmNfillOption are symbolic constants such as XiFillMajor and XiFillMinor. All
such enumerated values and symbolic constants in EnhancementPak follow either
this format (Xi prefix followed by words with inter-caps) or the format used by the
XiButtonBox's XmNorientation resource, which has values of XmHORIZONTAL
and XmVERTICAL (Xi prefix followed by upper-cased words with underbars
separating words). In either case, drop the "Xi" prefix to use the value in a defaults
file (and case doesn't matter):
*topBox.fillOption: fillMajor
*topBox.fillOption: fillmajor
*topBox.orientation: horizontal

In addition, the widgets typically support the obvious short names for the resource
values, such as "major" in this case.

Resources of other types, such as lists of strings, also have converters. Information on
the converters is documented where these resources are used.

Refer to the Xt Toolkit Intrinsics documentation for more information about using
defaults files and on where resource specifications may be defined and how they can
automatically be included when your program runs.
EnhancementPak Programmer’s Reference 7

WIDGET DOCUMENTATION FORMAT
Constraint Resources1

docformat.fm5 Page 8 Wednesday, January 21, 2009 4:07 PM
Constraint Resources
The widgets in EnhancementPak that are containers for other widgets can take
advantage of one of the facilities offered by their superclass—these widgets are
subclasses of XmManager, which in turn is a subclass of the XtConstraint widget.
That widget class offers the ability to associate data with each child. This mechanism
allows the widgets in EnhancementPak internally to store information about each
child widget. For example, the XiColumn uses this data to store information about
each child widget's associated label.

The programmer's interface to this extra data is through the resource mechanism. The
Constraint Resources section documents the public data values that can be set for each
child, using the same format as the Resources table. For example, the XiColumn
supports a resource XmNentryLabelString to set the label string associated with each
child; the Constraint Resources table shows the default value of that resource and its
data type.

Although this resource is offered by the XiColumn, the value should be set on the
child of the XiColumn, just as though the resource were actually one supported by
the child widget. The Xt Toolkit Intrinsics handles the overhead of determining
which resources are actually for the child widget and which are constraint resources
that are for the constraint information supported by the parent widget. This work by
Xt is done both for direct setting of widget resources via XtSetValues() and also
through defaults files.

Translations and Actions
The X Toolkit Intrinsics offers a facility for mapping sequences of user interaction
to particular capabilities offered by widgets. For example, a certain key sequence can
be set to trigger a "move to beginning of line" function in a text-editing widget. Xt
provides this facility by use of Translations and Actions. Translations name key
sequences and associated action names to call when the sequence has been received;
internally, widgets map these action names to functions to perform the particular
task.

EnhancementPak widgets generally inherit this functionality from their
superclasses. Any additional functionality available as actions is documented in this
section.

Refer to the X Toolkit Intrinsics documentation for information on how to define a
translation table for a widget.
8 EnhancementPak Programmer’s Reference

WIDGET DOCUMENTATION FORMAT
Compound Widget Hierarchy 1

docformat.fm5 Page 9 Wednesday, January 21, 2009 4:07 PM
Compound Widget Hierarchy
Widgets in EnhancementPak can be treated as single objects. When you create an
XiCombinationBox, for example, you make a single call and receive a single widget
identifier; you can then manipulate the XiCombinationBox using that identifier (for
example, by unmanaging or re-managing it).

However, to have complete control over the interface for the application that you are
creating, you will want to have access to the widgets that the XiCombinationBox
creates internally as part of its own interface.

This section lists the compound widget hierarchy for widgets in EnhancementPak
that create their own children.

Refer to Chapter 2—Programming with EnhancementPak for details on how to
manipulate these automatically-created children.

Callback Routines
In order to provide the application with notification that the end-user has done
something interesting, several widgets in EnhancementPak provide callbacks.
Callbacks are special resources that are manipulated using XtAddCallback() and
XtRemoveCallback() and several other Xt functions. The value of the resource is a
list of procedures to call when the event of interest happens. Each procedure is of
type XtCallbackProc; each is called with three parameters—the widget in question,
a pointer to data defined by the application and registered in the call to
XtAddCallback, and a pointer to data provided by the widget. This data (often called
"call_data") is typically a pointer to a structure (and cast to an XtPointer)
containing extra information of use to the callback procedure. EnhancementPak
widgets that provide such a structure document it in this section.
EnhancementPak Programmer’s Reference 9

WIDGET DOCUMENTATION FORMAT
Convenience Routines1

docformat.fm5 Page 10 Wednesday, January 21, 2009 4:07 PM
Convenience Routines
Many of the widget in EnhancementPak define functions that can be used to access
data defined by the widget or to affect its behavior (the creation routine is a very
specialized convenience routine). Any functions provided by the widget are listed in
this section.

Functions defined by widgets in EnhancementPak have names that begin with the formal
class name of the widget (for example, XiCombinationBoxGetValue() is defined by the
XiCombinationBox). The first argument to the function is generally the widget itself (the
XiCombinationBox widget that has been created) or, in rare cases, the child of that widget.

Additional arguments to the function are described for each widget. Most often, the
arguments are of a data type that is defined by the C language, such as "int" or
"unsigned char" or by Xt, such as "Boolean", "Dimension", or "String" (refer to your
Xt documentation for details). In several cases, arguments are of data types, which are
defined by the Xi widgets; additional information on these data types, such as
enumerated values or pointers to structures, is included in this section or is mentioned
in the section titled "Resources".

The return value of each function is also described. Several functions allocate memory in
order to return the value. The documentation for these functions mentions that it is
necessary to call XtFree() on the value to avoid a memory-leak.
10 EnhancementPak Programmer’s Reference

programming.fm5 Page 11 Wednesday, January 21, 2009 4:08 PM
Programming with
EnhancementPak 2

Overview
The chapter includes the following sections:

• External Symbol and Resource Naming on page 12

• Compound Widgets on page 12

• Building UNIX Applications with EnhancementPak on page 13

• Version Information on page 14

• Subclassing EnhancementPak Widgets on page 14

• Programming Resolution-independent Interfaces on page 14

• Strings and Memory Management on page 15

• Utility Routine XiGetVersionInfo() on page 16
EnhancementPak Programmer’s Reference 11

PROGRAMMING WITH ENHANCEMENTPAK
External Symbol and Resource Naming2

programming.fm5 Page 12 Wednesday, January 21, 2009 4:08 PM
External Symbol and Resource Naming
Most external symbols defined by the EnhancementPak (for example: functions, types,
structure definitions, enumeration values, and widget class names) begin with Xi.
Resource names (XmN) and classes (XmC) are the exceptions.

Compound Widgets
Many EnhancementPak widgets automatically create their children. These
compound widgets combine simple components to accomplish more complex tasks
such as selecting a font or editing a pixmap.

Passing
resources to
components

The resource list used at creation time, or during an XtGetValues() call, is passed
down to all widgets created. Before the information is passed down, the following
resources are removed:

In addition, the following constraint resources are removed:

Passing the resource list in this way allows all widgets in the compound widget to,
for example, change color when you set the XmNbackground resource, while still
removing resources that usually have different values for each sub-widget in the
compound widget.

• XmNdestroyCallback • XmNuserData

• XmNheight • XmNwidth

• XmNnavigationType • XmNx

• XmNsensitive • XmNy

• XmNallowResize • XmNresizeToPreferred

• XmNbottomAttachment • XmNrightAttachment

• XmNbottomOffset • XmNrightOffset

• XmNbottomPosition • XmNrightPosition

• XmNbottomWidget • XmNrightWidget

• XmNleftAttachment • XmNshowSash

• XmNleftOffset • XmNskipAdjust

• XmNleftPosition • XmNtopAttachment

• XmNleftWidget • XmNtopOffset

• XmNpaneMaximum • XmNtopPosition

• XmNpaneMinimum • XmNtopWidget

• XmNpreferredPaneSize
12 EnhancementPak Programmer’s Reference

PROGRAMMING WITH ENHANCEMENTPAK
Building UNIX Applications with EnhancementPak 2

programming.fm5 Page 13 Wednesday, January 21, 2009 4:08 PM
Controlling
resources of
components

If you need more control over the individual components of a compound widget, the
widget hierarchy for every compound widget is included in the documentation of
each widget. Use XtNameToWidget() to retrieve the widget ID of any widget and
modify the resources of the component widgets. When you use XtGetValues() to
retrieve resource attributes, compound widgets will not pass the get values call
down to any of their children. The XtGetValues() call must be made directly on the
child to obtain the resource of the child.

Resource
specifications

Although the Compound Widgets expose enough details of their implementation to
make it possible to fetch a child widget and set resources directly on it, the
compound widgets often do not directly support the resources on the child except by
coincidence. That is, using XtSetValues() on XmNlabelString on an
XiCombinationBox will set the XmNlabelString of its child XmLabel, but only
because the resource arguments are passed on to the child. The XiCombinationBox
does not support a resource XmNlabelString itself.

This means that a resource specification for an XiCombinationBox named
"comboBox" of the following form:

*comboBox.labelString: Choose Items

will not work, because XmNlabelString is not a resource of comboBox. However,
this specification:

*comboBox*labelString: Choose Items

has the desired effect, as does a resource specification that names the XmLabel child
explicitly, by name or by class.

Building UNIX Applications with EnhancementPak
To build an application using the EnhancementPak widgets, compile the source code
and link against the additional library libEpak.a. If you have performed a
standard installation, the library will be in /usr/lib. If you have performed a
custom installation, you must tell the compiler where to find the library by using the
-L flag to the linker.

Header files Header files are expected to be installed in /usr/include/Xi. If you have
installed them in some other location, be sure to use the -I flag to specify the
replacement for /usr/include.

Note: Regardless of location, the Xi path is coded into the application. Therefore,
the header files must be under a directory path that terminates with
Xi/<header_file>.

Standard Installation Example
EnhancementPak Programmer’s Reference 13

PROGRAMMING WITH ENHANCEMENTPAK
Version Information2

programming.fm5 Page 14 Wednesday, January 21, 2009 4:08 PM
For a standard installation:

• Widget Headers are installed in /usr/includeXi/*.h

• Widget Libraries are installed in /usr/lib/libEPak.a
% cc main.c -lEPak -lXm -lXt -lX11

Custom Installation Example
In this example, the installation is to pathname /usr/widgets:

• Widget Headers are installed in /usr/widgets/Xi/*.h

• Widget Libraries are installed in /usr/widgets/libEPak.a
% cc main.c -I/usr/widgets -L/usr/widgets/lib

-lEPak -lXm -lXt -lX11

Version Information
EnhancementPak Version Strings are defined in Xi.h. These strings mimic the
OSF/Motif version string definitions except that they are version strings for the
EnhancementPak. The version definitions include the following:

Subclassing EnhancementPak Widgets
Each EnhancementPak widget uses the XtGeometryYes geometry management
policy. When a call to XtMakeGeometryRequest is made, the widget’s resize
procedure is never called, even if the return is set to XtGeometryYes.

Programming Resolution-independent Interfaces
The EPak widgets support resolution-independent programming used by the Motif
widget set. This mechanism allows you to specify their interfaces in terms of units
other than pixels, for example, points, or thousandths of inches. These units are
converted to be correct on the display on which the application is running. The
XmNunitType resource on the widgets controls the mechanism. This resources
inherits from both XmPrimitive and XmManager; and its value specifies the units

XiVERSION Major release number

XiREVISION Minor release number

XiUPDATE_LEVEL Patch level

XiVersion Combined version number

XiVERSION_STRING String describing the release
14 EnhancementPak Programmer’s Reference

PROGRAMMING WITH ENHANCEMENTPAK
Strings and Memory Management 2

programming.fm5 Page 15 Wednesday, January 21, 2009 4:08 PM
to be used in setting widgets' widths, heights, margins, and other sizing and
positioning values of type Dimension. A widget’s XmNmarginWidth resource, for
example, can be specified with a value of 700 and an XmNunitType of
Xm100TH_MILLIMETERS, which may convert to 40 pixels on a particular display.

Resolution
independent
mechanism

EPak widgets also support the resolution-independent mechanism for new resources
that are of type Dimension and represent margins and widget geometry
characteristics described in pixel units. This enables the EPak widgets to be used
with other Motif-based widgets in coordinate systems based on units other than
pixels.

Strings and Memory Management
Several resources supported EnhancementPak widgets have values that are
strings—either C-language simple string "char *" or the Motif "XmString", or
arrays of them. The EPak widgets follow conventions established by the Motif
widget set for handling resources with string data types:

• When the widget is given a string value or a string table, either at initialization
or later through a call to XtSetValues() or an equivalent routine, it makes a
copy of the string or string table. This releases the application from the burden
of maintaining a copy of the string data.

• When the widget is asked for a value that is an array of simple strings or
XmStrings (an XmStringTable), it returns a pointer to the list. The application
should make a copy of the data before performing operations on it.

• When the widget is asked for a value that is a simple string, it returns a pointer
to the string. The application should make a copy of the data before
performing operations on it.

• When the widget is asked for a value that is an XmString, it returns a copy of the
XmString. The application should free the string using XmStringFree().

In cases where the data returned by the widget is allocated when it would not
otherwise be expected to be (for example, when the string is constructed from the
internal values), the description for the resource notes how to free the string.
EnhancementPak Programmer’s Reference 15

PROGRAMMING WITH ENHANCEMENTPAK
Utility Routine XiGetVersionInfo()2

programming.fm5 Page 16 Wednesday, January 21, 2009 4:08 PM
Utility Routine XiGetVersionInfo()
XiGetVersionInfo() returns information about the version of the EPak library to
which the application is linked. This information allows the applications to make
runtime decisions about how to operate with various versions of the EPak widget set
when there are significant differences between library versions. By checking the
version, the application takes advantage of new features while continuing to work
with old versions of the EPak widget set.

The information returned is a pointer to the following structure (which should not be
freed):

typedef struct {
int identifier;
int version;
int revision;
int update_level;
char (information;

}XiVersionInfo;
XiVersionInfo *XiGetVersionInfo (void)

The version, revision, and update_level members correspond to the
“dot” values of the EPak version. For example, version 3.5 with two update patches
would have values of 3, 5, and 2. The identifier information is provided so that
application code can make the simplest possible comparison. It is the “version”
member times 1000 plus the revision. In this case, the value is 3005. The information
field is a string (which should not be freed), containing information that you can read
about the software.

Note: Because this function is new to EnhancementPak 3.0 and applications may
be compiled against earlier version of EnhancementPak, typical use is bracketed by
this compile-time check
if (XiVersion >=3000)

/*code using XiGetVersionInfo here */
enddif
16 EnhancementPak Programmer’s Reference

buttonbox.fm5 Page 17 Wednesday, January 21, 2009 4:08 PM
Widget Reference 3
Overview

This chapter alphabetically lists and describes the following EPak widgets:

• XiButtonBox on page 18

• XiColorSelector on page 22

• XiColumn on page 26

• XiCombinationBox on page 31

• XiDataField on page 40

• XiExtended18List on page 44

• XiFontSelector on page 57

• XiHierarchy on page 66

• XiIconBox on page 73

• XiIconButton on page 77

• XiOutline on page 83

• XiPaned on page 87

• XiPanner on page 95

• XiPixmapEditor on page 102

• XiPorthole on page 114

• XiStretch on page 120

• XiTabStack on page 124

• XiToolbar on page 132

• XiToolTip on page 138

• XiTree on page 146
EnhancementPak Programmer’s Reference 17

WIDGET REFERENCE
XiButtonBox3

buttonbox.fm5 Page 18 Wednesday, January 21, 2009 4:08 PM
XiButtonBox

The ButtonBox widget manages children (usually buttons) in a single column or
single row layout, as shown in Figure 1.

Figure 1. ButtonBox Widgets with XmNorientation Set to
XmVERTICAL and XmHORIZONTAL, Respectively

The ButtonBox maintains equal spacing between its children at all times and
attempts to adjust its height and width so that all children will fit. If this is not
possible, due to parent or application programmer constraints, the ButtonBox resizes
its children to fit within the available space.

Because the ButtonBox sizes its children equally, you can use several ButtonBox widgets
next to one another to arrange children in a grid; if the ButtonBox widgets are the same
size and have the same number of children, then those children will have the same size
across their parent ButtonBox widgets.

UNIX Application Header File Xi/ButtonBox.h

UNIX Class Header File Xi/ButtonBoxP.h

Class Name XiButtonBox

Class Pointer xiButtonBoxWidgetClass

Superclass Name XmManager

Creation Routine XiCreateButtonBox
18 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Classes and Inherited Resources 3

buttonbox.fm5 Page 19 Wednesday, January 21, 2009 4:08 PM
Classes and Inherited Resources
ButtonBox inherits behavior and resources from Core, Composite, Constraint,
and XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

Note: The term major direction refers to the direction of orientation (horizontal or
vertical), and minor direction refers to the perpendicular direction. The major and
minor dimensions are the values in the respective directions.

XmNequalSize
Specifies whether the children are to be maintained with equal sized heights and
widths. The chosen height and width for the children is found by asking each child for
its preferred size and taking the largest value in each direction.

XmNfillOption
Specifies how to use any extra space once all children have been sized according to
either their preference or XmNequalSize. Figures 2 to 5 illustrate the four options:

Name
Class

Default
Type Access

XmNequalSize
XmCEqualSize

False
Boolean

CSG

XmNfillOption
XmCFillOption

XiFillNone
unsigned char

CSG

XmNmarginHeight
XmCMargin

0
Dimension

CSG

XmNmarginWidth
XmCMargin

0
Dimension

CSG

XmNorientation
XmCOrientation

XmHORIZONTAL
unsigned char

CSG
EnhancementPak Programmer’s Reference 19

WIDGET REFERENCE
XiButtonBox3

buttonbox.fm5 Page 20 Wednesday, January 21, 2009 4:08 PM
XiFillNone No automatic filling is performed. Center the children in the minor direction and place
the children with equal padding between them in the major direction.

Figure 2. ButtonBox with XmNfillOption = XiFillNone
and XmNorientation = XmHORIZONTAL

XiFillMinor Equal padding between children in the major direction, but force all the children to
take the value of the ButtonBox minor dimension as their own minor dimension.

Figure 3. ButtonBox with XmNfillOption = XiFillMinor
and XmNorientation = XmHORIZONTAL

XiFillMajor Center the children in the minor direction, but expand all the children in their major
direction so that there is no padding between them. Expand the children such that
their relative sizes remain constant.

Figure 4. ButtonBox with XmNfillOption = XiFillMajor
and XmNorientation = XmHORIZONTAL
20 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Translations and Actions 3

buttonbox.fm5 Page 21 Wednesday, January 21, 2009 4:08 PM
XiFillAll This option combines the placement actions and sizing actions of XiFillMinor and
XiFillMajor.

Figure 5. ButtonBox with XmNfillOption = XiFillAll
and XmNorientation = XmHORIZONTAL

Regardless of the fill mode, the ButtonBox widget always leaves the specified
margin between its edge and the nearest child.

XmNmarginHeight
XmNmarginWidth
Specifies the number of pixels used as a margin around the entire group of children. The
XmNmarginHeight value applies to the top and bottom margins, while the
XmNmarginWidth value applies to the left and right margins.

XmNorientation
Specifies whether children are to be placed in a row or a column. The orientation
can be either XmHORIZONTAL or XmVERTICAL. If the orientation is
XmHORIZONTAL, the children are placed in a row with the major direction being
width and the minor direction being height. If the value is XmVERTICAL, the
children are placed in a column with the major direction being height and the minor
direction being width.

Translations and Actions
The ButtonBox manager inherits all of its translations and actions from XmManager.
EnhancementPak Programmer’s Reference 21

WIDGET REFERENCE
XiColorSelector3

colorselector.fm5 Page 22 Wednesday, January 21, 2009 4:09 PM
XiColorSelector

The ColorSelector widget allows users to choose a color either by using a set of
red/green/blue sliders or by choosing from a list of all colors available in the RGB
database. The name or RGB value, as well as the color selected, are dynamically
displayed. Figure 6 shows the ColorSelector in both list and slider modes.

Figure 6. XiColorSelector Widgets with XmNcolorMode Set to XiListMode and
XiScaleMode

UNIX Application Header File Xi/ColorS.h

UNIX Class Header File Xi/ColorSP.h

Class Name XiColorSelector

Class Pointer xiColorSelectorWidgetClass

Superclass Name XmManager

Creation Routine XiCreateColorSelector
22 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Classes and Inherited Resources 3

colorselector.fm5 Page 23 Wednesday, January 21, 2009 4:09 PM
Classes and Inherited Resources
ColorSelector inherits behavior and resources from Core, Composite, Constraint,
and XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

Name
Class

Default
Type Access

XmNblueSliderLabel
XmCSliderLabel

“Blue”
XmString

CSG

XmNcolorListTogLabel
XmCTogLabel

“Color List”
XmString

CSG

XmNcolorMode
XmCColorMode

XiScaleMode
XiColorMode

CSG

XmNcolorName
XmCString

“White”
String

CSG

XmNfileReadError
XmCFileReadError

“Could not read rgb.txt file:”
XmString

CSG

XmNgreenSliderLabel
XmCSliderLabel

“Green”
XmString

CSG

XmNmarginHeight
XmCMarginHeight

2
Dimension

CSG

XmNmarginWidth
XmCMarginWidth

2
Dimension

CSG

XmNnoCellError
XmCNoCellError

“\n\nNo Color Cell Available!”
XmString

CSG

XmNredSliderLabel
XmCSliderLabel

“Red”
XmString

CSG

XmNrgbFile
XmCString

 “/usr/lib/X11/rgb.txt”
String

CSG

XmNsliderTogLabel
XmCTogLabel

“Color Sliders”
XmString

CSG
EnhancementPak Programmer’s Reference 23

WIDGET REFERENCE
XiColorSelector3

colorselector.fm5 Page 24 Wednesday, January 21, 2009 4:09 PM
XmNblueSliderLabel
Specifies the string appearing for the label of the blue slider.

XmNcolorListTogLabel
Specifies the string appearing for the label of the color list toggle.

XmNcolorMode
Specifies the mode (XiListMode or XiScaleMode) that the ColorSelector should use
when it is created. The user can then freely change modes by using a pair of radio
buttons in the ColorSelector. A type converter is registered to convert the strings
“ScaleMode” and “ListMode” to color modes for use with the resource database.

XmNcolorName
Specifies the color name currently displayed. Modifying this value changes the color
displayed in the ColorSelector or queried to find the color the user has selected. The
string returned here is either a color name or a pound sign (#) followed by a set of
RGB values as specified in the Xlib specification.

XmNfileReadError
Specifies the message that is displayed when the ColorSelector cannot read the
rgb.txt file. The message is displayed at the top of the window in which the color
list would normally appear.

XmNgreenSliderLabel
Specifies the string appearing for the label of the green slider.

XmNmarginHeight
XmNmarginWidth
Specifies the number of pixels between each child in the ColorSelector and between
the outside children and the edge of the ColorSelector widget.

XmNnoCellError
Specifies the message that is displayed in the sample color field when the
ColorSelector cannot allocate a read/write color cell.

XmNredSliderLabel
Specifies the string appearing for the label of the red slider.

XmNrgbFile
Specifies the name of the file to be loaded, which contains the valid color names. The
list is sorted by name and the duplicates removed before being shown to the user.
The file format should be the same as the rgb.txt file shipped with X11.
24 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Compound Widget Hierarchy 3

colorselector.fm5 Page 25 Wednesday, January 21, 2009 4:09 PM
Although the file is loaded from the machine on which the X client is running, the
colors are displayed by the X server, which may have a different list of colors. Most
X11 distributions have the same basic set of colors, however, which is used by both
the client- and server-side code.

XmNsliderTogLabel
The string that appears for the label of the color slider toggle.

Compound Widget Hierarchy
The ColorSelector is composed of several sub-widgets. Most resource values that
are passed to the ColorSelector through the argument list—either at creation time or
by XtSetValues()—are then passed to each of the widget’s children. An
XtGetValues() request for a child widget’s resource value must be made explicitly
on the child. For more information on passing arguments to the EnhancementPak
compound widgets and retrieving the widget ID’s of the child widgets, refer to
“Compound Widgets” on page 12.

Consult the OSF/Motif Programmer’s Reference for the list of any child widget’s
resources.

XiColorSelector
XmScrolledWindow

XmScrollBar
XmScrollBar
XmList

XiButtonBox
XmScale

XmLabelGadget
XmScrollBar

XmRowColumn
XmToggleButton
XmToggleButton

XmFrame
XmLabel

<named by application>
scrolled

ListvScrollBar
ListhScrollBar
list

buttonBox
scale /*repeat for three scales */

scale_title
scale_scrollbar

radioBox
colorListToggle
colorSlidersToggle

colorFrame
colorWindow
EnhancementPak Programmer’s Reference 25

WIDGET REFERENCE
XiColumn3

column.fm5 Page 26 Wednesday, January 21, 2009 4:10 PM
XiColumn

The Column widget displays its children stacked in a column, each with an optional
associated label: labels appear in one column, and children in another. This is useful
for displaying, for example, labeled data-entry fields, as illustrated in Figure 7.

Figure 7. Column Widget with XmNorientation Set to XmVERTICAL

It can also display all label-child pairs in a horizontal orientation, as illustrated in
Figure 8.

Figure 8. Column Widget with XmNorientation Set to XmHORIZONTAL

Application Header File Xi/Column.h

Class Header File Xi/ColumnP.h

Class Name XiColumn

Class Pointer xiColumnWidgetClass

Superclass Name XmBulletinBoard

Creation Routine XiCreateColumn
26 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Classes and Inherited Resources 3

column.fm5 Page 27 Wednesday, January 21, 2009 4:10 PM
This widget offers several constraint resources that allow specification of
characteristics of the label, such as displaying text or a pixmap, alignment of text,
font to use, and so forth. It also offers several resources for setting defaults for
children that specify no specific values.

Classes and Inherited Resources
Column inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XmBulletinBoard.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

XmNdefaultEntryLabelAlignment
Specifies the default XmNentryLabelAlignment to use when a child specifies no
significant value. Resources that specify Alignment have values of
XiALIGNMENT_BEGINNING, XiALIGNMENT_CENTER,
XiALIGNMENT_END, and XiALIGNMENT_UNSPECIFIED. Valid string
values that can be used in a resources file are: alignment_unspecified, unspecified,
alignment_beginning, beginning, alignment_center, center, alignment_end, end.

Name
Class

Default
Type Access

XmNdefaultEntryLabelAlignment
XmCAlignment

XiALIGNMENT_BEGINNING
unsigned char

CSG

XmNdefaultEntryLabelFontList
XmCFontList

NULL
XmFontList

CSG

XmNdefaultFillStyle
XmCFillStyle

XiFILL_RAGGED
unsigned char

CSG

XmNdistribution
XmCDistribution

XiDISTRIBUTE_TIGHT
unsigned char

CSG

XmNitemSpacing
XmCItemSpacing

2
Dimension

CSG

XmNlabelSpacing
XmCLabelSpacing

10
Dimension

CSG

XmNorientation
XmCOrientation

XmVERTICAL
unsigned char

CSG
EnhancementPak Programmer’s Reference 27

WIDGET REFERENCE
XiColumn3

column.fm5 Page 28 Wednesday, January 21, 2009 4:10 PM
XmNdefaultEntryLabelFontList
Specifies the default XmNentryLabelFontList to use when a child specifies no
significant value. If unspecified, uses the XmBulletinBoard’s XmNlabelFontList
resource.

XmNdefaultFillStyle
Specifies the default XmNfillStyle to use when a child specifies no significant value.

XmNdistribution
Specifies whether the spacing between each pair of rows should be increased equally
(XiDISTRIBUTE_SPREAD) or remain constant (XiDISTRIBUTE_TIGHT) when
the column is resized vertically to be larger than its natural size. This resource has
no effect if any child has its XmNstretchable resource set to True. This resource is
valid only when the orientation is vertical.

XmNitemSpacing
Specifies the spacing between each pair of rows (in vertical orientation) or between
pairs of labels and children (in horizontal orientation).

XmNlabelSpacing
Specifies the spacing between the column containing the labels and the column
containing the XiColumn’s children.

XmNorientation
Specifies the layout direction of the XiColumn. When XmVERTICAL, the widgets
and their associated labels are laid out in two vertical columns. When
XmHORIZONTAL, the widgets and their associated labels are laid out in a single
row.
28 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Constraint Resources 3

column.fm5 Page 29 Wednesday, January 21, 2009 4:10 PM
Constraint Resources
The visual appearance of columns is affected by setting constraint resources on the
children of the XiColumn.

These resources are derived from those supported by XmLabel; see the manual page
for XmLabel for valid values and usage.

XmNentryLabelAlignment
Specifies justification of text within the child’s associated label. Valid values are the
same as those for XmNdefaultEntryLabelAlignment.

XmNentryLabelFontList
Specifies fontList used to render the text within the child’s associated label.

XmNentryLabelPixmap
Specifies the pixmap used in the child’s associated label.

XmNentryLabelString
Specifies the text used in the child’s associated label.

Name
Class

Default
Type Access

XmNentryLabelAlignment
XmCAlignment

XiALIGNMENT_UNSPECIFIED
unsigned char

CSG

XmNentryLabelFontList
XmCFontList

XmFontList
NULL

CSG

XmNentryLabelPixmap
XmCLabelPixmap

Pixmap
XmUNSPECIFIED_PIXMAP

CSG

XmNentryLabelString
XmCLabelString

XmString
NULL

CSG

XmNentryLabelType
XmCLabelType

unsigned char
XmSTRING

CSG

XmNfillStyle
XmCFillStyle

unsigned char
XiFILL_UNSPECIFIED

CSG

XmNshowEntryLabel
XmCShowLabel

Boolean
True

CSG

XmNstretchable
XmCStretchable

Boolean
False

CSG
EnhancementPak Programmer’s Reference 29

WIDGET REFERENCE
XiColumn3

column.fm5 Page 30 Wednesday, January 21, 2009 4:10 PM
XmNentryLabelType
Specifies whether to display a string (XmSTRING) or a pixmap (XmPIXMAP) in
the child’s associated label.

XmNfillStyle
Specifies whether the child should be displayed at its natural size
(XiFILL_RAGGED) or stretched to fill the entire width of the column it is displayed
within (XiFILL_FLUSH). XiFILL_UNSPECIFIED uses the value of the
XiColumn’s XmNdefaultFillStyle.

XmNshowEntryLabel
Specifies whether or not to display the child’s associated label.

XmNstretchable
Specifies whether the child should expand in size proportionately when the
XiColumn is resized vertically to be larger than its natural size.

Translations and Actions
The XiColumn widget defines no translations of its own; nor does it augment the
translations of its children.
30 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiCombinationBox 3

combobox.fm5 Page 31 Wednesday, January 21, 2009 4:11 PM
XiCombinationBox

The CombinationBox widget allows users to select elements from a list of choices
and enter their own values in a Text widget.

To conserve screen space, the list of choices is shown only when the user clicks the
down arrow button. The choices can then be selected from this list. If the list widget
is in Browse Select mode (the default) or Single Select mode (that is, the
XmNselectionPolicy value of the XmList, which is part of the CombinationBox),
the list is automatically unposted when the user selects an item in the list. When the
list is in other modes, multiple items can be selected and the list can be posted by
either another click on the arrow button, a click outside the list, or double-clicking
an item.

When using keyboard traversal, the list can be posted by selecting the arrow button
or Alt+(Down Arrow), and unposted either by clicking the osfActivate key, a
carriage return, or Alt+(Up Arrow).

When the list is unposted, the selected item or items are placed in the Text widget
separated by commas. Typing the ESC key when the list is posted restores the
CombinationBox to the state it was in before the list was posted.

If the text field area is non-editable, click anywhere in the text field to post the list. Figures
9 and 10 show a CombinationBox in unposted and posted states:

Figure 9. CombinationBox Widget in Unposted State

UNIX Application Header File Xi/ComboBox.h

UNIX Class Header File Xi/ComboBoxP.h

Class Name XiCombinationBox

Class Pointer xiCombinationBoxWidgetClass

Superclass Name XmManager

Creation Routine XiCreateCombinationBox
EnhancementPak Programmer’s Reference 31

WIDGET REFERENCE
XiCombinationBox3

combobox.fm5 Page 32 Wednesday, January 21, 2009 4:11 PM
Figure 10. CombinationBox Widget in Posted State

Changeable
resources

Changeable resources include:

• Margins

• Location of the left edge of the list

• Whether the label is shown

• Whether the TextField widget can be edited

• Whether the text in the text field is verified against the choices available in the
list

Changes caused
by setting
children
resources

Set resources for the children of the CombinationBox to allow you to change the
following items:

• Contents of the list

• Number of items visible in the list

• Initial contents of the text field

• Value of the label, and whether it can be changed dynamically
32 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Geometry Management 3

combobox.fm5 Page 33 Wednesday, January 21, 2009 4:11 PM
Geometry Management

Determining size The CombinationBox widget lays out its children (the label, text and arrow) in a
row. If the CombinationBox cannot size to the dimensions it desires, the size is
determined as follows:
1. The arrow is always given its requested size.
2. If the CombinationBox is larger than its desired size, all extra space is given to

the Text widget.
3. If the CombinationBox is smaller than its desired size, the Text and label

widgets are each sized smaller than they desire in exactly the same ratio. For
example:

The popup shell widget containing the list is sized such that the width of the scrolled
list widget is the width of the Text widget minus the value of XmNpopupOffset. If
the popup shell resides in a customized CombinationBox, it is allowed to be
whatever size the child of the popup shell would like to be.

Global Translations
The XmNcomboTranslations resource allows a set of key bindings that will work no
matter which of the CombinationBox’s children has the input focus. This resource
contains the binding for Alt-Up and Alt-Down to pop the list up and down, as well as
the binding for Escape to cancel the current selection.

XiComboListDown()
Displays the CombinationBox widget’s list on the user’s screen, as if the “down”
arrow button was clicked with the list hidden. This action has no effect when the list
is displayed.

If Then

The amount of space for the label and
text is 100 pixels, and the label wants to
be 50 pixels wide, and the text wants to
be 120 pixels wide

The text and label resize proportionally
and the label is 40 pixels wide, and the
text is 80 pixels wide.

Alt <Key>osfDown: XiComboListDown()

Alt <Key>osfUp: XiComboListUp()

Any <Key>osfCancel: XiComboListCancel()
EnhancementPak Programmer’s Reference 33

WIDGET REFERENCE
XiCombinationBox3

combobox.fm5 Page 34 Wednesday, January 21, 2009 4:11 PM
XiComboListUp()
Removes the CombinationBox widget’s list from the user’s screen, as if the “up”
arrow button was clicked with the list displayed. This action has no effect when the
list is hidden.

XiComboCancel()

Removes the CombinationBox widget’s list from the user’s screen, but also restores
the state of the CombinationBox to what it was before the list was shown. This
allows the user to back out of any changes made to the list.

Classes and Inherited Resources
CombinationBox inherits behavior and resources from Core, Composite,
Constraint, and XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

Name
Class

Default
Type Access

XmNcomboTranslations
XmCTranslations

(computed)
XtTranslations

CG

XmNcustomizedCombinationBox
XmCBoolean

False
Boolean

CSG

XmNcomboTranslations see below CG

XmNeditable
XmCBoolean

True
Boolean

CSG

XmNhorizontalMargin
XmCMargin

2
Dimension

CSG

XmNnewVisualStyle
XmCNewVisualStyle

True
Boolean

CSG

XmNpopupCursor
XmCCursor

left_ptr
Cursor

CSG

XmNpopupOffset
XmCPopupOffset

15
int

CSG
34 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

combobox.fm5 Page 35 Wednesday, January 21, 2009 4:11 PM
XmNcomboTranslations
Overrides translations of all children of the CombinationBox. They are exposed in
a resource to facilitate custom input methods and focus processing. Be careful.

The default translations added are:

where the action XiComboListPost posts the list, the action XiComboListUnpost unposts
it, and the action XiComboListCancel unposts it without affecting the previous selected
values.

XmNpopupShellWidget
XmCWidget

NULL
Widget

CSG

XmNshadowThickness
XmCShadowThickness

2
Dimension

CSG

XmNshowLabel
XmCBoolean

True
Boolean

CSG

XmNupdateShellCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNupdateTextCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNuseTextField
XmCUseTextField

True
Boolean

CG

XmNverify
XmCVerify

True
Boolean

CSG

XmNverifyTextCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNverticalMargin
XmCMargin

2
Dimension

CSG

XmNvisibleItemCount
XmCVisibleItemCount

5
int

CSG

Name (continued)
Class

Default
Type Access

Ctrl <Key>osfDown: XiComboListPost()

Ctrl <Key>osfUp: XiComboListUnpost()

Any <Key>osfCancel: XiComboListCancel()
EnhancementPak Programmer’s Reference 35

WIDGET REFERENCE
XiCombinationBox3

combobox.fm5 Page 36 Wednesday, January 21, 2009 4:11 PM
XmNcustomizedCombinationBox
Creates a custom CombinationBox that contains something other than a list. If True,
the widget will not automatically create a popup shell and list widget. That is, a shell
must be provided to the CombinationBox using the XmNpopupShellWidget
resource. Just before the shell is posted, the XmNupdateShellCallback is called.
Just after the shell is unposted, the XmNupdateTextCallback is called. If
XmNverify is True, the XmNverifyTextCallback is called when the
CombinationBox needs to verify the contents of the TextField widget against the
allowable values in the custom shell.

XmNeditable
Specifies whether the user is allowed to type into the CombinationBox’s TextField
widget. If XmNeditable is False, selecting the TextField posts the list.

XmNhorizontalMargin
XmNverticalMargin
Specifies the number of pixels between each widget and its neighbor or the edge of
the CombinationBox.

XmNnewVisualStyle
In EnhancementPak 3.0, the visual style of the XiCombinationBox widget has
changed to be more in keeping with the style of other popular graphical toolkits. The
old style is still available by setting this resource to False.

XmNpopupCursor
Specifies the cursor displayed when the CombinationBox’s list is posted.

See Appendix B of X Window System by Robert Scheifler et al., for the choices.

XmNpopupOffset
Specifies the number of pixels between the left edge of the Text widget and the left
edge of the popup list. Positive values mean the TextField widget’s left edge is
farther to the left, negative values mean the List widget’s left edge is farther to the
left. If this is a non-custom CombinationBox, the right edge of the text and the right
edge of the arrow button always line up.

XmNpopupShellWidget
Specifies the widget identifier for the shell that is posted when the arrow is clicked.
If XmNcustomizedCombinationBox is False, this widget is automatically created
by the CombinationBox.

The shell should be created with XmNoverrideRedirect set to True (it is typically
a topLevelShellWidgetClass created via XtCreatePopupShell).
36 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

combobox.fm5 Page 37 Wednesday, January 21, 2009 4:11 PM
XmNshadowThickness
Specifies the shadow around the XiCombinationBox's component widgets when
XmNnewVisualStyle is True.

XmNshowLabel
Specifies whether or not to display the CombinationBox Label widget to the left of
the TextField.

XmNupdateShellCallback
XmNupdateTextCallback
Specifies the list of callback routines called when either the shell widget contents or
the Text widget need to be updated to correspond with the other. The shell is updated
just before it is posted. The text is updated just after the shell is unposted. If
XmNcustomizedComboBox is False, the updates are done automatically by the
CombinationBox. These routines are called to inform the application that an action
has been taken, in case it would like to do any further processing.

XmNuseTextField
If this is True (the default), the CombinationBox creates an XmTextField widget to use
as the text display area. When false, an XmText widget is created.

XmNverify
If True, the CombinationBox verifies the value of the text field against the list
whenever it loses focus or on a carriage return.

XmNverifyTextCallback
This routine is called whenever the TextField widget’s contents need to be verified
against the popup shell’s contents. If the XmNcustomizedComboBox resource is False,
the CombinationBox has already performed the verification when this routine is called.

XmNvisibleItemCount
Specifies the number of items visible in the associated list.
EnhancementPak Programmer’s Reference 37

WIDGET REFERENCE
XiCombinationBox3

combobox.fm5 Page 38 Wednesday, January 21, 2009 4:11 PM
Compound Widget Hierarchy
The CombinationBox is composed of several sub-widgets. Most resource values that
are passed to the CombinationBox through the argument list—either at creation time
or by XtSetValues()—are then passed to each of the widget’s children. An
XtGetValues() request for a child widget’s resource value must be made explicitly
on the child. For more information on passing arguments to the EnhancementPak
compound widgets and retrieving the widget ID’s of the child widgets, refer to
“Compound Widgets” on page 12.

Refer to the OSF/Motif Programmer’s Reference for the list of any child widget’s
resources.

The popup shell and its children are only created when
XmNcustomizedCombinationBox is False.

The most commonly used resources of the CombinationBox descendants are listed
here for convenience.

XmNitems
Specifies the choices that are displayed in the popup list.

XmNitemCount
Specifies the number of items in the popup list.

XiCombinationBox
XmLabel
XmTextField
XmArrowButton
OverrideShell

XmScrolledWindow
XmScrollBar
XmScrollBar
XmList

<named by application>
label
text
arrow
popupShell

listSW
ListvScrollBar
ListhScrollBar
list

Name Widget Type Initial Value

XmNitems XmList XmStringTable NULL

XmNitemCount XmList int 0

XmNvalue XmText[Field] String “”

XmNlabelString XmLabel XmString “label”

XmNselectionPolicy XmList unsigned char XmBROWSE_SELECT
38 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Callback Routines 3

combobox.fm5 Page 39 Wednesday, January 21, 2009 4:11 PM
XmNvalue
Specifies the string displayed in the Text widget.

XmNlabelString
Specifies the string displayed as the label of the CombinationBox.

XmNselectionPolicy
Determines how the user can make selections in the list, particularly single versus
multiple selections.

Callback Routines
Each callback passes to its list of callback routines a pointer to a structure of type
XmAnyCallbackStruct. The "reason" member in that structure is
XiCR_UPDATE_TEXT for the XmNupdateTextCallback, XiCR_UPDATE_SHELL
for the XmNupdateShellCallback, and XiCR_VERIFY_TEXT for the
XmNverifyTextCallback.

Convenience Routine

XiCombinationBoxGetValue()
Retrieves the value from the CombinationBox TextField widget.
String XiCombinationBoxGetValue(Widget w)

w The CombinationBox TextField widget.

XiCombinationBoxGetValue() returns the string contained in the TextField widget
of the CombinationBox. This string is allocated with XtMalloc() and must be freed
by the application with XtFree().
EnhancementPak Programmer’s Reference 39

WIDGET REFERENCE
XiDataField3

datafield.fm5 Page 40 Wednesday, January 21, 2009 4:12 PM
XiDataField

The DataField widget is a Data Presentation widget that handles display and entry of
data as text. The DataField widget is a subclass of the Motif XmTextField widget
intended for data entry applications. In addition to all of the normal XmTextField
functionality, it supports regular expression-based parsing and acceptance/rejection of
its input through the XmNpicture resource, and right justification through the
XmNalignment resource. A typical DataField widget is shown in Figure 11.

Figure 11. An XiDataField Widget with XmNpicture Set to Accept US-Style Tele-
phone Numbers

Keyboard
navigation

Typical business applications demand better keyboard traversal than provided by Motif.
The DataField widget provides added capability by supporting several types of
validation: a DataField widget containing an invalid value will not give up focus; the user
must enter a correct value before proceeding to another field.

Classes and Inherited Resources
DataField inherits behavior and resources from Core, XmPrimitive, and
XmTextField.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Application Header File Xi/DataF.h

Class Header File Xi/DataFP.h

Class Name XiDataField

Class Pointer xiDataFieldWidgetClass

Superclass Name XmTextField

Creation Routine XiCreateDataField
40 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

datafield.fm5 Page 41 Wednesday, January 21, 2009 4:12 PM
Resources

XmNalignment
When set to XmALIGNMENT_END, the widget aligns all its text with the right
hand side of the input area.

XmNautoFill
When set to True, the widget "auto-fills" its contents when it can determine that the
next character in the string must be a particular literal. For instance, the picture
"###-####" automatically inserts a '-' character after receiving three numeric digits
as input.

XmNpicture
Specifies a picture for data entry in the widget. A picture acts as a template that
formats the value you enter in a field. An example would be the US Phone Number
picture: (###)###-####. The picture is used to convert characters entered into the
field to a formatted value.

Name
Class

Default
Type Access

XmNalignment
XmCAlignment

XmALIGNMENT_BEGINNING
unsigned char

CSG

XmNautoFill
XmCAutoFill

True
Boolean

CSG

XmNpicture
XmCPicture

NULL
String

CSG

XmNpictureErrorCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNvalidateCallback
XmCCallback

NULL
XtCallbackList

CSG
EnhancementPak Programmer’s Reference 41

WIDGET REFERENCE
XiDataField3

datafield.fm5 Page 42 Wednesday, January 21, 2009 4:12 PM
Character
interpretations

The following table lists and defines the characters you can use in a picture, and how
the DataField widget interprets them.

Other characters are interpreted literally.

Set XmNpicture to NULL to disable regular expression processing. The DataField
widget is cleared whenever the XmNpicture resource is changed.

XmNpictureErrorCallback
Specifies a list of callbacks to be called when the XiDataField widget determines
that data is being entered that does not match the format specified by the
XmNpicture resource.

XmNvalidateCallback
Specifies a list of callbacks to be called when data has been entered in the XiDataField
widget and the user has moved out of the XiDataField widget (usually by pressing the Tab
key). The callbacks can reject the movement of focus.

Character Definition

Any numeric digit

? Case insensitive letter

& Uppercase letter (forces lowercase to uppercase)

@ Case insensitive character

! Uppercase character

; Interpret the following character literally

* Repeat the following character some number of times

[] Characters within brackets are optional

{} Characters within braces are grouped

, Alternative values
42 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Callback Routines 3

datafield.fm5 Page 43 Wednesday, January 21, 2009 4:12 PM
Callback Routines
A pointer to the following structure is passed to the list of routines for the
XmNvalidateCallback:
typedef struct _XiDataFieldCallbackStruct {
 Widget w; /* The XiDataField */
 String text; /* Proposed string */
 Boolean accept; /* Accept return value, for validation */
 }XiDataFieldCallbackStruct;

The initial value of the accept member is True. To have the data accepted for entry
in the XiDataField, leave this value True. To reject the data, set the field to False.
EnhancementPak Programmer’s Reference 43

WIDGET REFERENCE
XiExtended18List3

extendlist.fm5 Page 44 Wednesday, January 21, 2009 4:13 PM
XiExtended18List

The Extended Internationalized List (Extended18List) widget contains a
multi-column list with headers along the top and a search area along the bottom. All
elements in the list are XmStrings. The list has scrollbars along the right and bottom
edges that allow vertical and horizontal scrolling. Horizontal scrolling can be done
by pixel (using the slider) or by column (by clicking on the arrow buttons in the
scrollbar), while vertical scrolling is always by row.

The portion of the list data that is currently visible can be altered by scrollbar actions,
setting resources, and the redisplay of the list data after a string search has been
successful. Sorting elements within a particular column is also supported. To sort the
list by the elements in a given column, the user selects the column’s title with pointer
button one.

To search for a particular string in the list, the user types the string value to be
searched for in the list’s associated text field and then presses the Find pushbutton.
The search for the string begins in the currently selected row, after the location of the
previously searched for string, or at the first column and first row if there is no
column selected. If the string is not found in that row, then the search continues
through all rows after, wrapping around to continue the search from row 0. If the
string is found, the display of the list is adjusted to make the string visible. If the
string is not found, or if the string is visible, the application issues a warning beep.
The Find button and text field do not have to be displayed. The XmNshowFind
resource controls whether the Find button and text field are managed or not.

UNIX Application Header File Xi/Ext18List.h

UNIX Class Header File Xi/Ext18ListP.h

Class Name XiExtended18List

Class Pointer xiExt18ListWidgetClass

Superclass Name XmManager

Creation Routine XiCreateExtended18List
44 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiExtended18List 3

extendlist.fm5 Page 45 Wednesday, January 21, 2009 4:13 PM
 Figure 12 shows a typical Extended18List:

Figure 12. Extended18List Widget

The callbacks on the XmNdoubleClickCallback list are called when the user
double clicks pointer button one on a row in the list.

The list data can display a pixmap to the left of the row.

The Extended18List supports using multiple fonts in the fontList resource for the
XmString data. XmStrings with newlines are also supported. The height of the title
row is the maximum height of all of the column titles. If the list of column titles is
NULL, no space is calculated for it in the layout.

Titles are justified against the top of the title row. The height of all the data rows in
the list is equal to the height of the tallest string being displayed in the list data. Each
string drawn in the data list is centered within that row.
EnhancementPak Programmer’s Reference 45

WIDGET REFERENCE
XiExtended18List3

extendlist.fm5 Page 46 Wednesday, January 21, 2009 4:13 PM
Using the Resource Database
The Extended18List widget is actually a collection of pieces. It provides the
geometry layout for the collection as well as tying together the pieces to form a
consistent package. Many of the resources that are documented as being part of the
Extended18List widget are really part of the internal list sub-component. The
Extended18List widget passes these values through to the proper child when they are
set at time of creation or with XtSetValues() or XtGetValues(). However, when
setting a resource by using the resource database, you must use either the name of
the child or the general specification (*) rather than the specific one (.).

Classes and Inherited Resources
The Extended18List widget inherits behavior and resources from Core, Composite,
Constraint, and XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

Name
Class

Default
Type Access

XmNalignment
XmCAlignment

XmALIGNMENT_BEGINNING
unsigned char

CSG

XmNcolumnTitles
XmCColumnTitles

NULL
XmStringTable

CSG

XmNdoubleClickCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNentryData
XmCEntryData

NULL
Xi18RowInfo

CSG

XmNfindLabel
XmCFindLabel

“Find”
XmString

CSG

XmNfirstColumn
XmCFirstLocation

0
short

CSG

XmNfirstColumnPixmaps
XmCPixmaps

False
Boolean

CSG
46 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

extendlist.fm5 Page 47 Wednesday, January 21, 2009 4:13 PM
XmNfirstRow
XmCFirstLocation

0
short

CSG

XmNfontList
XmCFontList

dynamic
XmFontList

CSG

XmNhorizontalScrollBar
XmCScrollBar

(computed)
Widget

G

XmNitemFoundCallback
XmCCallback

NULL
XtCallbacklist

CSG

XmNitemNotFoundCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNnewVisualStyle
XmCNewVisualStyle

True
Boolean

CG

XmNnumColumns
XmCNumColumns

0
short

CSG

XmNnumRows
XmCNumRows

0
short

CSG

XmNselectCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNselectedColumn
XmCSelectedColumn

0
short

CSG

XmNselectionPolicy
XmCSelectionPolicy

XmEXTENDED_SELECT
unsigned char

CSG

XmNshowFind
XmCShowFind

True
Boolean

CSG

XmNsortFunctions
XmCFunction

NULL
Xi18SortFunction*

CSG

XmNstringDirection
XmCStringDirection

XmSTRING_DIRECTION_L_TO_R
unsigned char

CSG

XmNtitle
XmCTitle

NULL
XmString

CSG

XmNtitleString
XmCTitleString

NULL
XmString

CSG

XmNverticalScrollBar
XmCScrollBar

(computed)
Widget

G

XmNvisibleItemCount
XmCVisibleItemCount

(computed)
int

CSG

Name (continued)
Class

Default
Type Access
EnhancementPak Programmer’s Reference 47

WIDGET REFERENCE
XiExtended18List3

extendlist.fm5 Page 48 Wednesday, January 21, 2009 4:13 PM
XmNalignment
Specifies how the list members are aligned within their respective columns. Values
for this resource are: XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or XmALIGNMENT_END.

XmNcolumnTitles
Specifies an array of length XmNnumColumns of compound strings displayed at
the top of each column. The data is allocated and maintained by the client.

XmNdoubleClickCallback
Specifies the list of routines called whenever the user double clicks on a row in the
Extended18List.

XmNentryData
Specifies the data associated with each row in the list. The data is an array of
Xi18RowInfo structures of length XmNnumRows allocated by the client. The data
is allocated and maintained by the client. The Xi18RowInfo structure is defined
below. When the programmer sets the XmNfirstRow and XmNfirstColumn
resources, XmNentryData should also be updated.

XmNfindLabel
Allows the client to specify the label that is placed on the Find button. The default
label is the string “Find” displayed with the default font.

XmNfirstColumn
Allows the client to adjust the current view of the list data to have a new top left
column location. When setting this resource, XmNfirstRow should also be updated.

XmNfirstColumnPixmaps
Specifies whether the first column appears as a pixmap or as a string; that is, whether
the pixmap stored in the row info structure should be used instead of the first string
in the list Xi18RowInfo values[0]. If this resource is True, values[0] is never
referenced. If it is False, the Xi18RowInfo data pixmap is never referenced.

XmNfirstRow
Allows the client to adjust the current view of the list data to have a new top left row
location. When setting this resource, XmNfirstColumn should also be updated.
48 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

extendlist.fm5 Page 49 Wednesday, January 21, 2009 4:13 PM
XmNfontList
Specifies an OSF/Motif™ font list used for all strings displayed in the
Extended18List widget. Multiple fonts are supported.

XmNhorizontalScrollBar
XmNverticalScrollBar
Specifies the widget IDs of the XmScrollBar widgets used by the list. These
widgets are created by the list and should not be set by the user.

XmNitemFoundCallback
XmNitemNotFoundCallback
These callbacks are called in response to a user-initiated search of the list data using the
built-in find button. They pass a pointer to a XiExt18ListCallbackStruct as their
call_data to indicate which item was found (or NULL in the case of
XmNitemNotFoundCallback), the string that was searched for, and the event that
triggered the PushButton's activate callback.

XmNnewVisualStyle
In EnhancementPak 3.0, the visual style of the Extended18List widget has changed
to be more in keeping with the style of other popular graphical toolkits. The old
style is still available by setting this resource to False.

XmNnumColumns
XmNnumRows
Specifies the number of columns and rows the widget expects to display. These
resources are used as the maximum indices for many of the other resources in this
widget. Care should be taken when modifying these resources to ensure that the
other values are also modified.

XmNselectCallback
Specifies the list of callback functions to call whenever the user clicks on a line in
the Extended18List, for both values of XmNselectionPolicy. If the Extended18List
has an XmNselectionPolicy of XmSINGLE_SELECT, then the call_data
parameter to the callback is a pointer to the Xi18RowInfo structure corresponding
to the single line selected; if the list is in XmEXTENDED_SELECT mode, the
call_data parameter is undefined, and the callback code should make a call to
XiExt18ListGetSelectedRows() to determine the rows which are selected. The
resource name XmNsingleSelectionCallback is preserved for backwards
compatibility.

XmNselectedColumn
Specifies the index, beginning with 0, of the currently selected column. This is also
the column by which the list is being sorted.
EnhancementPak Programmer’s Reference 49

WIDGET REFERENCE
XiExtended18List3

extendlist.fm5 Page 50 Wednesday, January 21, 2009 4:13 PM
XmNselectionPolicy
Specifies the interpretation of the select action. This resource can have the values
XmSINGLE_SELECT or XmEXTENDED_SELECT. Other values result in
undefined behavior.

XmNshowFind
Specifies whether or not the Find button and text field are displayed. If this resource
is False, the list uses this space for displaying row data.

XmNsortFunctions
Specifies a list of functions—one for each column—called to determine the ordering
of the rows in the column. The format is similar to that of qsort(), and is described
in “Sort Function” on page 54.

XmNstringDirection
Specifies the initial direction to draw the string. The values for this resource are
XmSTRING_DIRECTION_L_TO_R and XmSTRING_DIRECTION_R_TO_L. The
value of this resource is determined at creation time. If the widget’s parent is a manager,
this value is inherited from the widget’s parent, otherwise it is set to
XmSTRING_DIRECTION_L_TO_R.

XmNtitle

Note: This resource has been replaced by the XmNtitleString resource. XmNtitle
is retained only for backwards compatibility.

Specifies the title that is displayed at the top of the Extended18List widget. If this
resource is NULL (the default), no title is displayed and the list’s column titles are
positioned at the very top of the Extended18List widget.

XmNtitleString
Specifies the title that is displayed at the top of the Extended18List widget. If this
resource is NULL (the default), no title is displayed and the list’s column titles are
positioned at the very top of the Extended18List widget.

This is a renaming of the existing XmNtitle resource.

XmNvisibleItemCount
Specifies the number of rows visible in the Extended18List.
50 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Translations and Actions 3

extendlist.fm5 Page 51 Wednesday, January 21, 2009 4:13 PM
Translations and Actions
The following table lists the default translation bindings used by the icon button:

The following actions are supported by the Extended18List widget:

ButtonDown(type)
Processes a button press action that can begin with either a select or a double click.
The type argument can be either Toggle or Extend. These values determine which
mode of an extended select will be initiated on this button event. Consult the
OSF/Motif™ Style Guide for details.

Motion()
Processes motion events to allow the selection region to be modified when in
extended selection mode. It is assumed that this action is called between a
ButtonDown() and ButtonUpOrLeave() action.

ButtonUpOrLeave()
Cleans up after ButtonDown() and Motion().

~Ctrl ~Shift <Btn1Down>: ButtonDown()

Ctrl ~Shift <Btn1Down>: ButtonDown(Toggle)

~Ctrl Shift <Btn1Down>: ButtonDown(Extend)

Button1 <Motion>: Motion()

<Btn1Up>: ButtonUpOrLeave()
EnhancementPak Programmer’s Reference 51

WIDGET REFERENCE
XiExtended18List3

extendlist.fm5 Page 52 Wednesday, January 21, 2009 4:13 PM
Compound Widget Hierarchy
The Extended18List widget is composed of several sub-widgets. Most resource values
that are passed to the Extended18List widget through the argument list at creation time
or via XtSetValues() are then passed to each of the widget’s children. An XtGetValues()
request for a child widget’s resource value must be made explicitly on the child. For more
information on passing arguments to the EnhancementPak compound widgets and
retrieving the widget id’s of the child widgets, refer to “Compound Widgets” on page 12.

Refer to the OSF/Motif Programmer’s Reference for the list of any child widget’s
resources.

XiExt18ListCallbackStruct Structure
The XiExt18ListCallbackStruct structure is passed as call_data to the
XmNitemFoundCallback and XmNitemNotFoundCallback callbacks in
response to user-initiated find commands.

typedef struct _Xi18ExtListCallbackStruct{int reason;
XEvent *event;
String string;
int column;
Xi18RowInfo *row;

} XiExt18ListCallbackStruct;

reason Either XiEXT18LIST_FOUND or
XiEXT18LIST_NOT_FOUND depending on which callback has
been invoked.

event X event associated with XmPushButton activateCallback from
Find button.

string String for which the user searched.
column Column index into row values.
row Xi18RowInfo structure of the matching row.

XiExtended18List <named by application>

XmLabel title

XiI18List list

XmScrollbar vertBar

XmScrollBar horizBar

XmFrame frame

XmPushButton find

XmText findText
52 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Xi18RowInfo Structure 3

extendlist.fm5 Page 53 Wednesday, January 21, 2009 4:13 PM
Xi18RowInfo Structure
The Xi18RowInfo structure contains the information associated with each row in
the Extended18List.
typedef struct _Xi18RowInfo{XmString * values;

Pixmap pixmap;
Boolean selected;
short * sort_id;
XtPointer data;

/*
* Private to the Extended18List widget (do not modify these)

 */
short pix_width;
short pix_height;
short pix_depth;
Boolean old_sel_state;

} Xi18RowInfo;

values An array of Motif compound strings of length
XmNnumColumns which represents the strings displayed in
each column of this row. The data is allocated and maintained by
the client. If XmNfirstColumnPixmaps is True, then value[0] is
never referenced.

pixmap The pixmap displayed to the left of this row. If the resource
XmNfirstColumnPixmaps is False, then this value is never
referenced and can remain unset. If no pixmap is desired for this row,
even though XmNfirstColumnPixmaps is True, set the value of
pixmap to None. The pixmap can be of depth one (that is, a bitmap) or
of the same depth as the visual. The user is responsible for creating and
destroying pixmap memory.

sort_id This is provided for the convenience of the client and is expected
to be used as a sort index for this row. One value should be
specified for each column of the row. See“Sort Function” on
page 54 for details.

data This is provided for the convenience of the client and can be used
for any purpose. It is intended to be used as an identifier for the
object pointed to by this row.

selected This value is True if this row is selected; can be set by the
application.

The Extended18List widget does not use sort_id or data; they exist solely for your
convenience.
EnhancementPak Programmer’s Reference 53

WIDGET REFERENCE
XiExtended18List3

extendlist.fm5 Page 54 Wednesday, January 21, 2009 4:13 PM
Callback Routine
All procedures on the Extended18List's XmNsingleSelectionCallback and
XmNdoubleClickCallback lists have a pointer to a Xi18RowInfo structure passed
to them in the call_data field. This structure is defined above. If an
XmNsingleSelectionCallback is registered on an Extended18List in
extended_select_mode, the value of call_data is undefined.

Sort Function
typedef int (Xi18SortFunction) (short column,

 Xi18RowInfo * row1,
 Xi18RowInfo * row2);

column The column currently being sorted.

row1, row2 The two rows being compared. The return value is an integer less
than, equal to, or greater than 0, depending on whether the first
argument is less than, equal to, or greater than the second.

Convenience Routines

XiExt18ListDeselectItems
Sets the selection state by matching column entries to XmString.

XiExt18ListDeselectItems(Widget w,
XmString item,
int column)

w The Extended18List widget.

item XmString to use as selection key.

column Column number (0 - N) to match (or XiANY_COLUMN).

XiExt18ListDeselectRow

Clears the selection state on a specific row.
XiExt18ListDeselectRow(Widget w, int row)

w The Extended18List widget.

row The row to select.

XiExt18ListGetSelectedRowArray
Takes Extended18List and returns NULL-terminated array of pointers to selected
54 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Convenience Routines 3

extendlist.fm5 Page 55 Wednesday, January 21, 2009 4:13 PM
rows from the internal list.
int * XiExt18ListGetSelectedRowArray(Widget w, int *num_rows)

w The Extended18List widget.
num_rows Pointer to the number of rows.

XiExt18ListGetSelectedRows()
Returns a NULL-terminated array of Xi18RowInfo pointers. Responsible for freeing the
returned pointer with XtFree(). Returns NULL if no elements are selected.
Xi18RowInfo ** XiExt18ListGetSelectedRows(Widget w)

w The Extended18List widget.

XiExt18ListMakeRowVisible
Scrolls the Extended18List to make the specified row visible.
XiExt18ListMakeRowVisible(Widget w, int row)

w The Extended18List widget.
row The row number wished to be made visible.

XiExt18ListSelectAllItems
Sets the selection state on all rows.
XiExt18ListSelectAllItems(Widget w, Boolean notify)

w The Extended18List widget.
notify If True, call XmNsingleSelectionCallback for each item in list.
EnhancementPak Programmer’s Reference 55

WIDGET REFERENCE
XiExtended18List3

extendlist.fm5 Page 56 Wednesday, January 21, 2009 4:13 PM
XiExt18ListSelectItems
Sets the selection state by matching column entries to XmString.
XiExt18ListSelectItems(Widget w,

XmString item,
int column,
Boolean notify)

w Extended18List widget.
item XmString to use as selection key.
column Column number (0 - N) to match (or XiANY_COLUMN).
notify If True, call XmNsingleSelectionCallback.

XiExt18ListSelectRow
Sets the selection state on a specific row.
XiExt18ListSelectRow(Widget w, int row, Boolean notify)

w Extended18List widget.
row Row to select.
notify If True, call XmNsingleSelectionCallback.

XiExt18ListUnselectAllItems()
Unselects all selected rows of the passed widget.
XiExt18ListUnselectAllItems(Widget w)

w Widget ID of the widget in which rows are to be unselected.

XiExt18ListUnselectItems()

Unselects the specified row of the passed widget.
XiExt18ListUnselectItems(Widget w, Xi18RowInfo *row)

w Widget ID of the widget in which a row is to be unselected.
row Row to be unselected.

XiExt18ListToggleRow()
Toggles the selection state of a specified row.
XiExt18ListToggleRow(Widget w, short row)

w Widget ID of the Extended18List widget.
row Specified row.
56 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiFontSelector 3

fontselect.fm5 Page 57 Wednesday, January 21, 2009 4:14 PM
XiFontSelector

The FontSelector widget allows users to choose a font easily by selecting font
family, size, weight, slant, and string direction (left to right or right to left). Any font
can be passed by the application to the FontSelector as the initial value displayed.
Several advanced features greatly extend the widget’s capabilities.

Basic Features
The FontSelector widget is displayed as two combination box widgets: one with a
list of choices for the font family, and the other with the choices for the font size. In
addition, two independent toggle buttons allow the user to make the font bold or
italic or both. Below the font choice area is a text widget that displays sample text
in the chosen font. This text area is editable, allowing the user to add or remove text
to preview how various characters appear. For the novice user, this set of features
allows access to all standard fonts on the system. The FontSelector dynamically
removes choices that are inappropriate, so the user is free to experiment with
different combinations and is assured that a selected font will exist on the machine
on which the FontSelector is running.

For example, if the Times Roman 14 point font is unavailable and the user selects a
point size of 14, then Times Roman will not be available in the Family combination
box. To obtain all available choices, choose a Size and Family of Any.

UNIX Application Header File Xi/FontS.h

UNIX Class Header File Xi/FontSP.h

Class Name XiFontSelector

Class Pointer xiFontSelectorWidgetClass

Superclass Name XiPaned

Creation Routine XiCreateFontSelector
EnhancementPak Programmer’s Reference 57

WIDGET REFERENCE
XiFontSelector3

fontselect.fm5 Page 58 Wednesday, January 21, 2009 4:14 PM
 Figure 13 shows a FontSelector widget:

Figure 13. FontSelector Widget

Advanced Features
For the advanced user, the FontSelector provides tremendous flexibility in XLFD (X
Logical Font Description) choices. Clicking the Options button displays an
additional panel of controls. This allows access to non-XLFD fonts, control of the
resolutions of the fonts chosen, choice of fixed or proportional fonts only, removal
or use of font scaling, selection of different font encodings, and dynamic display of
the XLFD name of the font which the FontSelector is constructing.

Non XLFD Fonts
By choosing the “Other Fonts” toggle from the option panel, the Family and Size
lists, as well as the Bold and Italic toggles, are replaced with a combination box
containing all non-XLFD fonts available on your system. This feature allows users
to select non-XLFD fonts with the FontSelector. A string entered in the text field of
the combination box is interpreted as a font name. You can also enter XLFD names
manually. The combination of this feature and the other FontSelector options allow
you to display any font on the entire system.
58 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Advanced Features 3

fontselect.fm5 Page 59 Wednesday, January 21, 2009 4:14 PM
Resolution Control
The FontSelector selects as its default the standard resolution that is closest to the
current display. Choose a font of a different resolution or display both resolutions to
allow a wider range of choices.

Fixed or Proportional
In most cases, the fact that a font is fixed width or proportional is unimportant to the
user. However, some applications require a fixed width font, such as terminal
emulators, and many users prefer proportional fonts for appearance purposes. The
FontSelector allows users to limit the font choices to fixed width or proportional or
to allow both.

Font Scaling
The font scaling technology that is available in X11R5 uses bitmap scaling which,
although useful in some cases, generally results in very ugly fonts. We noticed that
users often wanted to know which fonts are scaled and which ones exist as hand
crafted bitmaps. To remove the scaled fonts from the list of choices, toggle the “Use
Font Scaling” button off. This value is resource controllable and defaults to on.

Encoding
The programmer can specify which encodings are valid. These encoding choices
appear in an option menu. The list of font choices is restricted to those that use the
current selected coding.

XLFD Name Display
Clicking the Show toggle displays the current font’s XLFD name at the bottom of
the FontSelector.
EnhancementPak Programmer’s Reference 59

WIDGET REFERENCE
XiFontSelector3

fontselect.fm5 Page 60 Wednesday, January 21, 2009 4:14 PM
Classes and Inherited Resources
FontSelector inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XiPaned.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

Name
Class

Default
Type Access

XmN100DPIstring
XmC100DPIString

“100 dpi”
XmString

CSG

XmN75DPIstring
XmC75DPIstring

“75 dpi”
XmString

CSG

XmNanyLowerString
XmCAnyLowerString

“any”
XmString

SCG

XmNanyString
XmCAnyString

“Any”
XmString

CSG

XmNboldString
XmCBoldString

“Bold”
XmString

CSG

XmNbothString
XmCBothString

“Both”
XmString

CSG

XmNcurrentFont
XmCString

NULL
String

CSG

XmNdefaultEncodingString
XmCDefaultEncodingString

“iso8859-1”
String

CSG

XmNencodingList
XmCEncodingList

“iso8859-1”
StringTable

CSG

XmNencodingString
XmCEncodingString

“Encoding”
XmString

CSG

XmNfamilyString
XmCBothString

“Family”
XmString

CSG

XmNitalicString
XmCItalicString

“Italic”
XmString

CSG

XmNmarginHeight
XmCMargin

0
Dimension

CSG
60 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

fontselect.fm5 Page 61 Wednesday, January 21, 2009 4:14 PM
XmN100DPIstring
Specifies the label for the 100 DPI radio button.

XmN75DPIstring
Specifies the label for the 75 DPI radio button.

XmNanyLowerString
Specifies the label for the Any button.

XmNmonoSpaceString
XmCMonoSpaceString

“Fixed Width Fonts”
XmString

CSG

XmNoptionString
XmCOptionString

“Options...”
XmString

CSG

XmNotherString
XmCOtherString

“Other Fonts”
XmString

CSG

XmNpropSpaceString
XmCPropSpaceString

“Proportional Fonts”
XmString

CSG

XmNsampleText
XmCSampleText

“abcdef...”
XmString

CSG

XmNscalingString
XmCScalingString

“Use Font Scaling”
XmString

CSG

XmNshowFontName
XmCBoolean

False
Boolean

CSG

XmNshowNameString
XmCShowNameString

“Show Font Name”
XmString

CSG

XmNsizeString
XmCSizeString

“Size”
XmString

CSG

XmNspacing
XmCSpacing

2
Dimension

CSG

XmNtextRows
XmCTextRows

8
Dimension

CSG

XmNuseScaling
XmCBoolean

True
Boolean

CSG

XmNvalueChangedCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNxlfdString
XmCXlfdSpaceString

“Xlfd Fonts”
XmString

CSG

Name (continued)
Class

Default
Type Access
EnhancementPak Programmer’s Reference 61

WIDGET REFERENCE
XiFontSelector3

fontselect.fm5 Page 62 Wednesday, January 21, 2009 4:14 PM
XmNanyString
Specifies the label for the Any button.

XmNboldString
Specifies the label for the Bold toggle button.

XmNbothString
Specifies the labels for the Both radio buttons controlling both the dpi and width of the
fonts displayed. The same resource is used to ensure consistent labels.

XmNcurrentFont
Provides the main application input and output to the FontSelector. If the programmer
sets the value at creation time or with XtSetValues(), the currently displayed family,
size, bold and italic are changed to correspond to the values shown in the current font.
Otherwise, the name of the font is shown. The FontSelector’s mode is set to correspond
to the type of font passed.

Note: currentFont must contain 14 hyphens (-) to be considered an XLFD font.
This resource is also used to retrieve the font the user has selected from the
FontSelector. The value returned is only valid until the next time XtGetValues is
called on this instance of the FontSelector widget.

XmNdefaultEncodingString
Specifies the default selection from the Encoding options menu.

XmNencodingList
Specifies the list of encodings available from the FontSelector Encoding options
menu.

XmNencodingString
Specifies the label for the Encoding options menu.

XmNfamilyString
Specifies the label for the Family options menu.

XmNitalicString
Specifies the label for the Italic toggle button.

XmNmarginHeight
Specifies the margin height of the FontSelector.

XmNmonoSpaceString
Specifies the label of the Fixed Width Fonts radio button.
62 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

fontselect.fm5 Page 63 Wednesday, January 21, 2009 4:14 PM
XmNoptionString
Specifies the label for the Options... pushbutton.

XmNotherString
Specifies the label for the Other Fonts radio button.

XmNpropSpaceString
Specifies the label for the Proportional Fonts radio button.

XmNsampleText
Specifies the string which appears in the sample text area.

XmNscalingString
Specifies the label for the Use Font Scaling toggle button.

XmNshowFontName
Controls and maintains the state of the Show Font Name toggle button.

XmNshowNameString
Specifies the label of the Show Font Name toggle button.

XmNsizeString
Specifies the label for the Size option menu.

XmNspacing
Specifies the space between the toggle indicator and the toggle label.

XmNtextRows
Specifies the number of rows shown in the text widget that displays sample text in
the currently selected font. Since this is a scrolled text widget, it will never
dynamically resize, regardless of the font displayed. A value of at least 4 optimizes
ease of use.

XmNuseScaling
Specifies the state of the Use Font Scaling toggle button.

XmNvalueChangedCallback
Specifies the list of callbacks called when the XmNcurrentFont value is changed.

XmNxlfdString
Specifies the label for the Xlfd Fonts radio button.
EnhancementPak Programmer’s Reference 63

WIDGET REFERENCE
XiFontSelector3

fontselect.fm5 Page 64 Wednesday, January 21, 2009 4:14 PM
Compound Widget Hierarchy
The FontSelector is composed of several sub-widgets. Most resource values that are
passed to the FontSelector through the argument list at creation time or by
XtSetValues() are then passed to each of the widget’s children. An XtGetValues()
request for a child widget’s resource value must be made explicitly on the child. For
more information on passing arguments to the EnhancementPak compound widgets
and retrieving the widget ids of the child widgets, refer to “Compound Widgets” on
page 12.

Consult the OSF/Motif Programmer’s Reference for the list of any child widget’s
resources.

XiFontSelector <named by application>

XiPaned topPane

XiCombinationBox families

<refer to Combination Box for hierarchy>

XmSeparator separator

XiCombinationBox sizes

<refer to Combination Box for hierarchy>

XmSeparator separator

XiButtonBox boldItalicBox

XmToggleButton boldButton

XmToggleButton italicButton

XmSeparator separator

XmToggleButton optionButton

XmSeparator separator

XiPaned middlePane

XiPaned leftPane

XiButtonBox choiceBox

XmToggleButton xlfdButton

XmToggleButton otherButton

XmSeparator separator

XiButtonBox resolutionBox

XmToggleButton dpi75Button
64 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Compound Widget Hierarchy 3

fontselect.fm5 Page 65 Wednesday, January 21, 2009 4:14 PM
XmToggleButton dpi100Button

XmToggleButton anyButton

XmSeparator separator

XmSeparator separator

XiButtonBox spacingBox

XmToggleButton proportionalButton

XmToggleButton monoButton

XmToggleButton bothButton

XmSeparator separator

XiButtonBox otherChoiceBox

XmToggleButton scalingButton

XmToggleButton showNameButton

XmRowColumn encodingOptionMenu

XmLabelGadget OptionLabel

XmCascadeButtonGadget OptionButton

XmMenuShell menuShell

XmRowColumn pulldownMenu

<dependent on XmNencoding>

XmSeparator separator

XmSeparator separator

XiButtonBox box

XmScrolledWindow textSW

XmScrollBar VertScrollBar

XmText text

XmSeparator separator

XmLabel nameLabel

XmSeparator separator
EnhancementPak Programmer’s Reference 65

WIDGET REFERENCE
XiHierarchy3

hierarchy.fm5 Page 66 Wednesday, January 21, 2009 4:15 PM
XiHierarchy

The Hierarchy widget is not instantiated by itself, but should be used as the base
class for any widget that displays a hierarchy of information. (This refers to the
information displayed, not to the hierarchy of objects in a compound widget.) This
base class is used for the XiTree and XiOutline widgets, providing them with very
similar APIs.

Note: The Hierarchy widget assumes it will be responsible for mapping and
unmapping its children. Therefore, no child of Hierarchy should ever modify its
XmNmappedWhenManaged resource. If a child does modify this resource, the
behavior is undefined.

Classes and Inherited Resources
Hierarchy inherits behavior and resources from Core, Composite, Constraint, and
XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

UNIX Application Header File Xi/Hierarchy.h

UNIX Class Header File Xi/HierarchyP.h

Class Name XiHierarchy

Class Pointer xiHierarchyWidgetClass

Superclass Name XmManager

Creation Routine Not applicable
66 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

hierarchy.fm5 Page 67 Wednesday, January 21, 2009 4:15 PM
Resources

XmNautoClose
Specifies whether the Hierarchy should automatically restore a parent node’s
children when the parent node is reopened. If XmNautoClose is False, and the
Hierarchy is fully expanded when the root node is closed, the entire Hierarchy is
displayed when the root node is reopened. If XmNautoClose is True, the root
node’s children are closed when the root node is reopened.

XmNcloseFolderPixmap
XmNopenFolderPixmap
Specifies the pixmaps displayed in all folder button widgets that are associated with nodes
with a state of XiClosed and XiOpen for nodes that specify no
XmNnodeCloseFolderPixmap or XmNnodeOpenFolderPixmap, respectively. If the
value of XmNopenFolderPixmap is set to XmUNSPECIFIED_PIXMAP (either at
creation or via XtSetValues()), a default open-folder bitmap or color pixmap is displayed.
Behavior is analogous for XmNcloseFolderPixmap.

Name
Class

Default
Type Access

XmNautoClose
XmCAutoClose

True
Boolean

CSG

XmNcloseFolderPixmap
XmCPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNhorizontalMargin
XmCDimension

2
Dimension

CSG

XmNnodeStateBeginEndCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNnodeStateCallback
XmCNodeStateCallback

NULL
XtCallbackList

CSG

XmNnodeStateChangedCallback
XmCNodeStateChangedCallback

NULL
XtCallbackList

CSG

XmNopenFolderPixmap
XmCPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNrefigureMode
XmCBoolean

True
Boolean

CSG

XmNverticalMargin
XmCDimension

2
Dimension

CSG
EnhancementPak Programmer’s Reference 67

WIDGET REFERENCE
XiHierarchy3

hierarchy.fm5 Page 68 Wednesday, January 21, 2009 4:15 PM
XmNhorizontalMargin
XmNverticalMargin
The definitions of these resources are left to the subclass of the Hierarchy widget that
does the geometry layout. They are intended to be used as the number of pixels
between the object and the edges of the window in which it is contained. They are
included here for consistency.

XmNnodeStateBeginEndCallback
This callback is invoked at the beginning and end of a group of node state changes
(as for the closing of an entire tree, for instance). The call_data is a Boolean
type. True indicates that this is the beginning of a state change, False indicates that
the changes have finished.

XmNnodeStateCallback
Specifies the list of callback routines called when a folder button is clicked. See
“Callback Routine” on page 69 for more details.

XmNnodeStateChangedCallback
This callback list is invoked when a node's state (XiOpen or XiClosed) has changed.
The callbacks are passed an XiHierarchyNodeStateData* as the call_data
containing the information on the node whose state has changed.

XmNrefigureMode
Specifies whether the Hierarchy should adjust the sizes of the children after a
geometry or resize request, or simply ignore the request. This resource is very useful
in improving the performance of an application that is making a large number of
geometry changes all at once.
68 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Constraint Resources 3

hierarchy.fm5 Page 69 Wednesday, January 21, 2009 4:15 PM
Constraint Resources

XmNinsertBefore
Places the current node immediately before another node in the Hierarchy that has
the same XmNparentNode value. If this value is NULL, the current node is inserted
at the end of the list. This resource allows the Hierarchy’s children to be reordered.

XmNnodeCloseFolderPixmap
Specifies the pixmap to be used when the node is in state XiClosed. The default is
the parent widget's value for XmNcloseFolderPixmap.

XmNnodeOpenFolderPixmap
Specifies the pixmap to be used when the node is in state XiOpen. The default is the
parent widget's value for XmNopenFolderPixmap.

XmNnodeState
Specifies the state of the current node. Acceptable values are: XiOpen, XiClosed,
XiAlwaysOpen, and XiHidden. A type converter has been registered that can
convert the following strings: “open”, “closed”, “alwaysOpen”, and “hidden”.

XmNparentNode
Specifies the parent of the current node. The parent node must be a widget sibling
of the current node. If XmNparentNode is set to NULL, the node is placed on the
screen as root. No node may have multiple parents.

Callback Routine
When a folder is clicked, the routines registered on the XmNnodeStateCallback list are

Name
Class

Default
Type Access

XmNinsertBefore
XmCInsertBefore

NULL
Widget

CSG

XmNnodeCloseFolderPixmap
XmCPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNnodeOpenFolderPixmap
XmCPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNnodeState
XmCNodeState

XiOpen
XiHierarchyNodeState

CSG

XmNparentNode
XmCParentNode

NULL
Widget

CSG
EnhancementPak Programmer’s Reference 69

WIDGET REFERENCE
XiHierarchy3

hierarchy.fm5 Page 70 Wednesday, January 21, 2009 4:15 PM
passed a pointer to the following structure as client data:
typedef struct _XiHierarchyNodeStateData {

Widget widget;
XiHierarchyNodeState state;

} XiHierarchyNodeStateData;

widget The child node of Hierarchy being open or closed.

state The current XmNnodeState (after the click) of this
node. Legal values are XiOpen, XiClosed,
XiAlwaysOpen, and XiHidden.

Convenience Routines

XiHierarchyGetChildNodes()
Returns a list of widgets that name the node widget as their XmNparentNode; that
is, it returns the list of "node children" of the node widget. Note that all the widgets
are children (in the Xt sense) of the XiHierarchy or its subclass. The returned list is
NULL if there are no node children. The array of widgets returned is
NULL-terminated. It should be freed with XtFree().
WidgetList XiHierarchyGetChildNodes(Widget nw)

nw The node widget whose list of node children is
requested

XiHierarchyOpenAllAncestors()
Opens all ancestors of a given node, so that the node is displayed.

void XiHierarchyOpenAllAncestors(Widget nw)

nw The node widget that wishes to be shown.
70 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Class Methods 3

hierarchy.fm5 Page 71 Wednesday, January 21, 2009 4:15 PM
Class Methods
To aid subclassing, a description of each of the new class methods is provided here.
ICS strongly suggests purchasing the source code of the Hierarchy widget if you
intend to subclass.

Change Node State Routine
Updates the Hierarchy when the state of a node has changed. This routine is called
from ConstraintSetValues on the state variable, as well as from the
toggle_node_state routine. This method can be inherited with
XiInheritChangeNodeState.
void (change_node_state)(HierarchyConstraints node)

node The node that has had its state changed.

Map Node Routine
Assures that a node is visible. Nodes that the Hierarchy believes are visible have the
state bit IS_MAPPED set. The default routine does this by mapping the node. This
method can be inherited with XiInheritMapNode.
void (map_node)(HierarchyConstraints node)

node The node to be mapped.

Unmap Node Routine
Assures that a node is no longer visible. Nodes that the Hierarchy believes are visible
have the state bit IS_MAPPED set. The default routine does this by unmapping the node.
This method can be inherited with XiInheritUnmapNode.
void (unmap_node)(HierarchyConstraints node)

node The node to be unmapped.

Unmap All Extra Nodes Routine
Assures that all nodes that have the state bit IS_COMPRESSED set are no longer
visible. This is done to remove hidden nodes. This method can be inherited with
XiInheritUnmapAllExtraNodes.
void(unmap_all_extra_nodes)(HierarchyConstraints node)

node The node to be unmapped.
EnhancementPak Programmer’s Reference 71

WIDGET REFERENCE
XiHierarchy3

hierarchy.fm5 Page 72 Wednesday, January 21, 2009 4:15 PM
Build Node Table Routine
Fills the node_table variable in the Hierarchy widget structure with a list of all nodes that
are visible. This method can be inherited with XiInheritBuildNodeTable.
void (build_node_table)(Widget w,

HierarchyConstraints node,
Cardinal * current_index)

w Hierarchy widget.

node Root node to begin building the table with.

current_index Value, initially set to zero, that contains the location
to add the next node in the table, allowing this
function to be called recursively.

Reset Open Closed Button Routine
Creates an open_close_button for a node, if it is necessary, and ensures that the
image in that button corresponds to the current state of the node. This method can be
inherited with XiInheritResetOpenCloseButton.
void (reset_open_close_button) (Widget w,

 HierarchyConstraints node)

w Hierarchy widget.

node Node that is to have its folder button reset.

Toggle Node State Routine
Changes the node from open to closed and back again. This routine should be
assigned to each node button in the Hierarchy. This method can be inherited with
XiInheritToggleNodeState.
void (toggle_node_state)(Widget w,

XtPointer node_ptr,
XtPointer call_data)

w Folder button selected.

node_ptr Pointer to the node selected.

call_data Value is undefined.
72 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiIconBox 3

iconbox.fm5 Page 73 Wednesday, January 21, 2009 4:16 PM
XiIconBox

The IconBox widget lays out its children on a grid. Each child is forced to be the same
size. The location of each child is specified as an X and Y location on the grid. Figure
14 shows an example of an IconBox containing icon buttons:

Figure 14. IconBox Widget Containing Icon Buttons

UNIX Application Header File Xi/IconBox.h

UNIX Class Header File Xi/IconBoxP.h

Class Name XiIconBox

Class Pointer xiIconBoxWidgetClass

Superclass Name XmManager

Creation Routine XiCreateIconBox
EnhancementPak Programmer’s Reference 73

WIDGET REFERENCE
XiIconBox3

iconbox.fm5 Page 74 Wednesday, January 21, 2009 4:16 PM
All children are always shown and should be given their desired size whenever possible.
You may add or delete cells by resizing this window, using either the window manager
or the Stretch widget. The size of the IconBox, its children, and the number of cells
displayed are calculated as follows.

• The preferred size is calculated by using the maximum desired child height or
width and making sure that these are no smaller than the minimum sizes. This
size is multiplied by the number of cells along the axis and properly padded to
come up with a preferred size. The number of cells is the maximum of the
largest XmNcellX or XmNcellY value and the minimum number of horizontal
or vertical cells.

• If the IconBox is forced larger than its preferred size, more cells are added at
the bottom-right of the widget while the children all remain at their preferred
sizes.

• If the IconBox is forced smaller than its preferred size, each cell is forced to be
smaller in order to allow all children to fit within the IconBox. All children are
forced to the same smaller size.

Classes and Inherited Resources
IconBox inherits behavior and resources from Core, Composite, Constraint, and
XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.
74 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

iconbox.fm5 Page 75 Wednesday, January 21, 2009 4:16 PM
Resources

XmNhorizontalMargin
XmNverticalMargin
Specifies the number of pixels between each cell and its neighbor or the edge of the
IconBox.

XmNminimumHorizontalCells
XmNminimumVerticalCells
Specifies the minimum number of cells to display in the horizontal and vertical
directions. This number of cells is always displayed.

XmNminimumCellWidth
XmNminimumCellHeight
Specifies the smallest number of pixels that the cells are allowed to occupy in the
direction specified.

Name
Class

Default
Type Access

XmNhorizontalMargin
XmCMargin

4
Dimension

CSG

XmNminimumHorizontalCells
XmCDefaultCells

2
int

CSG

XmNminimumVerticalCells
XmCDefaultCells

2
int

CSG

XmNminimumCellHeight
XmCMinimumCellSize

10
Dimension

CSG

XmNminimumCellWidth
XmCMinimumCellSize

20
Dimension

CSG

XmNverticalMargin
XmCMargin

4
Dimension

CSG
EnhancementPak Programmer’s Reference 75

WIDGET REFERENCE
XiIconBox3

iconbox.fm5 Page 76 Wednesday, January 21, 2009 4:16 PM
Constraint Resources

XmNcellX
XmNcellY
Specifies the location of this cell in cell space. These coordinates can be any positive
integer, including 0. They determine where this widget is placed relative to its
neighbors. Having two children at the same XmNcellX and XmNcellY location will
result in undefined behavior. To place a cell at any empty cell, set XmNcellX and
XmNcellY to the value XiIconBoxAnyCell.

Convenience Routine

XiIconBoxIsCellEmpty()
Determines whether a cell in the IconBox is empty.
Boolean XiIconBoxIsCellEmpty(Widget w,

 Position cell_x,
 Position cell_y,
 Widget ignore)

w The IconBox widget.

cell_x The x location of the cell to check.

cell_y The y location of the cell to check.

ignore If the widget id specified by ignore is present in the
specified cell, it will be ignored and the function will
return True.

This function returns True if the specified cell contains no child, and False otherwise.

Name
Class

Default
Type Access

XmNcellX
XmCCellX

XiIconBoxAnyCell
short

CSG

XmNcellY
XmCCellY

XiIconBoxAnyCell
short

CSG
76 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiIconButton 3

iconbutton.fm5 Page 77 Wednesday, January 21, 2009 4:17 PM
XiIconButton

The IconButton widget is a selectable area of the screen that contains both a label
and an icon. When you select this button with the Motif select button, its
XmNactivateCallback is called. This widget can also be used as a Toggle button
(see page 81), although it will have no indicator. The relationship of the icon to the
text can be modified using the XmNiconPlacement resource. The widget takes an
XmString as its label.

 Figure 15 shows IconButtons in all six icon displacements:

Figure 15. IconButtons Displayed in All Six Icon Placements

Classes and Inherited Resources
IconButton inherits behavior and resources from Core and XmPrimitive.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

UNIX Application Header File Xi/IconButton.h

UNIX Class Header File Xi/IconButtonP.h

Class Name XiIconButton

Class Pointer xiIconButtonWidgetClass

Superclass Name XmPrimitive

Creation Routine XiCreateIconButton
EnhancementPak Programmer’s Reference 77

WIDGET REFERENCE
XiIconButton3

iconbutton.fm5 Page 78 Wednesday, January 21, 2009 4:17 PM
Resources

XmNactivateCallback
Clicking the IconButton calls this list of callback routines. The call_data for the
callback is specified in “Callback Routines” on page 82.

Name
Class

Default
Type Access

XmNactivateCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNalignment
XmCAlignment

XmALIGNMENT_BEGINNING
unsigned char

CSG

XmNarmColor
XmCArmColor

dynamic
Pixel

CSG

XmNdoubleClickCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNfontList
XmCFontList

dynamic
XmFontList

CSG

XmNhorizontalMargin
XmCSpace

2
Dimension

CSG

XmNiconTextPadding
XmCSpace

2
Dimension

CSG

XmNiconPlacement
XmCIconPlacement

XiIconTop
XiIconPlacement

CSG

XmNlabel
XmCLabel

NULL
String

CSG

XmNlabelString
XmCLabelString

dynamic
XmString

CSG

XmNpixmap
XmCPixmap

None
Pixmap

CSG

XmNrecomputeSize
XmCBoolean

True
Boolean

CSG

XmNset
XmCBoolean

False
Boolean

CSG

XmNstringDirection
XmCStringDirection

XmSTRING_DIRECTION_L_TO_R
unsigned char

CSG

XmNverticalMargin
XmCSpace

2
Dimension

CSG
78 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

iconbutton.fm5 Page 79 Wednesday, January 21, 2009 4:17 PM
XmNalignment
Specifies the label alignment for text or pixmap. XmALIGNMENT_BEGINNING causes
a left alignment with the left edge of the widget. XmALIGNMENT_CENTER and
XmALIGNMENT_END cause analogous center and right alignments, respectively.

When the XmNstringDirection is XmSTRING_DIRECTION_R_TO_L, the
definitions of XmALIGNMENT_BEGINNING and XmALIGNMENT_END are
reversed.

XmNarmColor
Specifies the color with which to fill the widget when armed by a pointer click.

XmNdoubleClickCallback
Double-clicking the IconButton calls this list of callback routines. The format of the
callback routines is specified in “Callback Routines” on page 82.

XmNfontList
Specifies the default font in this list is used for the label string of the IconButton.

XmNhorizontalMargin
XmNverticalMargin
Specifies the number of pixels to be left between the edge of the shadow and the text
or pixmap displayed. The vertical and horizontal spacing can be controlled
independently.

XmNiconTextPadding
Specifies the number of pixels to be left between the pixmap and the label string.

XmNiconPlacement
Specifies the location of the pixmap (icon) with respect to the displayed text. This
resource can take one of the following values: XiIconTop, XiIconBottom,
XiIconLeft, XiIconRight, XiIconNone, or XiIconOnly.

If only a string is displayed in the IconButton, this resource can be used to change
the justification of the label. XiIconTop=bottom, XiIconBottom=top,
XiIconRight=left, XiIconLeft=right, XiIconNone=center. In order to use these
options, XmNpixmap must be set to None.
EnhancementPak Programmer’s Reference 79

WIDGET REFERENCE
XiIconButton3

iconbutton.fm5 Page 80 Wednesday, January 21, 2009 4:17 PM
XmNlabel

Note: This resource has been superseded by XmNlabelString, and is now included
for backwards-compatibility only. If XmNlabelString is set, XmNlabel is ignored.

Specifies the string to display in this button. This string can only have one font, but
can be any number of lines long. Use the newline character ‘\n’ to separate lines.

XmNlabelString
Specifies the compound string to be displayed in the button. If this value is NULL,
the value of XmNlabel is used. If both are NULL, it is initialized by converting the
name of the widget to a compound string. Refer to XmString(3X) in the OSF/Motif
Programmer’s Reference for more information on the creation and structure of
compound strings.

XmNpixmap
Specifies the pixmap to display. This pixmap can either be of depth one (1), or the
same depth as the screen where this widget is being displayed. If the pixmap is of
depth one, XCopyPlane() is used to render the pixmap in the foreground and
background colors. If the pixmap is not of depth one, XCopyArea() is used and all
the original colors of the pixmap are preserved. Unlike the Motif PushButton widget,
the pixmap is automatically stippled when the IconButton becomes insensitive.

XmNrecomputeSize
If this Boolean value is True, the IconButton asks its parent to resize it to be just large
enough to contain the pixmap, label and shadows. If it is False, the IconButton does
not attempt a resize.

XmNset
Specifies the Boolean value that represents the current state of the IconButton. If this
value is True, the IconButton is set and is rendered as depressed. Otherwise it is
unset and is rendered normally.

XmNstringDirection
Specifies the direction in which the string is to be drawn.
XmNSTRING_DIRECTION_L_TO_R is drawn left to right, while
XmNSTRING_DIRECTION_R_TO_L is drawn right to left.

The default for this resource is determined at creation time. If no value is specified for this
resource and the widget’s parent is a manager, the value is inherited from the parent;
otherwise, it defaults to XmSTRING_DIRECTION_L_TO_R.
80 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Translations and Actions 3

iconbutton.fm5 Page 81 Wednesday, January 21, 2009 4:17 PM
Translations and Actions
The following table lists the default translation bindings used by the IconButton:

The following actions are supported by the IconButton widget:

XiToggle()
Toggles the state of the IconButton.

XiNotify()
If the interval between the last XiButtonUp() action and this event’s timestamp is
less than MultiClickTime, calls all routines on the XmNdoubleClickCallback list.
Otherwise, calls all routines on XmNactivateCallback list.

XiButtonUp()
Records the timestamp of a button-up event for use in double-click processing.

XiArmAndActivate()
Arms the button, calls the actions on the XmNactivateCallback list, waits a
fraction of a second, and disarms the button.

To use this button as a toggle button rather than a push button, replace the default
translation table with the following table.

<Btn1Down>,<Btn1Up>: XiToggle() XiNotify() XiButtonUp()

<Btn1Down>: XiGetFocus() XiToggle()

<Key>osfSelect: XiArmAndActivate()

<Key>osfActivate: XiArmAndActivate()

None<Key>space: XiArmAndActivate()

None<Key>Return: XiArmAndActivate()

<Btn1Down>,<Leave> XiToggle()

<Btn1Down>: XiToggle() XiNotify()

<Btn1Down>,<Btn1Up>: XiButtonUp()

<Key>osfSelect: XiToggle() XiNotify()

<Key>osfActivate: XiToggle() XiNotify()

None<Key>space: XiToggle() XiNotify()

None<Key>Return: XiToggle() XiNotify()
EnhancementPak Programmer’s Reference 81

WIDGET REFERENCE
XiIconButton3

iconbutton.fm5 Page 82 Wednesday, January 21, 2009 4:17 PM
Callback Routines
Clicking the IconButton calls the activate callbacks. Whenever the widget is double
clicked, the first click will call the XmNactivateCallback, and the second click, if
it occurs within the value returned by XtGetMultiClickTime(), will call the
XmNdoubleClickCallback.

All procedures on the IconButton’s XmNactivateCallback and
XmNdoubleClickCallback lists have a pointer to an IconButtonCallbackInfo
structure passed to them in the call_data field. This structure is defined in the
IconButton widget’s public header file as follows:
typedef struct _XiIconButtonCallbackInfo {

Boolean state;
XEvent *event;

} XIIconButtonCallbackInfo;

state Current state of the IconButton. When this is used as
a push button (the default) the state variable is
always True.

event X Event that caused this action. See “Translations
and Actions” on page 81 for details on the events that
can cause these callbacks to be called.
82 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiOutline 3

outline.fm5 Page 83 Wednesday, January 21, 2009 4:18 PM
XiOutline

The Outline widget is a container that shows the relationship of its children in a
Outline format. Each child of the Outline widget is a node in the Outline.

The hierarchy of nodes is created by specifying the “parent” of each node as a
constraint resource. If a node’s parent is NULL, it is assumed to be a root of the
Outline. Although each widget can only have one parent, the Outline widget
supports adding more than one “root” node to a single Outline.

Clicking on the associated control button hides the node’s child nodes.

Refer to “XiHierarchy” on page 66 for further information, including the
convenience routines for XiHierarchy that can be used for the XiOutline.

Figure 16 shows a typical Outline widget:

Figure 16. Outline Widgets with XmNconnectNodes Set to False and True

UNIX Application Header File Xi/Outline.h

UNIX Class Header File Xi/OutlineP.h

Class Name XiOutline

Class Pointer xiOutlineWidgetClass

Superclass Name XiHierarchyWidgetClass

Creation Routine XiCreateOutline
EnhancementPak Programmer’s Reference 83

WIDGET REFERENCE
XiOutline3

outline.fm5 Page 84 Wednesday, January 21, 2009 4:18 PM
Figure 17 shows an Outline widget with some nodes closed:

Figure 17. Outline Widget with Some Nodes Closed

The Outline widget assumes that it is totally responsible for mapping and unmapping
its children. Therefore, no child of this widget should ever modify its
XmNmappedWhenManaged resource. If a child does modify this resource, the
behavior is undefined.

Outline Node Types
Each node in the Outline can have one of four values of XmNnodeStates: XiOpen,
XiClosed, XiAlwaysOpen, or XiHidden. The appearance of the node and the actions
that are available to the user vary with its state as follows:

XiOpen
This node has an open folder shown to its left; clicking on it closes the node. When
a node is open, all of its children are visible.

XiClosed
This node has a closed folder shown to its left; clicking on it opens the node. When
a node is closed, none of its children are visible.
84 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Geometry Management 3

outline.fm5 Page 85 Wednesday, January 21, 2009 4:18 PM
XiAlwaysOpen
This node has no folder button associated with it. All of its children are visible.

Note: To maintain consistency of the user interface, it is best to use the node state
XiAlwaysOpen for nodes with no children. This way the user sees a folder button
only next to a node that has children to display. A folder button associated with a
node that has no children has no defined behavior.

XiHidden
This node is not visible. All of its children appear and behave exactly as if they were
children of the node’s parent.

Geometry Management
The preferred size of the Outline will be just large enough to contain all nodes in the
hierarchy. As the node state changes, the Outline attempts to resize itself to just
contain its currently visible children. If the Outline is forced away from its desired
size, the children are not moved; they are either clipped or they appear in the upper
left hand corner of the window. For this reason it is usually advisable to put the
Outline into a Scrolled Window or XiPorthole widget.

Classes and Inherited Resources
Outline inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XiHierarchy.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.
EnhancementPak Programmer’s Reference 85

WIDGET REFERENCE
XiOutline3

outline.fm5 Page 86 Wednesday, January 21, 2009 4:18 PM
Resources

XmNconnectNodes

Specifies whether or not the child nodes of a node should be visually connected to it
by lines drawn on the XiOutline's background.

XmNconstrainWidth
Specifies that the Outline widget should negotiate with its children to offer them the
best layout when the Outline itself cannot grow to display them at their preferred
sizes.

XmNindentSpace
Specifies the number of pixels by which each new level of the Outline is indented.

Name
Class

Default
Type Access

XmNconnectNodes
XmCBoolean

False
Boolean

CSG

XmNconstrainWidth
XmCConstrainWidth

False
Boolean

CSG

XmNindentSpace
XmCIndentSpace

30
Dimension

CSG
86 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiPaned 3

paned.fm5 Page 87 Wednesday, January 21, 2009 4:18 PM
XiPaned

The Paned widget manages children in a horizontally or vertically tiled fashion with
each child in a separate pane. The panes can be dynamically resized by the user
using control sashes that appear between the panes
(Figure 18). Application programmers have control over whether or not sashes and
separators are displayed, the preferred size of each pane, and which pane is forced
to absorb size restrictions imposed by the Paned widget’s parent.

Figure 18. Paned Widget with XmNorientation Set to XmVERTICAL

UNIX Application Header File Xi/Paned.h

UNIX Class Header File Xi/PanedP.h

Class Name XiPaned

Class Pointer xiPanedWidgetClass

Superclass Name XmManager

Creation Routine XiCreatePaned
EnhancementPak Programmer’s Reference 87

WIDGET REFERENCE
XiPaned3

paned.fm5 Page 88 Wednesday, January 21, 2009 4:18 PM
Geometry Management

Sizing children The Paned widget usually resizes its children to their preferred sizes when a new
child is managed. It first attempts to resize itself to contain its panes exactly. If this
is not possible, it hunts through the children from bottom to top (or right to left),
looking for a pane to resize.

The Paned widget attempts to comply with the geometry request of its children. It first
attempts to resize itself to satisfy the request. Next, it goes through the criteria specified
in “Resizing panes” to satisfy the request. Only if all panes are at their minimum or
maximum values is a geometry request refused. If the B resource is False for the child,
all geometry requests are denied.

Resizing panes When the Paned widget is resized it must determine a new size for each pane. There are two
methods of doing this. The Paned widget can either give each pane its preferred size and
then resize the panes to fit, or it can use the current sizes and then resize the panes to fit. The
XmNresizeToPreferred constraint resource allows the application to tell the Paned widget
whether to query the child about its preferred size (subject to the XmNpreferredPaneSize)
or to use the current size when refiguring the pane locations after the Paned widget has been
resized.

All panes assume they should resize to their preferred size until the Paned widget
becomes visible.

In order to make effective use of the Paned widget, it is helpful to know the rules it
uses to determine which child will be resized in any given situation.

Rules for
determined
resizing

There are three rules used to determine which child is resized. While these rules are
always the same, the panes that are searched can change depending upon what
caused the change of layout.
1. Do not let a pane grow larger than its maximum or smaller than its minimum

size. In addition do not let a pane without a sash shrink below its preferred size
due to a sash movement of another pane.

2. Do not adjust panes when XmNskipAdjust is True.
3. Do not adjust panes away from their preferred size, although moving one

closer to its preferred size is permitted.

When searching the children of the Paned widget, it looks for panes that satisfy all
the rules. If unsuccessful, it overrides rule 3 and then rule 2. Rule 1 is always
enforced.
88 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Classes and Inherited Resources 3

paned.fm5 Page 89 Wednesday, January 21, 2009 4:18 PM
Search order If XmNorientation is XmVERTICAL, the following search order is observed If
XmNorientation is XmHORIZONTAL, substitute “right” for “bottom” and “left”
for “top” in what follows:

• If the layout is due to a resize or change in management, the panes are
searched from bottom to top.

• If space is needed above the current sash, the panes are searched from bottom to top
beginning with the second pane above the sash that was moved.

• If space is needed below the current sash the panes are searched from top to
bottom beginning with the second pane below the sash that was moved.

The Paned widget never wraps around to the opposite side in search of a pane to
resize. For example, if space is needed below the sash, no widget above the sash is
ever resized.

Special
considerations

When a user resizes a pane using the sashes, the Paned widget assumes that this new
size is the preferred size of both the two adjacent panes, unless the B constraint
resource is True for that pane.

Classes and Inherited Resources
Paned inherits behavior and resources from Core, Composite, Constraint, and
XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.
EnhancementPak Programmer’s Reference 89

WIDGET REFERENCE
XiPaned3

paned.fm5 Page 90 Wednesday, January 21, 2009 4:18 PM
Resources

XmNcursor
Specifies the image that is displayed as the pointer cursor whenever the pointer is
over this widget. If a child does not explicitly set its cursor attribute, it inherits this
XmNcursor value.

XmNmarginHeight
XmNmarginWidth
Specifies the number of pixels between the children and the edges of the Paned
widget.

Name
Class

Default
Type Access

XmNcursor
XmCCursor

None
Cursor

CSG

XmNmarginHeight
XmCMargin

3
Dimension

CSG

XmNmarginWidth
XmCMargin

3
Dimension

CSG

XmNorientation
XmCOrientation

XmVERTICAL
unsigned char

CSG

XmNrefigureMode
XmCBoolean

True
Boolean

CSG

XmNsashHeight
XmCSashHeight

10
Dimension

CSG

XmNsashIndent
XmCSashIndent

-10
Position

CSG

XmNsashShadowThickness
XmCSashShadowThickness

2
Dimension

CSG

XmNsashTranslations
XmCTranslations

see below
XtTranslations

CSG

XmNsashWidth
XmCSashWidth

10
Dimension

CSG

XmNseparatorOn
XmCSeparatorOn

True
Boolean

CSG

XmNspacing
XmCSpacing

10
Dimension

CSG
90 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

paned.fm5 Page 91 Wednesday, January 21, 2009 4:18 PM
XmNorientation
Specifies the orientation of the panes, either XmVERTICAL or
XmHORIZONTAL. The value XmVERTICAL means the panes are placed one
above the other in a column, while XmHORIZONTAL means the panes are placed
next to each other in a row.

XmNrefigureMode
Specifies whether the Paned widget should adjust the sizes of the children after a
resize. XmNrefigureMode should probably be set to False when many of the Paned
widget’s children will make geometry requests. This causes the Paned widget to
restrict the actual movement and resize requests of the children until refigure mode
is set back to True. For more information, refer to “Geometry Management” on
page 88.

XmNsashHeight
XmNsashWidth
Specifies the height and width of all sashes used by the Paned widget.

XmNsashIndent
Specifies the position of the sash along each pane. Positive values specify an indent
from the left or top edge. Negative values specify an indent from the right or bottom
edge.

XmNsashShadowThickness
Specifies thickness of the shadows drawn on each sash.
XmNsashTranslations
Specifies translation bindings for the sash. See “Translations and Actions” on page 93.
XmNseparatorOn
If True, the widget places a Separator between each pane.
XmNspacing
Specifies the amount of space left between the panes. This is always forced to be at least
as large as the size of the sash between the panes if that sash is shown.
EnhancementPak Programmer’s Reference 91

WIDGET REFERENCE
XiPaned3

paned.fm5 Page 92 Wednesday, January 21, 2009 4:18 PM
Constraint Resources

These resources can be specified on each child of the Paned widget.

XmNallowResize
If False, the widget ignores all requests by this child to change its geometry.

XmNpaneMaximum
XmNpaneMinimum
Specifies the maximum and minimum size of a pane. If XmNpaneMaximum is
equal to XmNpaneMinimum, no sash is shown.

XmNpreferredPaneSize
Specifies the preferred size of the pane. If this value is set to XiPanedAskChild (use
the value 0 in a defaults file), the Paned widget queries the child for a preferred size.
This resource allows the user or application to provide a new preferred size.

XmNresizeToPreferred
Specifies whether to resize all panes to the preferred size when the Paned window is
resized. If False, only those panes not previously resized with the sashes are resized
to their preferred size.

XmNshowSash
Displays the Sash below or to the right of the pane.

Name
Class

Default
Type Access

XmNallowResize
XmCBoolean

False
Boolean

CSG

XmNpaneMaximum
XmCPaneMaximum

1000
Dimension

CSG

XmNpaneMinimum
XmCPaneMinimum

1
Dimension

CSG

XmNpreferredPaneSize
XmCPreferredPaneSize

XiPanedAskChild
Dimension

CSG

XmNresizeToPreferred
XmCBoolean

False
Boolean

CSG

XmNshowSash
XmCBoolean

True
Boolean

CSG

XmNskipAdjust
XmCBoolean

False
Boolean

CSG
92 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Translations and Actions 3

paned.fm5 Page 93 Wednesday, January 21, 2009 4:18 PM
XmNskipAdjust
If True, the Paned window skips over this child on its first pass when choosing a
pane to be forced away from its preferred size.

Translations and Actions
The Paned window inherits its translations from the XmManager class.

The following table lists the default translation bindings used by the control sashes
within the Paned window:

<Key>osfHelp: Help()

!Control<Key>osfUp: SashAction(Key,10,Up)

None<Key>osfUp: SashAction(Key,1,Up)

!Control<Key>osfDown: SashAction(Key,10,Down)

None<Key>osfDown: SashAction(Key,1,Down)

!Control<Key>osfLeft: SashAction(Key,10,Left)

None<Key>osfLeft: SashAction(Key,1,Left)

!Control<Key>osfRight: SashAction(Key,10,Right)

None<Key>osfRight: SashAction(Key,1,Right)

Shift~Meta~Alt<Key>Tab: PrevTabGroup()

~Meta~Alt<Key>Tab: NextTabGroup()

None<Btn1Down>: SashAction(Start)

None<Btn1Motion>: SashAction(Move)

None<Btn2Down>: SashAction(Start)

None<Btn2Motion>: SashAction(Move)

<BtnUp>: SashAction(Commit)

<FocusIn>: SashFocusIn()

<FocusOut>: SashFocusOut()

<Unmap>: PrimitiveUnmap()

<EnterWindow>: enter()

<LeaveWindow>: leave()
EnhancementPak Programmer’s Reference 93

WIDGET REFERENCE
XiPaned3

paned.fm5 Page 94 Wednesday, January 21, 2009 4:18 PM
The following actions are supported by the Paned widget on its sashes:

SashAction(Start)
Sets up the Paned Window for sash resizing.

SashAction(Move)
Causes track lines to be drawn following the current pointer position.

SashAction(Commit)
Commits the placement operation.

SashAction(Key, Incr, Dir)
Controls the placement of the sash that has keyboard focus. Incr may be either
DefaultIncr (1 pixel), LargeIncr (10 pixels), or a number of pixels to increment with
each keystroke. Dir is either Up, Down, Left or Right. Only Up and Down operate
when XmNorientation is XmVERTICAL. Only Left and Right operate when
XmNorientation is XmHORIZONTAL.

Convenience Routine

XiPanedGetPanes()
Retrieves the panes in the widget . Because the Paned widget adds children other
than the panes, these values are not the same as those retrieved with the
XmNchildren and XmNnumChildren resources.

void XiPanedGetPanes(Widget w,
WidgetList *panes_returned,
int *num_panes_returned)

w Widget ID of the Paned window.

panes_returned List of panes in the Paned window widget.

num_panes_returned Number of panes in the Paned window widget.

Note: panes_returned and num_panes_returned can be pointers to actual elements in
the widget structure. Any changes to the managed state of the widget, or deletion of
widget children can cause the elements pointed to by these values to change. The values
should never be modified by the application.
94 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiPanner 3

panner.fm5 Page 95 Wednesday, January 21, 2009 4:19 PM
XiPanner

The Panner widget represents a rectangular region (called the canvas) of which only
a smaller, enclosed rectangular region (called the slider) is visible at any given time.
It is typically used with a Porthole widget to scroll a third widget in two dimensions.

The slider can be moved around the canvas by pressing, dragging, and releasing the
Select Button. While scrolling is in progress, the application or other widget
receives notification through a callback procedure which it can use to update any
associated widgets.

Notification can be done either continuously whenever the slider moves or
discretely whenever the slider has been given a new location.

UNIX Application Header File Xi/Panner.h

UNIX Class Header File Xi/PannerP.h

Class Name XiPanner

Class Pointer xiPannerWidgetClass

Superclass Name XmPrimitive

Creation Routine XiCreatePanner
EnhancementPak Programmer’s Reference 95

WIDGET REFERENCE
XiPanner3

panner.fm5 Page 96 Wednesday, January 21, 2009 4:19 PM
Figure 19 shows two views of a Panner with the slider in different positions:

Figure 19. Panner and Porthole Widgets

The simplest method of adding a Panner to your application is to connect it to a
Porthole widget with XiPortholeConnectPanner(), and add the child to be scrolled to
the porthole widget.
96 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Classes and Inherited Resources 3

panner.fm5 Page 97 Wednesday, January 21, 2009 4:19 PM
Classes and Inherited Resources
Panner inherits behavior and resources from Core and XmPrimitive.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

XmNcanvasHeight
XmNcanvasWidth
Specifies the height and width of the canvas. The preferred size of the slider is calculated
as the canvas size multiplied by the scaling factor XmNdefaultScale, expressed as a

Name
Class

Default
Type Access

XmNcanvasHeight
XmCCanvasHeight

0
Dimension

CSG

XmNcanvasWidth
XmCCanvasWidth

0
Dimension

CSG

XmNdefaultScale
XmCDefaultScale

8
Dimension

CSG

XmNinternalSpace
XmCInternalSpace

2
Dimension

CSG

XmNreportCallback
XmCReportCallback

NULL
XtCallbackList

CSG

XmNresize
XmCResize

False
Boolean

CSG

XmNrubberBand
XmCRubberBand

False
Boolean

CSG

XmNsliderHeight
XmCSliderHeight

0
Dimension

CSG

XmNsliderWidth
XmCSliderWidth

0
Dimension

CSG

XmNsliderX
XmCSliderX

0
Position

CSG

XmNsliderY
XmCSliderY

0
Position

CSG
EnhancementPak Programmer’s Reference 97

WIDGET REFERENCE
XiPanner3

panner.fm5 Page 98 Wednesday, January 21, 2009 4:19 PM
percentage.
XmNdefaultScale
Specifies the percentage size that the Panner widget would prefer to have relative to
the size of the canvas.
XmNinternalSpace
Specifies the width of internal border in pixels between a slider representing the full
size of the canvas and the edge of the Panner widget.

XmNreportCallback
All functions on this callback list are called when the notify action is invoked. See
“Translations and Actions” on page 99 for details.

XmNresize
Specifies whether or not to maintain XmNdefaultScale by resizing the Panner when
the canvas size is changed.

Note: Feedback loops can result if the Panner and the object panned affect each
other’s size.

XmNrubberBand
Specifies whether or not scrolling should be discrete (only moving a rubber-banded
rectangle until the scrolling is done) or continuous (moving the slider itself). This
resource also controls whether or not the move action procedure also invokes the
notify action procedure.

XmNshadowThickness
Specifies the width in pixels of the shadow drawn around the slider and around the
Panner widget itself.

XmNsliderHeight
XmNsliderWidth
Specifies the height and width of the slider expressed in the coordinates of the
canvas.

XmNsliderX
XmNsliderY
Specifies the location of the slider in the coordinates relative to the canvas.
98 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Translations and Actions 3

panner.fm5 Page 99 Wednesday, January 21, 2009 4:19 PM
Translations and Actions
The translations supported by the Panner widget are:

The following actions are supported by the Panner widget:

XiStart()
Begins movement of the slider.

XiAbort()
Ends movement of the slider and restores its original position.

XiGetFocus()
Forces the Panner to have the current Motif keyboard traversal sent to it.

XiMove()
Moves the outline of the slider (if the XmNrubberBand resource is True) or the
slider itself (by invoking the notify action procedure).

XiNotify()
Informs the application of the slider’s current position by invoking the
XmNreportCallback functions registered by the application.

<Btn1Down>: XiGetFocus() XiStart()

<Btn1Motion>: XiMove()

<Btn1Up>: XiNotify() XiStop()

<Btn2Down>: XiAbort()

<Btn3Down>,<Btn3Up>: XiWarpTo()

<Key>osfSelect: XiSet(rubberband,toggle)

<Key>osfActivate: XiPage(+1p,+1p)

None<Key>Return: XiPage(+1p,+1p)

None<Key>space: XiPage(+1p,+1p)

<Key>osfDelete: XiPage(-1p,-1p)

<Key>osfBackSpace: XiPage(-1p,-1p)

<Key>osfLeft: XiPage(-.5p,+0)

<Key>osfRight: XiPage(+.5p,+0)

<Key>osfUp: XiPage(+0,-.5p)

<Key>osfDown: XiPage(+0,+.5p)
EnhancementPak Programmer’s Reference 99

WIDGET REFERENCE
XiPanner3

panner.fm5 Page 100 Wednesday, January 21, 2009 4:19 PM
XiPage(xamount, yamount)
Moves slider by specified amounts. Format for the amounts is a signed or unsigned
floating-point number (such as +1.0 or -.5) followed by either ‘p’ indicating pages
(slider sizes), or ‘c’ indicating absolute position as a fraction of canvas size.
XiPage(+0,+.5p) represents vertical movement down one-half height of slider and
XiPage(0,0) represents moving to upper left corner of canvas.

XiSet(what, value)
Changes the behavior of the Panner. The what argument must currently be the string
“rubberband” and controls the value of the XmNrubberBand resource. The value
argument can have the value of “on”, “off”, or “toggle”.

XiStop()
Ends movement of the slider.

XiWarpTo()
Sets the slider’s upper-left corner to the location of the event.

XiScrollReport
A generic structure used to communicate scrolling or panning information between
widgets, or from widget to application and back again. This structure is defined in
the header file <Xi/Reports.h>.

typedef struct _XiScrollReport {
unsigned int changed;
Position slider_x, slider_y;
Dimension slider_width, slider_height;
Dimension canvas_width, canvas_height;

} XiScrollReport;

changed Bitmask containing list of elements in report callback structure
that have changed (causes this report to be sent). All fields valid
with every call. Informs application which fields were modified.
Acceptable values are XiPRSliderX, XiPRSliderY,
XiPRSliderWidth, XiPRSliderHeight, XiPRCanvasWidth, and
XiPRCanvasHeight.

slider_x Location of the slider in canvas coordinates and units.
slider_y
100 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Callback Routine 3

panner.fm5 Page 101 Wednesday, January 21, 2009 4:19 PM
slider_width The width and height of the slider in canvas coordinates.
slider_height

canvas_width The width and height of the canvas as computed by the size

canvas_height of the Panner multiplied by the XmNdefaultScale resource.

Callback Routine
All routines on the XmNreportCallback list are called with an XiScrollReport
structure as call_data.

Convenience Routine

XiPortholeConnectPanner()
Connects a Porthole widget to a Panner widget.

void XiPortholeConnectPanner(Widget porthole,
Widget panner)

porthole Porthole widget to connect.

panner Panner widget to which the Porthole connects.

This routine connects the Porthole and Panner widget together to allow scrolling the
Porthole’s child by moving the Panner. In addition, the appropriate actions are taken
when the user resizes the Porthole, makes a XtSetValues() call to move its child, or
moves the Panner. There is no restriction on the relative location of Porthole and
Panner. The location and size of each widget are completely customizable.
EnhancementPak Programmer’s Reference 101

WIDGET REFERENCE
XiPixmapEditor3

pixmap.fm5 Page 102 Wednesday, January 21, 2009 4:20 PM
XiPixmapEditor

The PixmapEditor widget allows users to generate graphics for use in an application.
It supports many common functions including point, line, circle, filled circle,
rectangle, filled rectangle, moving and copying areas, flood fill, and undo. The
image can also be resized, zoomed, or scrolled using a Panner. This widget can
accept an input image from either an image or a drawable.

If the input is from a drawable, any portion of that drawable may be loaded using the
XmNdrawableInfo resource. Figure 20 shows the PixmapEditor display:

Figure 20. PixmapEditor Widget

UNIX Application Header File Xi/PixEdit.h

UNIX Class Header File Xi/PixEditP.h

Class Name XiPixmapEditor

Class Pointer xiPixmapEditorWidgetClass

Superclass Name XiPaned

Creation Routine XiCreatePixmapEditor
102 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiPixmapEditor 3

pixmap.fm5 Page 103 Wednesday, January 21, 2009 4:20 PM
Supported
functions

This section lists the supported functions:

Set All

To fill the entire image with a given color, erasing its current contents, select
the Set All button.

Undo

To undo the last operation, select the Undo button. Only the last operation can
be undone. If draw point was the last operation, all points that were drawn with
one click-drag-release action are removed.

Draw Point

To draw a single point, click and release the select pointer button. To draw
multiple points, click and drag the pointer. Points are drawn until the pointer
button is released.

Draw Line

To draw a line, click and hold to set one end of the line, then drag the pointer
and release the button to set the other end of the line.

Draw Circle

To draw a circle, click and hold to set the center of the circle. Drag out along
the radius to set the size of the circle.

Filled Circle

A filled circle is drawn in the same fashion as a circle.

Rectangle

To draw a rectangle, click and hold to position the upper-left corner of the
rectangle, then drag the pointer and release the button to set the opposite corner.

Filled Rectangle

A filled rectangle is drawn in the same fashion as a rectangle.
EnhancementPak Programmer’s Reference 103

WIDGET REFERENCE
XiPixmapEditor3

pixmap.fm5 Page 104 Wednesday, January 21, 2009 4:20 PM
Copy

To copy an area of the screen to another location, click and hold to set the
upper-left corner and drag out a rectangle encompassing the area to copy.
Release the pointer button and move the selected area to the new location and
click the pointer button to complete the copy. The image in the original location
is unchanged and a copy of it is placed in the new location. To cancel a copy
operation once the original area has been selected, select the copy icon again.

Move

The move operation is just like the copy operation except that after moving the
area to a new location, the original area is removed by filling it with the
currently selected color.

Flood Fill

To flood fill an area, choose a location, then click and release the select button.
All contiguous pixels of the same color are changed to the current color.

Selecting and Adding Colors
Select the color used in each of the above functions with the color bar. The color bar,
placed between the pixmap and the control panel, is a bar of rectangles which
correspond to colors in the pixmap.

• The current color is denoted by a check mark. Selecting a color makes it the
current color.

• Click the “+” pushbutton to add colors to the bar.

• Double-click on the newly created color to display the ColorSelector, which
allows you to change that color in the pixmap.

Resizing the Pixmap
To resize the pixmap, click and hold on an edge of the small pixmap display and drag
it to a new location. The size in pixels of the new image is displayed in the upper-left
corner of the small pixmap. When the image is made bigger, all new pixels are set to
the current color. When the image is made smaller, only the upper-left portion of the
image that fits on the screen is saved.
104 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Panning and Zooming 3

pixmap.fm5 Page 105 Wednesday, January 21, 2009 4:20 PM
Panning and Zooming
This area allows you to zoom and pan the pixmap. Grabbing the panner with the
pointer button moves your current view of the pixmap to a new location. Dragging
the panner to the extreme top right of its bounding area allows you to see the
top-right corner of the pixmap. If the panner completely fills its area, the entire
pixmap is currently shown, and the panner cannot be moved (see Figure 21). When
the panner has the keyboard focus it can also be moved by using the arrow keys.

Figure 21. Pixmap Panner

To zoom the image in and out, use the up and down arrow buttons. This changes the
magnification of the drawing pixmap. A magnification of “8x” means that each pixel in
the real pixmap is represented by an 8x8 rectangle in the PixmapEditor. Zooming in and
out does not change the image—it only affects your view of the image. The allowed
magnifications are 1, 2, 4, 6, 8, 10, and 12.

Input and Output
To set the image in the PixmapEditor, either set the XmNimage resource to contain
a valid XImage structure, or set XmNdrawable to point to an X drawable (either a
window or pixmap). The XmNdrawableInfo resource can be used to have the
pixmap load in a portion of a window. This can be used to extract a section of the
root window. Changing either of these resources resets XmNpixmapWidth and
XmNpixmapHeight and completely replaces the current pixmap.

The contents of the PixmapEditor can be retrieved using the same two resources, thus an
application can retrieve the image as an XImage or an X Pixmap.
EnhancementPak Programmer’s Reference 105

WIDGET REFERENCE
XiPixmapEditor3

pixmap.fm5 Page 106 Wednesday, January 21, 2009 4:20 PM
Classes and Inherited Resources
PixmapEditor inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XiPaned.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

Resources

Name
Class

Default
Type Access

XmNbitmapMode
XmCBitmapMode

False
Boolean

CSG

XmNcellHeight
XmCCellSize

8
int

CSG

XmNcellWidth
XmCCellSize

8
int

CSG

XmNcurrentColor
XmCColorIndex

-1
int

CSG

XmNdrawable
XmCDrawable

XtUnspecifiedPixmap
Drawable

CSG

XmNdrawableInfo
XmCDrawableInfo

NULL
XtPointer

CSG

XmNeditCursor
XmCCursor

crosshair
Cursor

CSG

XmNgridSize
XmCGridSize

1
int

CSG

XmNgridTranslations
XmCGridTranslations

see below
XtTranslations

CSG

XmNimage
XmCImage

NULL
Pointer

CSG

XmNmaxHeight
XmCMaxSize

32000
int

G

XmNmaxWidth
XmCMaxSize

32000
int

G

XmNminHeight
XmCMinSize

1
int

G

106 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

pixmap.fm5 Page 107 Wednesday, January 21, 2009 4:20 PM
XmNbitmapMode
If this resource is True, the PixmapEditor expects the image or drawable passed to
it to be a bitmap, and only allows the user to change each cell in the bitmap to a 1 or
a 0. Otherwise, full color editing is allowed. If a bitmap is loaded into a
PixmapEditor that is not in bitmap mode, the 1’s are converted to black and the 0’s
are converted to white.

XmNcellHeight
XmNcellWidth
Specifies the height and width in pixels of each cell in the big pixmap. Although these
can be specified independently if the user zooms the application in or out, the average is
used for both, forcing the aspect ratio back to 1.

XmNcurrentColor
Specifies the index in the XmNpalette array of the currently selected color.

XmNminWidth
XmCMinSize

1
int

G

XmNmodified
XmCModified

False
Boolean

CSG

XmNpalette
XmCPixelList

NULL
Pixel *

CSG

XmNpaletteSize
XmCColorIndex

0
int

CSG

XmNpixmapHeight
XmCPixmapWidth

48
int

CSG

XmNpixmapWidth
XmCPixmapHeight

48
int

CSG

XmNsetAllString
XmCSetAllString

“set\nall”
XmString

CSG

XmNshowNormalView
XmCBoolean

True
Boolean

CSG

XmNtile
XmCTile

XtUnspecifiedPixmap
Pixmap

CSG

XmNundoString
XmCUndoString

“undo”
XmString

CSG

Name (continued)
Class

Default
Type Access
EnhancementPak Programmer’s Reference 107

WIDGET REFERENCE
XiPixmapEditor3

pixmap.fm5 Page 108 Wednesday, January 21, 2009 4:20 PM
XmNdrawable
When set, XmNdrawable can contain any valid drawable on this display. If
XmNdrawableInfo is NULL, the entire drawable is loaded into the PixmapEditor. If
XmNdrawableInfo is not NULL, the value of XmNdrawableInfo specifies which
portion of the drawable is loaded into the PixmapEditor. The drawable is converted to an
internal format at initialization time and is never referenced again. The programmer is
free to destroy this drawable after the widget has been created or the XtSetValues() call
returns.

When retrieved via XtGetValues(), XmNdrawable contains the image that has been
created or edited with the PixmapEditor, returned as a Pixmap. This pixmap is only
valid until the next time this resource is retrieved using XtGetValues() or set using
XtSetValues(). Therefore, you should copy the pixmap if it will be used after the
next call.

XmNdrawableInfo
A structure that specifies which portion of the drawable specified by XmNdrawable
should be loaded into the PixmapEditor. The structure has the following format.

typedef struct _XiPixmapEditorDrawableInfo {
short x, y;
unsigned short width, height, depth;

} XiPixmapEditorDrawableInfo;

x, y Upper-left corner of the area to load.

width, height Size of the area to load.

depth Depth of the drawable being used.

XmNeditCursor
Specifies the cursor displayed when the pointer is over the active edit area.

XmNgridSize
Specifies the size of the grid (in pixels). The grid is constructed by letting the
XmNbackground of the window show through. The grid size is subtracted from the
XmNcellWidth and XmNcellHeight. Therefore, if the XmNcellHeight is 8 and the
XmNgridSize is 1, the actual size of the drawn rectangle is 7 pixels. If the average
of XmNcellHeight and XmNcellWidth is less than 3, XmNgridSize is forced to 0.
108 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

pixmap.fm5 Page 109 Wednesday, January 21, 2009 4:20 PM
XmNgridTranslations
Specifies the translations that are active on the big pixmap. See “Translations and
Actions” on page 111.

XmNimage
When set by using XtSetValues(), contains a pointer to an XImage that provides the
initial data for the PixmapEditor. The entire XImage is always loaded into the
PixmapEditor. The XImage is converted to an internal format at initialization time
and is never referenced again. The programmer is free to destroy this image after the
widget has been created.

When retrieved by using XtGetValues(), contains a pointer to the image that has
been created or edited with the PixmapEditor. This XImage is only valid until the
next time this resource is retrieved using XtGetValues() or set using XtSetValues().
Therefore, you should copy the XImage if it will be used after the next call.

XmNmaxHeight
XmNmaxWidth
Specifies the maximum height and width the pixmap can ever become. If the image
or drawable passed in exceeds this size, it is cropped to this size.

XmNminHeight
XmNminWidth
Specifies the minimum height and width the pixmap can ever become. If the image
or drawable passed in is smaller than this size it is placed in the upper-left corner of
the area, and a convenient color is used to fill in the rest of the image.

XmNmodified
This resource is set to True when the user modifies the image. The value is set to
False only when the XmNdrawable or XmNimage is changed by a call to
XtSetValues(). This value is otherwise not used internally.
EnhancementPak Programmer’s Reference 109

WIDGET REFERENCE
XiPixmapEditor3

pixmap.fm5 Page 110 Wednesday, January 21, 2009 4:20 PM
XmNpalette
Specifies an array of pixel values that is the palette for PixmapEditor widgets created
with XmUNSPECIFIED_PIXMAP. A comma-separated list of color names is valid in
a resource file. A String to PixelList converter has been registered. This converts
comma-separated lists of colors to a pixel array.

XmNpaletteSize
Specifies the number of colors in the palette. This must match the actual size of the
list or an error will occur.

XmNpixmapHeight
XmNpixmapWidth
If no drawable or image is passed into the PixmapEditor, these resources specify the
initial height and width of the pixmap. These resources are subject to the constraints
of the minimum and maximum bounds. If a drawable or image is passed in, these
values are ignored and reset to correspond to the height and width of that image or
drawable.

XmNsetAllString
Specifies the label of the Set All pushbutton.

XmNshowNormalView
If this resource is False, the actual size of the pixmap, which is normally displayed
above the panner, is not shown.

XmNtile
Specifies the pixmap used to tile the unused area of the PixmapEditor Porthole's
background.

XmNundoString
Specifies the label of the Undo pushbutton.
110 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Translations and Actions 3

pixmap.fm5 Page 111 Wednesday, January 21, 2009 4:20 PM
Translations and Actions
The following are the default translation bindings available in the pixmap editing window.
These may be modified by setting the XmNgridTranslations resource.

The following actions are supported by the PixmapEditor widget:

XiStartPoint()
Specifies the start location of an action in the PixmapEditor.

XiEndPoint()
Specifies the end location of an action in the PixmapEditor.

XiMotion()
Specifies an intermediate point of an action in the PixmapEditor. The argument
determines whether the PixmapEditor should perform actions that only happen on a
drag, or those that happen whenever the pointer is moved.

XiNextColor()
Selects the next available color from the list of color buttons along the bottom of the
window. If the last button is currently selected, this action wraps to the first one.

Compound Widget Hierarchy
The PixmapEditor is composed of several sub-widgets. Most resource values that
are passed to the PixmapEditor through the argument list at creation time or via
XtSetValues() are then passed to each of the widget’s children. An XtGetValues()
request for a child widget’s resource value must be made explicitly on the child. For
more information on passing arguments to the EnhancementPak compound widgets
and retrieving the widget ids of the child widgets, refer to “Compound Widgets” on
page 12.

<Btn1Down>: XiStartPoint()

<Btn1Up>: XiEndPoint()

<Btn1Motion>: XiMotion(BtnDown)

<Motion>: XiMotion(NoButton)

<Btn2Down>,<Btn2Up>: XiNextColor()
EnhancementPak Programmer’s Reference 111

WIDGET REFERENCE
XiPixmapEditor3

pixmap.fm5 Page 112 Wednesday, January 21, 2009 4:20 PM
Consult the OSF/Motif Programmer’s Reference for the list of any child widget’s
resources.

XiPixmapEditor <named by application>

XiPorthole porthole

XmDrawingArea bigmap

XmForm form

XmFrame frame

XiButtonBox colorBox

XiIconButton newColor

XiIconButton colorToggle

XiIconButton colorToggle

XiPaned panelPaned

XiToolbar controlBox

XiIconButton command0

XiIconButton command1

.

.

.

.

.

.

XiIconButton command11

XmForm form

XiStretch stretch

XmDrawingArea littleMap

OverrideShell labelShell

XmLabel label

XiPanner panner

XmFrame frame

XiPaned paned

XmArrowButton topArrow

XmLabel label

XmArrowButton bottomArrow

Core spacer

XmSash sash
112 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Convenience Routines 3

pixmap.fm5 Page 113 Wednesday, January 21, 2009 4:20 PM
Convenience Routines

XiPixmapEditorGetPictureData
Returns pixmap status information without a callback. The picture data is an array
of unsigned chars whose values represent offsets into the color array. Once the
image has been modified call XiPixmapEditorRefresh() to update the display.
void XiPixmapEditorGetPictureData(Widget w,

int reset_undo,
XColor **colors,
int *ncolors,
unsigned char **picture,
unsigned int *width,
unsigned int *height)

w The PixmapEditor widget.

reset_undo If True the undo buffer is set to the current image
before the data is returned.

colors, ncolors The colors used in this image are returned by this
pointer. This list must not be modified.

picture The picture data is returned here.

width, height The size of the pixmap is placed in these variables.

XiPixmapEditorGetRelevantData
Returns pixmap status information without a callback; a pointer to static data.

XiPixmapEditorCallbackStruct* XiPixmapEditorGetRelevantData(Widget w)

w The PixmapEditor widget.

XiPixmapEditorRefresh

Tells the PixmapEditor to refresh its display. If you call
XiPixmapEditorGetPictureData and modify the picture data, be sure to call this
routine to redisplay the image.
void XiPixmapEditorRefresh(Widget w)

w The PixmapEditor widget.
EnhancementPak Programmer’s Reference 113

WIDGET REFERENCE
XiPorthole3

porthole.fm5 Page 114 Wednesday, January 21, 2009 4:21 PM
XiPorthole

The Porthole widget allows a single child to be managed and scrolled by the
application. Unlike the Motif Scrolled Window, no scrollbars are provided.

The application is free to provide scrolling by attaching its own scrollbars or
connecting the Porthole to another type of scrolling device, typically the Panner
widget.

The Porthole handles XtSetValues() and geometry management requests from the
child, allowing the application to call XtSetValues() with a new X and Y location for
the child.

UNIX Application Header File Xi/Porthole.h

UNIX Class Header File Xi/PortholeP.h

Class Name XiPorthole

Class Pointer xiPortholeWidgetClass

Superclass Name XmManager

Creation Routine XiCreatePorthole
114 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiPorthole 3

porthole.fm5 Page 115 Wednesday, January 21, 2009 4:21 PM
Figure 22 shows two views of a Panner with the slider in different positions:

Figure 22. Panner and Porthole Widgets

By default, the Porthole widget is sized to have its child completely fill the clip area
when that child has its preferred geometry. This allows applications to place a
Porthole around a child while still allowing the child to display all of its data by
default. When the child is unable to show everything in the current screen space,
scrolling is available.
EnhancementPak Programmer’s Reference 115

WIDGET REFERENCE
XiPorthole3

porthole.fm5 Page 116 Wednesday, January 21, 2009 4:21 PM
The Porthole’s clip window has its XmNbackground set to None when
XmNforceChildToFill is True. This allows the child to be mapped and unmapped during
complex resize operations without a screen flash. This technique can be used to increase
application performance by reducing the number of graphics operations the X server must
perform during geometry negotiations.

Geometry Management
The Porthole widget allows its managed child to request any size, unless
XmNforceChildToFill is True (in which case the child must be at least as large as
the Porthole’s clip window). Any location can be specified so long as the child still
obscures all of the clip window. If the child only covers part of the window, it must
be placed in the upper-left corner of the window. This widget is typically connected
by the XmNreportCallback with a scrolling device such as the Panner widget.

As specified by the Xt Intrinsics, the programmer should make a XtSetValues() call on
the child widget specifying the new XmNx, XmNy, XmNwidth, and XmNheight of the
Porthole’s child.

Classes and Inherited Resources
Porthole inherits behavior and resources from Core, Composite, Constraint, and
XmManager.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.
116 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

porthole.fm5 Page 117 Wednesday, January 21, 2009 4:21 PM
Resources

XmNforceChildToFill
Forces the child to fill the entire space provided by the Porthole. Thus, the minimum
size the Porthole will ever allow the child to be is the current size of the Porthole’s
clip window.

XmNmarginHeight
Specifies the vertical margin around the Porthole widget's child

XmNmarginWidth
Specifies the horizontal margin around the Porthole widget's child

XmNreportCallback
Specifies a list of functions to invoke whenever the managed child widget changes
size or position.

XmNshadowThickness
Specifies thickness of the shadow border around the Porthole widget’s child.

Name
Class

Default
Type Access

XmNforceChildToFill
XmCBoolean

True
Boolean

CSG

XmNmarginHeight
XmCMargin

0
Dimension

CSG

XmNmarginWidth
XmCMargin

0
Dimension

CSG

XmNreportCallback
XmCReportCallback

NULL
XtCallbackList

CSG

XmNshadowThickness
XmCShadowThickness

2
Dimension

CSG
EnhancementPak Programmer’s Reference 117

WIDGET REFERENCE
XiPorthole3

porthole.fm5 Page 118 Wednesday, January 21, 2009 4:21 PM
Callback Routine
All routines on the XmNreportCallback list are called with an XiScrollReport
structure as call_data.

XiScrollReport
The XiScrollReport structure is a generic structure used to communicate scrolling or
panning information between widgets, or from widget to application and back again. This
structure is defined in the header file <Xi/Reports.h>.
typedef struct _XiScrollReport {

unsigned int changed;
Position slider_x, slider_y;
Dimension slider_width, slider_height;
Dimension canvas_width, canvas_height;

} XiScrollReport;

changed Bitmask containing a list of the elements in the report call-
back structure that have changed, causing this report to be
sent. All fields are valid with every call, this mask simply
informs the application which fields have been modified. The
acceptable values are XiPRSliderX, XiPRSliderY,
XiPRSliderWidth, XiPRSliderHeight, XiPRCanvasWidth,
and XiPRCanvasHeight.

slider_x,
slider_y

Location of the clip window in the coordinates of the child.
This is backwards from the way X deals with these objects, but
much more useful for scrolling devices.

slider_width,
slider_height

Width and height of the clip window in pixels.

canvas_width,
canvas_height

Width and height of the Porthole’s child widget in pixels.
118 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Convenience Routines 3

porthole.fm5 Page 119 Wednesday, January 21, 2009 4:21 PM
Convenience Routines

XiPortholeConnectPanner()
Connects a Porthole widget to a Panner widget.
void XiPortholeConnectPanner(Widget porthole,

Widget panner)

porthole Porthole widget to connect.

panner Panner widget to which the Porthole connects.

This routine connects the Porthole and Panner widget together to allow scrolling the
Porthole’s child by moving the Panner. In addition, the appropriate actions are taken
when the user resizes the Porthole, makes a XtSetValues() call to move its child, or
moves the Panner. There is no restriction on the relative location of Porthole and
Panner. The location and size of each widget are completely customizable.

XiPortholeVisible()
Makes an obscured or partially obscured widget descendant of the XiPorthole
centered within the porthole, if possible.
void XiPortholeVisible (Widget porthole, Widget descendant)

porthole The Porthole widget.

descendant Descendant widget to center within Porthole.
EnhancementPak Programmer’s Reference 119

WIDGET REFERENCE
XiStretch3

stretch.fm5 Page 120 Wednesday, January 21, 2009 4:22 PM
XiStretch

The Stretch widget puts a border around its single managed child that the user can grab.
The X cursor changes to a resize cursor similar to those used by the Motif Window
Manager when over a section of the widget that can be used to resize the child. By
selecting and dragging the border around the Stretch widget’s single child, both the
Stretch and the child resize dynamically.

The application can set maximum and minimum sizes to which the user can resize
the Stretch widget’s child. The size of the increment can also be specified, providing
functionality similar to the width_inc and height_inc window manager hints. A
callback for resize events is available.

Classes and Inherited Resources
Stretch inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XmFrame.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.

UNIX Application Header File Xi/Stretch.h

UNIX Class Header File Xi/StretchP.h

Class Name XiStretch

Class Pointer xiStretchWidgetClass

Superclass Name XmFrame

Creation Routine XiCreateStretch
120 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

stretch.fm5 Page 121 Wednesday, January 21, 2009 4:22 PM
Resources

XmNheightInc
XmNwidthInc
Specifies the height and width of one cell. The Stretch widget allows the child to be
resized only in increments of the height and width of a cell. When resizing the
widget, a window pops up to show the current height and width of the child in cells,
rather than pixels.

XmNmaxHeight
XmNmaxWidth
Specifies the maximum height and width, in cells, that the child can become. The
height and width of a cell are specified by the XmNheightInc and XmNwidthInc
resources.

XmNminHeight
XmNminWidth
Specifies the minimum height and width, in cells, that the child can become. The
height and width of a cell are specified by the XmNheightInc and XmNwidthInc
resources.

Name
Class

Default
Type Access

XmNheightInc
XmCIncrement

1
Dimension

CSG

XmNmaxHeight
XmCMaxSize

32000
int

CSG

XmNmaxWidth
XmCMaxSize

32000
int

CSG

XmNminWidth
XmCMinSize

1
int

CSG

XmNminHeight
XmCMinSize

1
int

CSG

XmNresizeCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNshadowThickness
XmCShadowThickness

5
short

CSG

XmNwidthInc
XmCIncrement

1
Dimension

CSG
EnhancementPak Programmer’s Reference 121

WIDGET REFERENCE
XiStretch3

stretch.fm5 Page 122 Wednesday, January 21, 2009 4:22 PM
XmNresizeCallback
Specifies the list of callback routines called whenever the Stretch widget is resized.

XmNshadowThickness
Specifies the thickness of the shadow placed around the child. This area is grabbed
and dragged to resize the child.

Translations and Actions
The following are the default translation bindings available in the Stretch widget:

The following actions are supported by the Stretch widget:

XiStart()
Specifies the start location of Stretch.

XiEnd()
Specifies the end location of Stretch.

XiMotion()
Specifies an intermediate point of the Stretch.

Callback Routine
When the Stretch widget attempts to resize, all routines on the XmNresizeCallback
are called to inform the application that a change has occurred. The Stretch widget
automatically uses the geometry request of its parent. This callback informs the
application what change has occurred. In most cases, this information is not
necessary, since the child of the Stretch widget has already had its resize procedure
called.

All routines on the XmNresizeCallback list are a passed a pointer to the
XiStretchWidgetInfo structure as client_data.

<Btn1Down>: XiStart()

<Btn1Up>: XiEnd()

<Btn1Motion>: XiMovement()
122 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiStretchWidgetInfo Structure 3

stretch.fm5 Page 123 Wednesday, January 21, 2009 4:22 PM
XiStretchWidgetInfo Structure
The XiStretchWidgetInfo data structure contains information about the new height
and width and location of the Stretch widget’s child.
typedef struct _XiStretchWidgetInfo {

Boolean success;
Dimension width, height;
Position x, y;

} XiStretchWidgetInfo;

success Whether the Stretch widget and its parent agreed to grant the user’s
request. If True, the widget has been resized. If False, the resize was
disallowed.

width, height The width and height of the Stretch widget, in units of
XmNwidthInc and XmNheightInc respectively, as requested by the
user. If success is True, the real dimensions of the widget will equal
these values since the widget has been resized.

x, y The values, in pixels, of XmNx and XmNy for the Stretch widget as
requested by user. Note that the Stretch widget does not automatically
change its XmNx and XmNy values in response to an upward or
leftward resize request. If the application wants to change the location of
the widget, it can use these values to perform the move itself.
EnhancementPak Programmer’s Reference 123

WIDGET REFERENCE
XiTabStack3

tabstack.fm5 Page 124 Wednesday, January 21, 2009 4:23 PM
XiTabStack

The TabStack widget manages a group of widgets such that only one widget in the group
is visible at a time. Each child is associated with a tab that displays text and/or a pixmap.
The user selects the tab, interactively determining which child is displayed. Tabs can be
configured to appear above, below, to the right, or to the left of a work area with the text
oriented in any of the four cardinal directions. A sample TabStack is shown in Figure 23.

Figure 23. TabStack Widget

The TabStack allows the user to select tabs, either by pointer or keyboard traversal.
When a tab is selected, the tab appears to be raised above the other tabs and the child
associated with the tab is made visible. One tab is selected at all times.

Note: This widget behaves similarly to Microsoft Windows™ Tab Control.

Classes and Inherited Resources
TabStack inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XmBulletinBoard classes.

UNIX Application Header File Xi/TabStack.h

UNIX Class Header File Xi/TabStackP.h

Class Name XiTabStack

Class Pointer xiTabStackWidgetClass

Superclass Name XmBulletinBoard

Creation Routine XiCreateTabStack
124 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources. 3

tabstack.fm5 Page 125 Wednesday, January 21, 2009 4:23 PM
The resources inherited from each Motif superclass are listed in the Appendix at the
back of this book. For a complete description of each resource, refer to the
OSF/Motif Programmer’s Reference.

Resources.

Name
Class

Default
Type Access

XmNfontList
XmCFontList

dynamic
XmFontList

CSG

XmNhighlightThickness
XmCHighlightThickness

2
Dimension

CSG

XmNstackedEffect
XmCStackedEffect

True
Boolean

CSG

XmNtabAutoSelect
XmCTabAutoSelect

True
Boolean

CG

XmNtabCornerPercent
XmCTabCornerPercent

40
int

CSG

XmNtabLabelSpacing
XmCTabLabelSpacing

2
Dimension

CSG

XmNtabMarginHeight
XmCTabMarginHeight

3
Dimension

CSG

XmNtabMarginWidth
XmCTabMarginWidth

3
Dimension

CSG

XmNtabMode
XmCTabMode

XiTABS_BASIC
int

CSG

XmNtabOffset
XmCTabOffset

10
Dimension

CSG

XmNtabOrientation
XmCtabOrientation

XiTAB_ORIENTATION_DYNAMIC
int

CSG

XmNtabSelectColor
XmCTabSelectColor

dynamic
Pixel

CSG

XmNtabSelectedCallback
XmCTabSelectedCallback

NULL
XtCallbackList

CSG

XmNtabSelectPixmap
XmCTabSelectPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNXmNtabSide
XmCTabSide

XiTABS_ON_TOP
int

CSG
EnhancementPak Programmer’s Reference 125

WIDGET REFERENCE
XiTabStack3

tabstack.fm5 Page 126 Wednesday, January 21, 2009 4:23 PM
XmNfontList
Specifies the XmFontList to use when drawing the label strings for the tabs.

XmNhighlightThickness
Specifies the thickness of the rectangle drawn around the label string and the pixmap
of the tab that owns keyboard traversal.

XmNstackedEffect
Specifies whether visuals should depict a stack of folders (True), or TabStack should
use all available space for its children (False).

XmNtabAutoSelect
Specifies whether a tab is automatically selected when receiving keyboard traversal.

XmNtabCornerPercent
Specifies the percent of font height to use for the corner visual.

XmNtabLabelSpacing
Specifies the amount of space between a text label and pixmap in the tab area.

XmNtabMarginHeight
Specifies the size of the vertical border placed around the label area of a tab.

XmNtabMarginWidth
Specifies the size of the horizontal border placed around the label area of a tab.

XmNtabStyle
XmCTabStyle

XiTABS_BEVELED
int

CSG

XmNuniformTabSize
XmCUniformTabSize

True
Boolean

CSG

XmNuseImageCache
XmCUseImageCache

True
Boolean

CSG

Name (continued)
Class

Default
Type Access
126 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources. 3

tabstack.fm5 Page 127 Wednesday, January 21, 2009 4:23 PM
XmNtabMode
Specifies the mode in which the TabStack distributes the tabs. The following values
are valid for this resource:

XmNtabOffset
Specifies the amount of indentation used to stagger the tab rows when displaying tabs in
either the XiTABS_STACKED or XiTABS_STACKED_STATIC mode.

XmNtabOrientation
Specifies the orientation of the tab and the rotation factor of the tab label. The
following values are valid for this resource:

XmNselectColor
Specifies the color of the selected tab.

XmNXiTABS_BASIC Distributes the tabs in either a vertical or hori-
zontal row and clips the tabs if there is not
enough room to display all tabs.

XmNXiTABS_STACKED Adds additional tabs if there is not enough room
to display all the tabs. The row of a selected tab
is moved next to the children of the stack.

XmNXiTABS_STACKED_STATIC Distributes the tabs in either a vertical or hori-
zontal row. Adds additional tabs if there is not
enough room to display all the tabs. The posi-
tions of rows are not changed when tabs are
selected.

XiTAB_ORIENTATION_DYNAMIC The orientation of the tabs is calculated
dynamically based on XmNtabSide resource.

XiTABS_LEFT_TO_RIGHT Text appears at the default rotation, US
English.

XiTABS_RIGHT_TO_LEFT Text appears upside down.

XiTABS_TOP_TO_BOTTOM Rotation of text to the vertical position with
the first character drawn at the lowest y-posi-
tion, and the bottom of the text should face
the lowest x-position.

XiTABS_BOTTOM_TO_TOP Rotation of text to the vertical position with
the first character drawn at the highest y-posi-
tion, and the bottom of the text should face
the highest x-position.
EnhancementPak Programmer’s Reference 127

WIDGET REFERENCE
XiTabStack3

tabstack.fm5 Page 128 Wednesday, January 21, 2009 4:23 PM
XmNtabSelectedCallback
Specifies the list of callbacks to call when a child becomes the selected tab.

XmNselectPixmap
Specifies the pixmap of the selected tab.

XmNtabSide
Specifies the location of the tab with respect to the children of the TabStack widget.
The following values are valid for this resource:

XmNtabStyle
Specifies the appearance of the tabs associated with the children of the TabStack
widget. The following values are valid for this resource:

XmNuniformTabSize
Gives all tabs a uniform major dimension, with the major dimension as width if the
tab orientation is XiTABS_LEFT_TO_RIGHT, or XiTABS_RIGHT_TO_LEFT, or
height if the tab orientation is XiTABS_TOP_TO_BOTTOM, or
XiTABS_BOTTOM_TO_TOP.

XmNuseImageCache
Caches the XImages used for rotating text and pixmaps. This increases performance,
but uses more memory.

XiTABS_ON_TOP Places the tabs above the children.

XiTABS_ON_BOTTOM Places the tabs below the children.

XiTABS_ON_RIGHT Places the tabs to the right of the children.

XiTABS_ON_LEFT Places the tabs to the left of the children.

XiTABS_BEVELED Draws the corners of the tabs as an angled line.

XiTABS_ROUNDED Draws the corners of the tabs as a quarter of a circle.

XiTABS_SQUARED Draws the tabs as rectangles.
128 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Constraint Resources 3

tabstack.fm5 Page 129 Wednesday, January 21, 2009 4:23 PM
Constraint Resources

XmNfreeTabPixmap
Frees the pixmaps assigned to the XmNtabLabelPixmap resources when the
widget is destroyed.

XmNtabAlignment
Specifies the alignment of the tab label. The following values are valid for this
resource:

XmNtabBackground
Specifies the background color for the tab.

Name
Class

Default
Type Access

XmNfreeTabPixmap
XmCFreeTabPixmap

False
Boolean

CSG

XmNtabAlignment
XmCAlignment

XmALIGNMENT_CENTER
unsigned char

CSG

XmNtabBackground
XmCBackground

dynamic
Pixel

CSG

XmNtabBackgroundPixmap
XmCBackgroundPixmap

dynamic
Pixmap

CSG

XmNtabForeground
XmCForeground

dynamic
Pixel

CSG

XmNtabLabelPixmap
XmCTabLabelPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNtabLabelString
XmCTabLabelString

NULL
XmString

CSG

XmNtabPixmapPlacement
XmCTabPixmapPlacement

XiPIXMAP_RIGHT
XiPixmapPlacement

CSG

XmNtabStringDirection
XmCTabStringDirection

XmSTRING_DIRECTION_DEFAULT
unsigned char

CSG

XmALIGNMENT_BEGINNIN
G

Aligns label to left side of the available space.

XmALIGNMENT_CENTER Aligns label in center of the available space.

XmALIGNMENT_END Aligns label to right side of available space.
EnhancementPak Programmer’s Reference 129

WIDGET REFERENCE
XiTabStack3

tabstack.fm5 Page 130 Wednesday, January 21, 2009 4:23 PM
XmNtabBackgroundPixmap
Specifies the background pixmap for the tab.

XmNtabForeground
Specifies the foreground color for the tab.

XmNtabLabelPixmap
Specifies the Pixmap to display in the tab label.

XmNtabLabelString
The XmString to display as the textual portion of the tab label. This is copied when
set on the widget. The value fetched by XtGetValues should not be freed, because it
returns a pointer to the widget’s value. If you want to use the value returned from
XtGetValues, use XmStringCopy to copy the value.

XmNtabPixmapPlacement
Specifies the location of the pixmap with respect to the text in the tab label. The
following values are valid for this resource:

XmNtabStringDirection
Specifies the string direction for the XmString portion of the tab label. The following
values are valid for this resource:

Translations and Actions
TabStack includes the translations from the XmManager.

XiPIXMAP_TOP Places the pixmap above the XmString.

XiPIXMAP_BOTTOM Places the pixmap below the XmString.

XiPIXMAP_RIGHT Places the pixmap to the right of the XmString.

XiPIXMAP_LEFT Places the pixmap to the left of the XmString.

XiPIXMAP_ONLY Displays the pixmap portion only.

XiPIXMAP_NONE Displays the XmString portion only.

XmSTRING_DIRECTION_L_TO_R Left to right.

XmSTRING_DIRECTION_R_TO_L Right to left.
130 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
XiTabStackCallbackStruct Structure 3

tabstack.fm5 Page 131 Wednesday, January 21, 2009 4:23 PM
XiTabStackCallbackStruct Structure
A pointer to the following structure is passed to each callback as client_data:
typedef struct_XiTabStackCallbackStruct{

int reason;
XEvent *event;
Widget selected_child;

} XiTabStackCallbackStruct;

reason Indicates why the callback was invoked. Valid callback reasons include
XiCR_TAB_SELECTED, which indicates that a child became the
selected widget.

event The XEvent that triggered the callback.
selected_child The widget ID of the selected child.

Convenience Routines

XiTabStackGetSelectedTab
Returns the widget ID of the currently selected tab.
Widget XiTabStackGetSelectedTab(Widget tab_stack)

tab_stack The TabStack widget.

XiTabStackSelectTab
Sets the currently displayed child of the TabStack.
void XiTabStackSelectTab(Widget tab, Boolean notify)

tab The child of the TabStack to be selected.
notify When True, XmNtabSelectedCallback will be called as usual in

response to the change of state. Set False to suppress this callback.

XiTabStackXYToWidget

Converts an X/Y pixel coordinate (in the TabStack's window) to the widget ID of
the tab occupying that space.
Widget XiTabStackXYToWidget(Widget tab_stack,

int x,
int y)

tab_stack The TabStack widget.
x, y The pixel coordinates to convert.
EnhancementPak Programmer’s Reference 131

WIDGET REFERENCE
XiToolbar3

toolbar.fm5 Page 132 Wednesday, January 21, 2009 4:23 PM
XiToolbar

The Toolbar widget manages groups of child widgets in a single row or column. Any
type of widget can be a Toolbar item, but the most common type of widget is usually
the XiIconButton. You can group a set of child widgets by setting the
XmNtoolbarGroup constraint resource on each item. You can specify the order of
items within a group by setting the XmNgroupPosition constraint resource on each
item.

Toolbar Popup Labels
The Toolbar widget supports the display of a popup label over each child widget. The
text in this label is specified in the XmNentryLabelString constraint resource.
When the pointer first enters a Toolbar item, the popup label is shown after a delay
specified in the XmNpopupDelay resource. During subsequent movement of the
pointer within the Toolbar widget, popup labels are displayed with no delay. If the
pointer leaves the Toolbar widget, the delay again becomes active.

Two callback lists, XmNenterChildCallback and XmNleaveChildCallback, are
available for programmers who wish to be notified when the pointer enters and leaves
Toolbar children. Figure 24 shows a typical Toolbar:

Figure 24. Toolbar Widget

UNIX Application Header File Xi/Toolbar.h

UNIX Class Header File Xi/ToolbarP.h

Class Name XiToolbar

Class Pointer xiToolbarWidgetClass

Superclass Name XmManager

Creation Routine XiCreateToolbar
132 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Specifying Groups and Positions 3

toolbar.fm5 Page 133 Wednesday, January 21, 2009 4:23 PM
Specifying Groups and Positions
Numbering of groups begins at 0 (the default), with no upper limit. Group numbers
can be skipped; no extra space is left for empty groups. Numbering of items within
groups begins at 0, with no upper limit. Position numbers can be skipped; empty
space is left for each empty position. If you assign a position already filled with an
item, Toolbar positions the item at the next unfilled position.

Classes and Inherited Resources
Toolbar inherits behavior and resources from Core, Composite, Constraint, and
XmManager. Refer to “Appendix” on page 153 for a list of resources inherited
from each Motif superclass. Refer to the OSF/Motif Programmer’s Reference for a
complete description of each resource.

Resources

Name
Class

Default
Type Access

XmNenterChildCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNgroupSpacing
XmCGroupSpacing

0
Dimension

CSG

XmNhorizontalMargin
XmCMargin

0
Dimension

CSG

XmNleaveChildCallback
XmCCallback

NULL
XtCallbackList

CSG

XmNorientation
XmCOrientation

XmHORIZONTAL
unsigned char

CSG

XmNpopupBackground
XmCBackground

dynamic
Pixel

CSG

XmNpopupDelay
XmCPopupDelay

500
Cardinal

CSG

XmNpopupFontList
XmCFontList

dynamic
XmFontList

CSG

XmNpopupForeground
XmCForeground

dynamic
Pixel

CSG

XmNpopupLabelEnabled
XmCPopupLabelEnabled

False
Boolean

CSG

XmNverticalMargin
XmCMargin

0
Dimension

CSG
EnhancementPak Programmer’s Reference 133

WIDGET REFERENCE
XiToolbar3

toolbar.fm5 Page 134 Wednesday, January 21, 2009 4:23 PM
XmNenterChildCallback
Specifies the list of callbacks called when the pointer enters a Toolbar item. The
same callback is set on all the Toolbar items, so the programmer must verify the item
of interest, using the XiToolbarCallbackStruct that is passed as call_data.

XmNgroupSpacing
Specifies the number of pixels between groups. Spacing is vertical if
XmNorientation is XmVERTICAL, and horizontal if XmNorientation is
XmHORIZONTAL.

XmNhorizontalMargin
Specifies the horizontal spacing between the Toolbar items and the edge of the
Toolbar.

XmNleaveChildCallback
Specifies the list of callbacks called when the pointer leaves a Toolbar item. The
same callback is set on all the Toolbar items, so the programmer must verify the item
of interest, using the XiToolbarCallbackStruct that is passed as call_data.

XmNorientation
Specifies whether children are to be placed in a row or a column. The orientation can
be either XmHORIZONTAL or XmVERTICAL. If the orientation is
XmHORIZONTAL, the children are placed in a row with the major dimension being
width and the minor dimension being height. If the value is XmVERTICAL, the
children are placed in a column with the major dimension being height and the minor
dimension being width. The default value is XmHORIZONTAL.

XmNpopupBackground
Specifies the background color for the popup label.

XmNpopupDelay
Specifies the amount of time, in msec, the Toolbar delays displaying the popup label
when the pointer first enters a Toolbar item. If the pointer leaves the item before that
amount of time, the label does not pop up.

XmNpopupFontList
Specifies the font used for the all text in the popup labels.

XmNpopupForeground
Specifies the foreground color for the popup label.

XmNpopupLabelEnabled
Specifies whether the Toolbar displays popup labels for each item.
134 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Constraint Resources 3

toolbar.fm5 Page 135 Wednesday, January 21, 2009 4:23 PM
XmNverticalMargin
Specifies the vertical spacing between the Toolbar items and the edge of the Toolbar.

Constraint Resources

XmNentryLabelString
Specifies the label displayed in the popup label for this item.

XmNgroupPosition
Specifies the position within the group for this item.

XmNtoolbarGroup
Specifies the group within the Toolbar for this item.

XmNtoolbarEntryData
Allows the application to attach any necessary application-specific data to the
widget. This resource is not used internally by EnhancementPak.

Name
Class

Default
Type Access

XmNentryLabelString
XmCEntryLabelString

NULL
XmString

CSG

XmNgroupPosition
XmCGroupPosition

0
unsigned char

CSG

XmNtoolbarGroup
XmCToolbarGroup

0
unsigned char

CSG

XmNtoolbarEntryData
XmCToolbarEntryData

NULL
XtPointer

CSG
EnhancementPak Programmer’s Reference 135

WIDGET REFERENCE
XiToolbar3

toolbar.fm5 Page 136 Wednesday, January 21, 2009 4:23 PM
XiToolbarCallbackStruct Structure
A pointer to the following structure is passed to each callback as client_data.
typedef struct _XiToolbarCallbackStruct {

int reason;
XEvent *event;
Widget toolbar_item;
unsigned char position;
unsigned char group;

}XiToolbarCallbackStruct, *XiToolbarCallbackPtr;

reason Either XiCR_ENTER_CHILD or
XiCR_LEAVE_CHILD depending on which
callback is invoked.

event XEvent that caused the callback.

toolbar_item Relevant child of the Toolbar.

position Position within the group for this item.

group Group within the Toolbar for this item.

Convenience Routines

XiToolbarMapGroup()
Maps all the widgets of a particular group.
void XiToolbarMapGroup(Widget tbar,

unsigned char group_num)

tbar Parent of the Toolbar widget.

group_num Number of the group to map.

XiToolbarUnmapGroup()

Unmaps all the widgets of a particular group.
void XiToolbarUnmapGroup(Widget tbar,

unsigned char group_num)

tbar Parent of the Toolbar widget.

group_num Number of the group to unmap.
136 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Convenience Routines 3

toolbar.fm5 Page 137 Wednesday, January 21, 2009 4:23 PM
XiToolbarManageGroup()
Manages all the widgets of a particular group.
void XiToolbarManageGroup(Widget tbar,

unsigned char group_num)

tbar Parent of the Toolbar widget.

group_num Number of the group to manage.

XiToolbarUnmanageGroup()
Unmanages all the widgets of a particular group.

void XiToolbarUnmanageGroup(Widget tbar,
 unsigned char group_num)

tbar Parent of the Toolbar widget.

group_num Number of the group to unmanage.

XiToolbarDestroyGroup()
Destroys all the widgets of a particular group.
void XiToolbarDestroyGroup(Widget tbar,

unsigned char group_num)

tbar Parent of the Toolbar widget.

group_num Number of the group to destroy.
EnhancementPak Programmer’s Reference 137

WIDGET REFERENCE
XiToolTip3

tooltip.fm5 Page 138 Wednesday, January 21, 2009 4:24 PM
XiToolTip

The ToolTip is a library of functions that provides a generalized interface to add
time-delayed, mouse activated "ToolTip" functionality to any X Toolkit widget. For
any widget so enabled, the ToolTip library creates a "virtual XmLabel" to serve as
the popped up tip. This "virtual widget" appears to the Xt resource manager to be a
child widget for the real widget on top of which it appears. Its resources can be set
in app-default files, or programmatically through the XiToolTipSetValues/
XiToolTipGetValues functions. The widget's name appears as "toolTip" in
app-default processing, with a class name of XiToolTip. Thus, a possible app-default
configuration of the ToolTips for a toolbar might look like:

MyApp*toolBar*fileOpenButton.toolTip.labelString: Open Document

MyApp*toolBar*fileCloseButton.toolTip.labelString: Close Document

MyApp*toolBar*fileOpenButton.toolTip.labelString: Make New Document

Figure 25 shows a ToolTip widget used to enhance a typical data entry screen:

Figure 25. ToolTip Widget in a Data Entry Screen

UNIX Application Header File Xi/ToolTip.h

Class Name XiToolTip
138 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

tooltip.fm5 Page 139 Wednesday, January 21, 2009 4:24 PM
Resources

XmNtipEnabled
Controls whether or not the tip appears when the pointer enters the widget.

XmNtipXOffset
XmNtipYOffset
Specifies the offset, in pixels, from the current mouse position to the location where
the ToolTip shell appears.

Note: Because of the implementation of the ToolTip mechanism, XmNtipXOffset
and XmNtipYOffset are always in pixels, regardless of the XmNunitType of the
interface.

Note: These resources cannot be set using XtSetValues() and related functions. You
must use XiToolTipSetValues and XiToolTipGetValues (which provide a
functionally equivalent interface) to set and retrieve these values. Processing in the
app-defaults file, however, works as for normal widgets.

Name
Class

Default
Type Access

XmNtipEnabled
XmCtipEnabled

Boolean
False

CSG

 XmNtipXOffset
XmCTipXOffset

Dimension
10

CSG

XmNtipYOffset
XmCTipYOffset

Dimension
10

CSG

XmNunpostDelay
XmCUnpostDelay

0
Cardinal

CSG
EnhancementPak Programmer’s Reference 139

WIDGET REFERENCE
XiToolTip3

tooltip.fm5 Page 140 Wednesday, January 21, 2009 4:24 PM
XmNunpostDelay
Specifies the amount of time, in milliseconds, to wait before unposting the Tip. A
value of 0 indicates that the Tip should never be unposted.

The following resources defined in XmLabel can also be set on ToolTip widgets
(behave in the same as in the XmLabel widget class):

Name
Class

Default
Type Access

XmNbackground
XmCBackground

#dada80
Pixel

CSG

XmNborderColor
XmCBorderColor

dynamic
Pixel

CSG

XmNborderWidth
XmCBorderWidth

1
Dimension

CSG

XmNfontList
XmCFontList

dynamic
XmFontList

CSG

XmNforeground
XmCForeground

dynamic
Pixel

CSG

XmNlabelPixmap
XmCLabelPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNlabelString
XmCLabelString

dynamic
XmString

CSG

XmNlabelType
XmCLabelType

XmSTRING
unsigned char

CSG

XmNmarginHeight
XmCMarginHeight

2
Dimension

CSG

XmNmarginWidth
XmCMarginWidth

2
Dimension

CSG
140 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Convenience Routines 3

tooltip.fm5 Page 141 Wednesday, January 21, 2009 4:24 PM
Convenience Routines
The ToolTip library provides a complete set of API routines for creating ToolTips for
widgets and for manipulating those ToolTips. There are several functions that can
always be used for the ToolTips—functions such as XiToolTipEnable() and
XiToolTipDisable(), which determine whether the ToolTip for a widget will be
displayed, and XiToolTipSetValues() and XiToolTipGetValues(), which set and
retrieve resource values on the ToolTips.

Creating
ToolTips

ToolTips for widgets can be created in two ways.

• The function XiToolTipRegister() can be used at any time to create a ToolTip
for a particular widget that has already been created.

• The ToolTip library can be set up to automatically create and register ToolTips
for widgets that are newly created. After an initial call to XiToolTipInitialize(),
newly-created widgets are automatically created with ToolTip functionality.
Thereafter, this automatic addition of ToolTip functionality can be temporarily
halted by using XiToolTipSuspend() and then restored with
XiToolTipResume().

Regardless of which functions are used to create the ToolTip initially,
XiToolTipDestroyAll() removes all ToolTip functionality from widgets in use.

XiToolTipAddCallback()
The ToolTip library provides an XmNtipCallback list which, for convenience, is used
in the same way as normal Xt callbacks. Note that this resource is not a conventional
XtCallbackList and thus cannot be set manually using XiToolTipSetValues, nor can it
be set using XtAddCallback() (which would try to add the callback to the real widget,
not the callback). The XmNtipCallback is called immediately before the ToolTip is
popped up.
void XiToolTipAddCallback(Widget w,

String name,
XtCallbackProc f,
XtPointer client_data)

w The widget augmented with ToolTip functionality.

name The name of the callback procedure.

f The callback procedure to be added.

client_data The data passed to the added procedure when it is
invoked.
EnhancementPak Programmer’s Reference 141

WIDGET REFERENCE
XiToolTip3

tooltip.fm5 Page 142 Wednesday, January 21, 2009 4:24 PM
XiToolTipDestroyAll()
Disables all current tooltips, deletes all internal data regarding them, and nullifies the
effect of XiToolTipInitialize(). All existing ToolTip information is lost, and widgets
created after a call to XiToolTipDestroyAll do not have ToolTip functionality added.
Under normal circumstances, there is no need to call XiToolTipDestroyAll before
application termination; it is provided for applications that need full dynamic control
over the ToolTip environment.
 void XiToolTipDestroyAll()

XiToolTipDisable()
Controls the tipEnabled status of widget w. It has the same effect as setting
XmNtipEnabled to True using XiToolTipSetValues().
void XiToolTipDisable(Widget w)

w The widget augmented with ToolTip functionality

XiToolTipEnable()
Controls the tipEnabled status of widget w. It has the same effect as setting
XmNtipEnabled to False using XiToolTipSetValues().

void XiToolTipEnable(Widget w)

w The widget augmented with ToolTip functionality.

XiToolTipGetValues()
XiToolTipGetValues behaves identically to XtGetValues except that it is used to set the
ToolTip resources. Only resources set for the Widget's registered ToolTip are returned.
Resources set on the widget itself will not match the query.
 void XiToolTipGetValues(Widget w,

ArgList args,
Cardinal nargs)

 w The widget augmented with ToolTip functionality.

args The argument list.

nargs The number of attribute/value pairs in the argument
list.
142 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Convenience Routines 3

tooltip.fm5 Page 143 Wednesday, January 21, 2009 4:24 PM
XiToolTipHideTip()
If a ToolTip widget is currently showing for widget w, XiToolTipHideTip pops it
down unconditionally. If no ToolTip is showing or no ToolTip is registered,
XiToolTipHideTip has no effect.
void XiToolTipHideTip(Widget w)

w The widget augmented with ToolTip functionality

XiToolTipInitialize()
Initializes the global ToolTip environment. After this function is called, all new widgets created
inherit ToolTip functionality by default, just as if XiToolTipRegister() had been called for
them. Typically, this function would be called immediately following XtAppInitialize()—
before any widgets are created.

Note: By default the ToolTips are created disabled. Automatically created ToolTips
must be enabled either by setting the XmNtipEnabled resource in the app-defaults
file or by an explicit call to XiToolTipEnable(). A useful way to do this through the
app-default file might be as follows:
 MyApp*toolBar.?.toolTip.tipEnabled: True

Also note that while it is the simplest and most accessible method for using ICS
ToolTips, calling XiToolTipInitialize() adds a small space and performance overhead
to the creation of new widgets. While it has been our experience that such overhead is
negligible even for very large applications, applications that create widgets from
within performance-critical code might better use XiToolTipRegister() explicitly for
the widgets that need ToolTips.
void XiToolTipInitialize()
EnhancementPak Programmer’s Reference 143

WIDGET REFERENCE
XiToolTip3

tooltip.fm5 Page 144 Wednesday, January 21, 2009 4:24 PM
XiToolTipRegister()
Registers widget w for ToolTip functionality, setting ToolTip arguments on it.

Note: This function merely adds the ToolTip behavior, it does not enable the
ToolTip by default. That must be done through the tipEnabled resource in the
app-defaults or XiToolTipSetValues, or by using XiToolTipEnable().

void XiToolTipRegister(Widget w, ArgList args, Cardinal nargs)

w The widget augmented with ToolTip functionality.

args The argument list.

nargs The number of attribute/value pairs in the argument
list.

XiToolTipRemoveAllCallbacks()
Removes all registered ToolTip callbacks on widget w.
 void XiToolTipRemoveAllCallbacks(Widget w, String name)

w The widget augmented with ToolTip functionality.

name The name of the callback procedure.

XiToolTipRemoveCallback()
Removes a callback added using XiToolTipAddCallback. As with
XtRemoveCallback, both the callback procedure f and the closure data
client_data must match.

void XiToolTipRemoveCallback(Widget w,
String name,
XtCallbackProc f,
XtPointer client_data)

w The widget augmented with ToolTip functionality.

name The name of the callback procedure.

f The callback procedure to be removed.

client_data The data passed to the removed procedure.
144 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Convenience Routines 3

tooltip.fm5 Page 145 Wednesday, January 21, 2009 4:24 PM
XiToolTipResume()
XiToolTipResume() can be called after XiToolTipInitialize() and XiToolTipSuspend() to
resume adding ToolTips for widgets that are newly created. Use of this function, along with
XiToolTipSuspend(), lets the application programmer choose exactly which widgets are
created with the ToolTips.
void XiToolTipResume()

XiToolTipSetValues()
XiToolTipSetValues behaves identically to XtSetValues except that it is used to set
the ToolTip resources. All ToolTip resources (both ToolTip-specific and the
XmLabel resources for the ToolTip widget) must be set using this function, and only
resources specifiable for the ToolTip are affected.

 void XiToolTipSetValues(Widget w,
ArgList args,
Cardinal nargs)

w The widget augmented with ToolTip functionality.

args The argument list.

nargs The number of attribute/value pairs in the argument list.

XiToolTipShowTip()
Pops up the ToolTip associated with the widget w. If another ToolTip for a widget
within the same top-level shell is already showing, it is first popped down (only one
ToolTip shell widget is allowed per top-level shell in the application). If the widget
w has not been registered with the ToolTip system through either
XiToolTipInitialize() or XiToolTipRegister(), this function has no effect. Note that
the ToolTip shell pops up irrespective of the value of the tipEnabled resource.
XmNtipEnabled controls only the automatic (that is, mouse movement initiated)
popup of ToolTips.
void XiToolTipShowTip(Widget w)

w The widget augmented with ToolTip functionality.

XiToolTipSuspend()
XiToolTipSuspend() can be called after XiToolTipInitialize() to temporarily stop
adding ToolTips for widgets that are newly created. Use of this function, along with
XiToolTipResume(), lets the application programmer choose exactly which widgets
are created with the ToolTips.

void XiToolTipSuspend()
EnhancementPak Programmer’s Reference 145

WIDGET REFERENCE
XiTree3

tree.fm5 Page 146 Wednesday, January 21, 2009 4:25 PM
XiTree

The Tree widget is a container that shows the relationship of its children in a tree-like
format. Each child of the Tree widget is a node in the Tree. The hierarchy of nodes
is created by specifying the Tree parent of each node as a constraint resource. If a
node’s parent is NULL, it is assumed to be a root of the Tree. Although each widget
can have only one parent, the Tree widget supports adding more than one root node
to a single Tree.

Note: The Tree widget assumes that it will be totally responsible for mapping and
unmapping its children. Therefore no child of this widget should ever modify its
XmNmappedWhenManaged resource. If a child does modify this resource, the
behavior is undefined.

Refer to “XiHierarchy” on page 66 for more information, including the convenience
routines for XiHierarchy which can be used for the XiTree.

Figures 26 and 27 show two different forms of Tree widget:

Figure 26. Tree Widget with XmNconnectStyle Set to XiTreeDirect and XmNorien-
tation Set to XmHORIZONTAL

UNIX Application Header File Xi/Tree.h

UNIX Class Header File Xi/TreeP.h

Class Name XiTree

Class Pointer xiTreeWidgetClass

Superclass Name XiHierarchy

Creation Routine XiCreateTree
146 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
User Interaction 3

tree.fm5 Page 147 Wednesday, January 21, 2009 4:25 PM
Figure 27. Tree Widget with XmNconnectStyle Set to XiTreeLadder and XmNorien-
tation Set to XmVERTICAL

User Interaction
Each node in the Tree can be in four states: XiOpen, XiClosed, XiAlwaysOpen, or
XiHidden. The state of a node changes how it appears to the user and what actions
are available to the user.

XiOpen
This node has an open folder shown to its left; clicking on it closes the node. When
a node is open, all of its children are visible.

XiClosed
This node has a closed folder shown to its left; clicking on it opens the node. When
a node is closed, none of its children are visible.

XiAlwaysOpen
This node has no folder button associated with it. All of its children are visible.

Note: To maintain consistency of the user interface, it is best to use the node state
XiAlwaysOpen for nodes with no children. This way the user will only see a folder
button next to a node that has children to display. A folder button associated with a
node that has no children has no defined behavior.
EnhancementPak Programmer’s Reference 147

WIDGET REFERENCE
XiTree3

tree.fm5 Page 148 Wednesday, January 21, 2009 4:25 PM
XiHidden
This node is not visible. All of its children appear and behave exactly as if they were
children of the node’s parent.

Geometry Management
The layout is performed by assigning each node a box that is just large enough to
contain itself and all of its children. A recursive layout then places the node and the
children. For an XmHORIZONTAL orientation, for example, the layout centers each
node vertically in its box and at the extreme left horizontally. The children’s boxes
are placed to the right of the node separated by the XmNhorizontalNodeSpace from
their parent, stacked above each other, and separated by XmNverticalNodeSpace.
This process is repeated recursively for each child in the Tree.

The preferred size of the entire Tree will be just large enough to contain all nodes in
the hierarchy. As the state of nodes change, the Tree will attempt to resize itself to
contain its current configuration. If the Tree is forced larger than the desired size, the
nodes will be centered vertically and flush to the left edge of the Tree widget (for a
Tree with XmHORIZONTAL orientation). If the Tree is forced smaller, some nodes
may be moved or drawn outside the end of the Tree. For this reason it is usually
advisable to put the Tree into a Scrolled Window or Porthole widget.

Classes and Inherited Resources
Tree inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XiHierarchy.

Refer to “Appendix” on page 153 for a list of resources inherited from each Motif
superclass. For a complete description of each resource, refer to the OSF/Motif
Programmer’s Reference.
148 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Resources 3

tree.fm5 Page 149 Wednesday, January 21, 2009 4:25 PM
Resources

XmNcompressStyle
The XiTree can "compress" its children by staggering their placements when laying
them out.

• When set to XiTreeCompressAll, all children off all nodes are alternately
offset.

• When set to XiTreeCompressLeaves, only the leaves (nodes with no children)
are treated in this manner.

• When set to XiTreeCompressNone, no nodes are treated in this manner.

This resource is valid only when XmNorientation is XmVERTICAL.

XmNconnectStyle
Specifies the style of connection lines, either XiTreeDirect or XiTreeLadder.

XmNhorizontalDelta
XmNverticalDelta
Specifies the vertical and horizontal offsets with which to alternate children when
XmNcompressStyle is set to either XiTreeCompressLeaves or
XiTreeCompressAll.

This resource is valid only when XmNorientation is XmVERTICAL.

Name
Class

Default
Type Access

XmNcompressStyle
XmCCompressStyle

XiTreeCompressLeaves
XiTreeCompressStyle

CSG

XmNconnectStyle
XmCConnectStyle

XiTreeDirect
XiTreeConnectStyle

CSG

XmNhorizontalDelta
XmCHorizontalDelta

25
Dimension

CSG

XmNhorizontalNodeSpace
XmCDimension

dynamic
Dimension

CSG

XmNorientation
XmCOrientation

XmHORIZONTAL
unsigned char

CSG

XmNverticalDelta
XmCVerticalDelta

30
Dimension

CSG

XmNverticalNodeSpace
XmCDimension

dynamic
Dimension

CSG
EnhancementPak Programmer’s Reference 149

WIDGET REFERENCE
XiTree3

tree.fm5 Page 150 Wednesday, January 21, 2009 4:25 PM
XmNhorizontalNodeSpace
XmNverticalNodeSpace
Specifies the number of pixels between each node in the Tree and its parent. The
default is 20 for the direction of orientation and 2 otherwise.

XmNorientation
Specifies the orientation of the XiTree widget. When set to XmVERTICAL, the tree
is displayed as a vertical tree with the root node at the top center of the widget.

Constraint Resources

XmNlineBackgroundColor
Specifies the background color of the line connecting a node to its parent. The
default is the XmNbackground color of the Tree widget. This resource is effective
only when the value of XmNlineStyle is LineDoubleDash.

XmNlineColor
Specifies the color of the line connecting a node to its parent. The default value for
this resource is the XmNforeground color of the Tree widget.

Name
Class

Default
Type Access

XmNlineBackgroundColor
XmCBackground

dynamic
Pixel

CSG

XmNlineColor
XmCForeground

dynamic
Pixel

CSG

XmNlineStyle
XmCLineStyle

LineSolid
int

CSG

XmNlineWidth
XmCLineWidth

0
Dimension

CSG

XmNopenClosePadding
XmCOpenClosePadding

0
int

CSG
150 EnhancementPak Programmer’s Reference

WIDGET REFERENCE
Constraint Resources 3

tree.fm5 Page 151 Wednesday, January 21, 2009 4:25 PM
XmNlineStyle
Specifies the style used to draw lines to the particular node. The valid values are
those that are valid for the "line_style" element in a GC (graphics
context)—LineSolid, LineOnOffDash, and LineDoubleDash. A string converter has
been registered for quoted string equivalents of those values.

XmNlineWidth
Specifies the width of the connection line between a node and its parent.

XmNopenClosePadding
Specifies the number of pixels between the folder button and the node it is
associated with.
EnhancementPak Programmer’s Reference 151

WIDGET REFERENCE
XiTree3

tree.fm5 Page 152 Wednesday, January 21, 2009 4:25 PM
152 EnhancementPak Programmer’s Reference

appendix.fm5 Page 153 Wednesday, January 21, 2009 4:26 PM
Appendix A
Classes and Inherited Resources

Many of the EnhancementPak widgets inherit behavior and resources from Core,
Composite, Constraint, XmBulletinBoard, XmFrame, XmManager,
XmPrimitive, and XmTextField.

This appendix lists the resources inherited from each Motif superclas. For a complete
description of each resource, refer to the OSF/Motif Programmer’s Reference.

Core Resources

CORE RESOURCE SET

Name
Class

Default
Type Access

XmNaccelerators
XmCAccelerators

dynamic
XtAccelerators

N/A

XmNancestorSensitive
XmCSensitive

dynamic
Boolean

G

XmNbackground
XmCBackground

dynamic
Pixel

CSG

XmNbackgroundPixmap
XmCPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNborderColor
XmCBorderColor

XtDefaultForeground
Pixel

CSG

XmNborderPixmap
XmCPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNborderWidth
XmCBorderWidth

1
Dimension

CSG

XmNcolormap
XmCColormap

dynamic
Colormap

CG

XmNdepth
XmCDepth

dynamic
int

CG

XmNdestroyCallback
XmCCallback

NULL
XtCallbackList

C

EnhancementPak Programmer’s Reference 153

APPENDIX
Core ResourcesA

appendix.fm5 Page 154 Wednesday, January 21, 2009 4:26 PM
XmNheight
XmCHeight

dynamic
Dimension

CSG

XmNinitialResourcesPersistent
XmCInitialResourcesPersistent

True
Boolean

C

XmNmappedWhenManaged
XmCMappedWhenManaged

True
Boolean

CSG

XmNscreen
XmCScreen

dynamic
Screen*

CG

XmNsensitive
XmCSensitive

True
Boolean

CSG

XmNtranslations
XmCTranslations

dynamic
XtTranslations

CSG

XmNwidth
XmCWidth

dynamic
Dimension

CSG

XmNx
XmCPosition

0
Position

CSG

XmNy
XmCPosition

0
Position

CSG

CORE RESOURCE SET (continued)

Name
Class

Default
Type Access
154 EnhancementPak Programmer’s Reference

APPENDIX
Composite Resources A

appendix.fm5 Page 155 Wednesday, January 21, 2009 4:26 PM
Composite Resources

XmBulletinBoard Resources

COMPOSITE RESOURCE SET

Name
Class

Default
Type Access

XmNchildren
XmCReadOnly

NULL
WidgetList

G

XmNinsertPosition
XmCInsertPosition

NULL
XtOrderProc

CSG

XmNnumChildren
XmCReadOnly

0
Cardinal

G

XMBULLETINBOARD RESOURCE SET

Name
Class

Default
Type Access

XmNallowOverlap
XmCAllowOverlap

True
Boolean

CSG

XmNautoUnmanage
XmCAutoUnmanage

False
Boolean

CG

XmNbuttonFontList
XmCButtonFontList

dynamic
XmFontList

CSG

XmNcancelButton
XmCWidget

NULL
Widget

SG

XmNdefaultButton
XmCWidget

NULL
Widget

SG

XmNdefaultPosition
XmCDefaultPosition

True
Boolean

CSG

XmNdialogStyle
XmCDialogStyle

dynamic
unsigned char

CSG

XmNdialogTitle
XmCDialogTitle

NULL
XmString

CSG

XmNfocusCallback
XmCCallback

NULL
XtCallbackList

C

EnhancementPak Programmer’s Reference 155

APPENDIX
XmBulletinBoard ResourcesA

appendix.fm5 Page 156 Wednesday, January 21, 2009 4:26 PM
XmNlabelFontList
XmCLabelFontList

dynamic
XmFontList

CSG

XmNmapCallback
XmCCallback

NULL
XtCallbackList

C

XmNmarginHeight
XmCMarginHeight

10
Dimension

CSG

XmNmarginWidth
XmCMarginWidth

10
Dimension

CSG

XmNnoResize
XmCNoResize

False
Boolean

CSG

XmNresizePolicy
XmCResizePolicy

XmRESIZE_ANY
unsigned char

CSG

XmNshadowType
XmCShadowType

XmSHADOW_OUT
unsigned char

N/A

XmNtextFontList
XmCTextFontList

dynamic
XmFontList

CSG

XmNtextTranslations
XmCTextTranslations

NULL
XtTranslations

C

XmNunmapCallback
XmCCallback

NULL
XtCallbackList

C

XMBULLETINBOARD RESOURCE SET(continued)

Name
Class

Default
Type Access
156 EnhancementPak Programmer’s Reference

APPENDIX
XmFrame Resources A

appendix.fm5 Page 157 Wednesday, January 21, 2009 4:26 PM
XmFrame Resources

XmManager Resources

XMFRAME RESOURCE SET

Name
Class

Default
Type Access

XmNmarginWidth
XmCMarginWidth

0
Dimension

CSG

XmNmarginHeight
XmCMarginHeight

0
Dimension

CSG

XmNshadowType
XmCShadowType

dynamic
unsigned char

CSG

XMMANAGER RESOURCE SET

Name
Class

Default
Type Access

XmNbottomShadowColor
XmCBottomShadowColor

dynamic
Pixel

CSG

XmNbottomShadowPixmap
XmCBottomShadowPixmap

XmUNSPECIFIED_PIXMAP
Pixmap

CSG

XmNforeground
XmCForeground

dynamic
Pixel

CSG

XmNhelpCallback
XmCCallback

NULL
XtCallbackList

C

XmNhighlightColor
XmCHighlightColor

dynamic
Pixmap

CSG

XmNhighlightPixmap
XmCHighLightPixmap

dynamic
Pixmap

CSG

XmNinitialFocus
XmCInitialFocus

NULL
Widget

CSG

XmNnavigationType
XmCNavigationType

XmTAB_GROUP
XmNavigationType

CSG

XmNshadowThickness
XmCShadowThickness

0
Dimension

CSG
EnhancementPak Programmer’s Reference 157

APPENDIX
XmManager ResourcesA

appendix.fm5 Page 158 Wednesday, January 21, 2009 4:26 PM
XmNstringDirection
XmCStringDirection

dynamic
XmStringDirection

CG

XmNtopShadowColor
XmCTopShadowColor

dynamic
Pixel

CSG

XmNtopShadowPixmap
XmCTopShadowPixmap

dynamic
Pixmap

CSG

XmNtraversalOn
XmCTraversalOn

True
Boolean

CSG

XmNunitType
XmCUnitType

dynamic
unsigned Char

CSG

XmNuserData
XmCUserData

NULL
XtPointer

CSG

XMMANAGER RESOURCE SET (continued)

Name
Class

Default
Type Access
158 EnhancementPak Programmer’s Reference

APPENDIX
XmPrimitive Resources A

appendix.fm5 Page 159 Wednesday, January 21, 2009 4:26 PM
XmPrimitive Resources

XmPrimitive Resource Set

Name
Class

Default
Type Access

XmNbottomShadowColor
XmCBottomShadowColor

dynamic
Pixel

CSG

XmNbottomShadowPixmap
XmCBottomShadowPixmap

dynamic
Pixmap

CSG

XmNforeground
XmCForeground

dynamic
Pixel

CSG

XmNhelpCallback
XmCCallback

NULL
XtCallbackList

C

XmNhighlightColor
XmCHighlightColor

dynamic
Pixel

CSG

XmNhighlightOnEnter
XmCHighlightOn Enter

False
Boolean

CSG

XmNhighlightPixmap
XmCHighlightPixmap

dynamic
Pixmap

CSG

XmNhighlightThickness
XmCHighlightThickness

2
Dimension

CSG

XmNinitialFocus
XmCInitialFocus

NULL
Widget

CSG

XmNnavigationType
XmCNavigationType

XmNONE
XmNavigation

CG

XmNshadowThickness
XmCShadowThickness

2
Dimension

CSG

XmNtopShadowColor
XmCTopShadowColor

dynamic
Pixel

CSG

XmNtopShadowPixmap
XmCTopShadowPixmap

dynamic
Pixmap

CSG

XmNtraversalOn
XmCTraversalOn

True
Boolean

CSG
EnhancementPak Programmer’s Reference 159

APPENDIX
XmTextField ResourcesA

appendix.fm5 Page 160 Wednesday, January 21, 2009 4:26 PM
XmTextField Resources

XMTEXTFIELD RESOURCE SET

 Name
Class

Default
Type Access

XmNXmNactivateCallback
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNblinkRate
XmCXmCBlinkRate

500
int

CSG

XmNXmNcolumns
XmCXmCColumns

dynamic
short

CSG

XmNXmNcursorPosition
XmCXmCCursorPosition

0
XmTextPosition

CSG

XmNXmNcursorPositionVisible
XmCXmCCursorPositionVisible

True
Boolean

CSG

XmNXmNeditable
XmCXmCEditable

True
Boolean

CSG

XmNXmNfocusCallback
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNfontList
XmCXmCFontList

dynamic
XmFontList

CSG

XmNXmNgainPrimaryCallback
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNlosePrimaryCallback
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNlosingFocusCallback
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNmarginHeight
XmCXmCMarginHeight

5
Dimension

CSG

XmNXmNmarginWidth
XmCXmCMarginWidth

5
Dimension

CSG

XmNXmNmaxLength
XmCXmCMaxLength

largest integer
int

CSG

XmNXmNmodifyVerifyCallback
XmCXmCCallback

NULL
XtCallbackList

C

160 EnhancementPak Programmer’s Reference

APPENDIX
XmTextField Resources A

appendix.fm5 Page 161 Wednesday, January 21, 2009 4:26 PM
XmNXmNmodifyVerifyCallbackWcs
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNmotionVerifyCallback
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNpendingDelete
XmCXmCPendingDelete

True
Boolean

CSG

XmNXmNresizeWidth
XmCXmCResizeWidth

False
Boolean

CSG

XmNXmNselectionArray
XmCXmCSelectionArray

default array
XtPointer

CSG

XmNXmNselectionArrayCount
XmCXmCSelectionArrayCount

3
int

CSG

XmNXmNselectThreshold
XmCXmCSelectThreshold

5
int

CSG

XmNXmNvalue
XmCXmCValue

""
String

CSG

XmNXmNvalueChangedCallback
XmCXmCCallback

NULL
XtCallbackList

C

XmNXmNvalueWcs
XmCXmCValueWcs

(wchar_t *)""
wchar_t *

CSG

XmNXmNverifyBell
XmCXmCVerifyBell

dynamic
Boolean

CSG

XMTEXTFIELD RESOURCE SET
(continued)

 Name
Class

Default
Type Access
EnhancementPak Programmer’s Reference 161

APPENDIX
XmTextField ResourcesA

appendix.fm5 Page 162 Wednesday, January 21, 2009 4:26 PM
162 EnhancementPak Programmer’s Reference

Index

epak30IX.fm Page 163 Wednesday, January 21, 2009 4:27 PM
A
Actions

Internationalized extended list widget 51
Actions, button box widget 21
Always open node

outline widget 85
tree widget 147

B
Building applications

UNIX 13
Button box widget

actions 21
classes 19, 27, 40
inherited resources 19, 27, 40
resources 19
translations 21

ButtonDown(type) 51
ButtonUpOrLeave() 51
C
call_data 9
Callback routines

combination box widget 39
hierarchy widget 70
icon button widget 82
internationalized extended list widget 54
panner widget 101
porthole widget 118
stretch widget 122
tab stack widget 131

canvas 95
Class methods, hierarchy widget 71

Classes
button box widget 19, 27, 40
color selector widget 23
combination box widget 34
font selector widget 60
hierarchy widget 67
icon box widget 74
icon button widget 77, 78
internationalized extended list widget 46
outline widget 86
paned widget 90
panner widget 97
pixmap editor widget 106
porthole widget 117
stretch widget 121
tab stack widget 125
toolbar widget 133
tree widget 148, 149

classes
icon box widget 75

Closed node
outline widget 84
tree widget 147

Color selector widget 22
classes 23
compound widget hierarchy 25
inherited resources 23
resources 23

Colors, pixmap editor widget 104
Combination box widget 31

callback routines 39
classes 34
compound widget hierarchy 38
inherited resources 34
resources 34
EnhancementPak Programmer’s Reference 163

Index

epak30IX.fm Page 164 Wednesday, January 21, 2009 4:27 PM
Composite resources 155
Compound widget hierarchy

color selector 25
combination box 38
font selector widget 64
internationalized extended list 52
pixmap editor widget 111

Compound widgets
constraint resources removed at creation 12
resources removed at creation 12

Compound widgets, description 12
Constraint resources

hierarchy widget 69
icon box widget 76
paned widget 92
removed at creation 12
tab stack widget 129
toolbar widget 135
tree widget 150

Convenience routines
combination box widget 39
hierarchy widget 70
icon box widget 76
internationalized extended list widget 54
paned widget 94
panner widget 101
pixmap editor widget 113
porthole widget 119
toolbar widget 136

Conventions, used in this document xi
Copy, pixmap editor widget 104
Core resources 153
D
Draw circle, pixmap editor widget 103
Draw line, pixmap editor widget 103
Draw point, pixmap editor widget 103
E
Encoding, font selector widget 59
epak-talk mailing list xii
Extended Internationalized List 44
External symbols, description 12

F
Filled circle, pixmap editor widget 103
Filled rectangle, pixmap editor widget 103
Flood fill, pixmap editor widget 104
Font scaling, font selector widget 59
Font selector widget

advanced features 58
basic features 57
classes 60
compound widget hierarchy 64
encoding 59
fixed width fonts 59
font scaling 59
inherited resources 60
non XLFD fonts 58
proportional fonts 59
resolution control 59
resources 60
XLFD name display 59

Fonts
fixed, font selector widget 59
proportional, font selector widget 59

G
Geometry management 14

outline widget 85
paned widget 88
tree widget 148

Groups, specifying with toolbar widget 133
H
Help, for mailing list xiii
Hidden node

outline widget 85
tree widget 148

Hierarchy widget
build node table routine 72
callback routine 70
change node state routine 71
class methods 71
classes 66
constraint resources 69
164 EnhancementPak Programmer’s Reference

Index

epak30IX.fm Page 165 Wednesday, January 21, 2009 4:27 PM
convenience routine 70
inherited resources 66
map node routine 71
reset open closed button routine 72
resources 67
toggle node state routine 72
unmap all extra nodes routine 71
unmap node routine 71

I
Icon box widget

classes 74
constraint resources 76
convenience routines 76
inherited resources 74
resources 75

Icon button widget
callback routines 82
classes 77
resources 77, 78
translations 81

Information, version 14
Inherited resources

button box widget 19, 27, 40
color selector widget 23
combination box widget 34
font selector widget 60
hierarchy widget 66
icon box widget 74
icon button widget 77
internationalized extended list widget 46
outline widget 85
paned widget 89
panner widget 97
pixmap editor widget 106
porthole widget 116
stretch widget 120
tab stack widget 125
toolbar widget 133
tree widget 148

Input, pixmap editor widget 105

Internationalized extended list widget
actions 51
callback routine 54
classes 46
compound widget hierarchy 52
convenience routines 54
inherited resources 46
resources 46
translations 51
using resource database with 46
Xi18RowInfo structure 53

M
Mailing lists, epak-talk xii
Motif

Epak resources inherited from 153
superclasses 153

Motion() 51
Move, pixmap editor widget 104
N
Nodes

always open, outline widget 85
always open, tree widget 147
build table routine, hierarchy widget 72
change state routine, hierarchy widget 71
closed, outline widget 84
closed, tree widget 147
hidden, outline widget 85
hidden, tree widget 148
map routine, hierarchy widget 71
open, outline widget 84
open, tree widget 147
reset open closed button routine, hierarchy

widget 72
toggle state routine, hierarchy widget 72
unmap all extra routine, hierarchy widget 71
unmap routine, hierarchy widget 71

Non XLFD fonts, font selector widget 58
Notation, used in this document xi
O
Open node
EnhancementPak Programmer’s Reference 165

Index

epak30IX.fm Page 166 Wednesday, January 21, 2009 4:27 PM
outline widget 84
tree widget 147

Outline widget
always open node 85
classes 85
closed node 84
geometry management 85
hidden node 85
inherited resources 85
open node 84

Output, pixmap editor widget 105
P
Paned widget

classes 90
constraint resources 92
convenience routines 94
geometry management 88
inherited resources 89
resizing panes 88
search order 89
special considerations 89
translations 93

Panner widget
callback routines 101
classes 97
convenience routines 101
inherited resources 97
resources 97
translations 99

Panning, pixmap editor widget 105
Pixmap editor widget

classes 106
colors, selecting and adding 104
compound widget hierarchy 111
convenience routines 113
copy 104
draw circle 103
draw line 103
draw point 103
filled circle 103
filled rectangle 103

flood fill 104
inherited resources 106
input 105
move 104
output 105
panning 105
rectangle 103
resizing pixmap 104
set all 103
translations 111
undo 103
zooming 105

Pixmap, resizing 104
Popup labels, toolbar widget 132
Porthole widget

callback routine 118
classes 117
convenience routines 119
inherited resources 116
resources 117

Positions, specifying with toolbar widget 133
R
Rectangle, pixmap editor widget 103
Resizing panes, paned widget 88
Resolution control, font selector widget 59
Resource database, using with internationalized

extended list widget 46
Resource naming, description 12
Resources

button box widget 19
color selector widget 23
composite 155
core 153
font selector widget 60
hierarchy widget 67
icon box widget 75
icon button widget 78
inherited, button box widget 19, 27, 40
inherited, hierarchy widget 66
internationalized extended list widget 46
porthole widget 117
166 EnhancementPak Programmer’s Reference

Index

epak30IX.fm Page 167 Wednesday, January 21, 2009 4:27 PM
stretch widget 121
toolbar widget 133
tree widget 149
XmFrame 157
XmManager 157
XmNentryLabelAlignment 29
XmNentryLabelPixmap 29
XmNentryLabelString 29
XmNentryLabelType 30
XmNentryLableFontList 29
XmNfillStyle 30
XmNpicture 41
XmNshowEntryLabel 30
XmNshowTitles 27
XmNstretchable 30
XmPrimitive 159

Resources, inherited
button box 19, 27, 40
color selector widget 23
combination box widget 34
font selector widget 60
stretch widget 120
toolbar widget 133
tree widget 148

Resources, panner widget 97
Routines

build node table, hierarchy widget 72
change node state, hierarchy widget 71
map node, hierarchy widget 71
reset open closed button, hierarchy widget 72
toggle node state, hierarchy widget 72
unmap all extra nodes, hierarchy widget 71
unmap node, hierarchy widget 71

S
SashAction(Commit) 94
SashAction(Key, Incr, Dir) 94
SashAction(Move) 94
SashAction(Start) 94
Search order, paned widget 89
Set all, pixmap editor widget 103
slider 95
Special considerations, paned widget 89
Stretch widget

callback routines 122
classes 121
inherited resources 120
resources 121
translations 122

Strings, version 14
Subscribing, to mailing lists xii
Superclasses, Motif 153
T
Tab stack widget

callback routines 131
classes 125
constraint resources 129
inherited resources 125
new resources 125
translations 130

templates
widget resources 4

Toolbar widget
classes 133
constraint resources 135
convenience routines 136
inherited resources 133
popup labels 132
resources 133
specifying groups 133
specifying positions 133
EnhancementPak Programmer’s Reference 167

Index

epak30IX.fm Page 168 Wednesday, January 21, 2009 4:27 PM
Translations
button box widget 21
icon button widget 81
Internationalized extended list widget 51
paned widget 93
panner widget 99
pixmap editor widget 111
stretch widget 122
tab stack widget 130

Tree widget
always open node 147
classes 148, 149
closed node 147
constraint resources 150
geometry management 148
hidden node 148
inherited resources 148
open node 147
resources 149
user interaction 147

U
Undo, pixmap editor widget 103
Unsubscribing, mailing lists xii
Using, resource database 46
V
Version, information 14
W
widget templates

resources 4
Widgets

color selector, compound hierarchy 25
combination box 31
compound, description 12
XiButtonBox 18
XiColorSelector 22
XiColumn 26
XiCombinationBox 31
XiDataField 40
XiDBDateField 40
XiExtended18List 44

XiExtended18List, compound hierarchy 52
XiFontSelector 57
XiHierarchy 66
XiIconBox 73
XiIconButton 77
XiOutline 83
XiPaned 87
XiPanner 95
XiPixmapEditor 102
XiPorthole 114
XiStretch 120
XiTabStack 124
XiToolbar 132
XiToolTip 138
XiTree 146

X
XCopyArea 80
XCopyPlane 80
Xi.h 14
Xi18RowInfo structure 53
Xi18SortFunction 54
XiAbort() 99
XiALIGNMENT_BEGINNING 27
XiALIGNMENT_CENTER 27
XiALIGNMENT_END 27
XiALIGNMENT_UNSPECIFIED 27
XiAlwaysOpen 69, 84, 147
XiANY_COLUMN 54, 56
XiArmAndActivate() 81
XiButtonBox 6, 18
xiButtonBoxWidgetClass 18
XiButtonUp() 81
XiClosed 69, 84, 147
XiColorSelector 22
xiColorSelectorWidgetClass 22
XiColumn 26
XiCombinationBox 31
XiCombinationBoxGetValue() 39
xiCombinationBoxWidgetClass 31
XiComboCancel() 34
XiComboListCancel 35
168 EnhancementPak Programmer’s Reference

Index

epak30IX.fm Page 169 Wednesday, January 21, 2009 4:27 PM
XiComboListDown() 33
XiComboListPost 35
XiComboListUnpost 35
XiComboListUp() 34
XiCR_TAB_SELECTED 131
XiCR_UPDATE_SHELL 39
XiCR_UPDATE_TEXT 39
XiCR_VERIFY_TEXT 39
XiDataField 40
XiDBDataField 40
XiDISTRIBUTE_SPREAD 28
XiDISTRIBUTE_TIGHT 28
XiEnd() 122
XiEndPoint() 111
XiEXT18LIST_FOUND 52
XiEXT18LIST_NOT_FOUND 52
XiExt18ListCallbackStruct 52
XiExt18ListDeselectItems 54
XiExt18ListDeselectRow 54
XiExt18ListGetSelectedRowArray 55
XiExt18ListGetSelectedRows() 55
XiExt18ListMakeRowVisible 55
XiExt18ListSelectAllItems 55
XiExt18ListSelectItems 56
XiExt18ListSelectRow 56
XiExt18ListToggleRow() 56
xiExt18ListWidgetClass 44
XiExt18UnselectAllItems() 56
XiExt18UnselectItems() 56
XiExtended18List 44
XiFillAll 21
XiFillMajor 7, 20
XiFillMinor 7, 20
XiFillNone 20
XiFontSelector 57
xiFontSelectorWidgetClass 57
XiGetFocus() 99
XiHidden 69, 84, 147
XiHierarchy 66
XiHierarchyGetChildNodes 70
XiHierarchyNodeStateData 68, 70
XiHierarchyOpenAllAncestors 70

XiHierarchyWidgetClass 66
XiIconBottom 79
XiIconBox 73
XiIconBoxAnyCell 76
XiIconBoxIsCellEmpty() 76
xiIconBoxWidgetClass 73
XiIconButton 77
XiIconButtonCallbackInfo 82
xiIconButtonWidgetClass 77
XiIconLeft 79
XiIconNone 79
XiIconOnly 79
XiIconRight 79
XiIconTop 79
XiInheritBuildNodeTable 72
XiInheritChangeNodeState 71
XiInheritMapNode 71
XiInheritResetOpenCloseButton 72
XiInheritToggleNodeState 72
XiInheritUnmapAllExtraNodes 71
XiInheritUnmapNode 71
XiMotion() 111, 122
XiMove() 99
XiNextColor() 111
XiNotify() 81, 99
XiOpen 69, 84, 147
XiOutline 83
xiOutlineWidgetClass 83
XiPage() 100
XiPaned 87
XiPanedAskChild 92
XiPanedGetPanes() 94
xiPanedWidgetClass 87
XiPanner 95
xiPannerWidgetClass 95
XiPIXMAP_BOTTOM 130
XiPIXMAP_LEFT 130
XiPIXMAP_NONE 130
XiPIXMAP_ONLY 130
XiPIXMAP_RIGHT 130
XiPIXMAP_TOP 130
XiPixmapEditor 102
EnhancementPak Programmer’s Reference 169

Index

epak30IX.fm Page 170 Wednesday, January 21, 2009 4:27 PM
XiPixmapEditorDrawableInfo 108
XiPixmapEditorGetPictureData 113
XiPixmapEditorGetRelevantData 113
XiPixmapEditorRefresh 113
XiPixmapEditorRefresh() 113
xiPixmapEditorWidgetClass 102
XiPorthole 114
XiPortholeConnectPanner() 96, 101, 119
XiPortholeVisible() 119
xiPortholeWidgetClass 114
XiPRCanvasHeight 100
XiPRCanvasWidth 100
XiPRSliderHeight 100
XiPRSliderWidth 100
XiPRSliderX 100
XiPRSliderY 100
XiScrollReport 100, 118
XiSet() 100
XiStart() 99, 122
XiStartPoint() 111
XiStop() 100
XiStretch 120
xiStretchWidgetClass 120
XiStretchWidgetInfo 122, 123
XiTAB_ORIENTATION_DYNAMIC 127
XiTABS_BASIC 127
XiTABS_BEVELED 128
XiTABS_BOTTOM_TO_TOP 127, 128
XiTABS_LEFT_TO_RIGHT 127, 128
XiTABS_ON_BOTTOM 128
XiTABS_ON_LEFT 128
XiTABS_ON_RIGHT 128
XiTABS_ON_TOP 128
XiTABS_RIGHT_TO_LEFT 127, 128
XiTABS_ROUNDED 128
XiTABS_SQUARED 128
XiTABS_STACKED 127
XiTABS_STACKED_STATIC 127
XiTABS_TOP_TO_BOTTOM 128
XiTabStack 124
XiTabStackCallbackStruct 131

XiTabStackGetSelectedTab 131
XiTabStackSelectTab 131
xiTabStackWidgetClass 124
XiTabStackXYToWidget 131
XiToggle() 81
XiToolbar 132
XiToolbarCallbackStruct 134, 136
XiToolbarDestroyGroup() 137
XiToolbarManageGroup() 137
XiToolbarMapGroup() 136
XiToolbarUnmanageGroup() 137
XiToolbarUnmapGroup() 136
xiToolbarWidgetClass 132
XiToolTip 138
XiToolTipAddCallback() 141
XiToolTipDestroyAll() 141, 142
XiToolTipDisable() 141, 142
XiToolTipEnable() 141, 142, 143, 144
XiToolTipGetValues() 138, 139, 141, 142
XiToolTipHideTip() 143
XiToolTipInitialize() 141, 142, 143, 145
XiToolTipRegister() 141, 143, 144
XiToolTipRemoveAllCallbacks() 144
XiToolTipRemoveCallback() 144
XiToolTipResume() 141, 145
XiToolTipSetValues() 138, 141, 142, 145
XiToolTipShowTip() 145
XiToolTipSuspend() 141, 145
XiTree 146
XiTreeCompressAll 149
XiTreeCompressLeaves 149
XiTreeCompressNone 149
XiTreeDirect 146, 149
XiTreeLadder 147, 149
XiWarpTo() 100
XLFD name display, font selector widget 59
XmALIGNMENT_BEGINNING 48, 79, 129
XmALIGNMENT_CENTER 48, 79, 129
XmALIGNMENT_END 41, 48, 79, 129
XmCMargin 7
XmEXTENDED_SELECT 49, 50
XmFrame resources 157
170 EnhancementPak Programmer’s Reference

Index

epak30IX.fm Page 171 Wednesday, January 21, 2009 4:27 PM
XmHORIZONTAL 7, 28, 87, 89, 91, 94, 134,
146, 148

XmLabel 13
XmList 31
XmManager 8
XmManager resources 157
XmN100DPIstring 61
XmN75DPIstring 61
XmNactivateCallback 77, 78, 81, 82
XmNalignment 40, 41, 48, 79
XmNallowResize 12, 92
XmNanyLowerString 61
XmNanyString 62
XmNarmColor 79
XmNautoClose 67
XmNautoFill 41
XmNbackground 12, 108, 116, 150
XmNbitmapMode 107
XmNblueSliderLabel 24
XmNboldString 62
XmNbothString 62
XmNbottomAttachment 12
XmNbottomOffset 12
XmNbottomPosition 12
XmNbottomWidget 12
XmNcanvasHeight 97
XmNcanvasWidth 97
XmNcellHeight 107, 108
XmNcellWidth 107, 108
XmNcellX 74, 76
XmNcellY 74, 76
XmNchildren 94
XmNcloseFolderPixmap 67, 69
XmNcolorListTogLabel 24
XmNcolorMode 24
XmNcolorName 24
XmNcolumnTitles 48
XmNcomboTranslations 33, 35
XmNcompressStyle 149
XmNconnectNodes 86
XmNconnectStyle 146, 147, 149
XmNconstrainWidth 86

XmNcurrentColor 107
XmNcurrentFont 62, 63
XmNcursor 90
XmNcustomizedCombinationBox 36, 38
XmNcustomizedComboBox 37
XmNdefaultEncodingString 62
XmNdefaultEntryLabelAlignment 27, 29
XmNdefaultEntryLabelFontList 28
XmNdefaultFillStyle 28
XmNdefaultScale 97, 98, 101
XmNdistribution 28
XmNdoubleClickCallback 45, 48, 54, 79, 81, 82
XmNdrawable 105, 108, 109
XmNdrawableInfo 102, 105, 108
XmNeditable 36
XmNeditCursor 108
XmNencodingList 62
XmNencodingString 62
XmNenterChildCallback 132, 134
XmNentryData 48
XmNentryLabelAlignment 27, 29
XmNentryLabelFontList 28, 29
XmNentryLabelPixmap 29
XmNentryLabelString 8, 29, 132, 135
XmNentryLabelType 30
XmNequalSize 19
XmNfamilyString 62
XmNfileReadError 24
XmNfillOption 7, 19
XmNfillStyle 28, 30
XmNfindLabel 48
XmNfirstColumn 48
XmNfirstColumnPixmaps 48, 53
XmNfirstRow 48
XmNfontList 49, 79, 126
XmNforceChildToFill 116, 117
XmNforeground 150
XmNfreeTabPixmap 129
XmNgreenSliderLabel 24
XmNgridSize 108
XmNgridTranslations 109, 111
XmNgroupPosition 132, 135
EnhancementPak Programmer’s Reference 171

Index

epak30IX.fm Page 172 Wednesday, January 21, 2009 4:27 PM
XmNgroupSpacing 134
XmNheight 12, 116
XmNheightInc 121, 123
XmNhighlightThickness 126
XmNhorizontalDelta 149
XmNhorizontalMargin 5, 36, 68, 75, 79, 134
XmNhorizontalNodeSpace 148, 150
XmNhorizontalScrollBar 49
XmNiconPlacement 77
XmNiconTextPadding 79
XmNimage 105, 109
XmNinsertBefore 69
XmNinternalSpace 98
XmNitalicString 62
XmNitemCount 38
XmNitemFoundCallback 49, 52
XmNitemNotFoundCallback 49, 52
XmNitems 38
XmNitemSpacing 28
XmNlabel 80
XmNlabelFontList 28
XmNlabelSpacing 28
XmNlabelString 13, 39, 80
XmNleaveChildCallback 132, 134
XmNleftAttachment 12
XmNleftOffset 12
XmNleftPosition 12
XmNleftWidget 12
XmNlineBackgroundColor 150
XmNlineColor 150
XmNlineStyle 151
XmNlineWidth 151
XmNmappedWhenManaged 66, 84, 146
XmNmarginHeight 7, 21, 24, 62, 90, 117
XmNmarginWidth 2, 6, 7, 15, 21, 24, 90, 117
XmNmaxHeight 109, 121
XmNmaxWidth 109, 121
XmNminHeight 109, 121
XmNminimumCellHeight 75
XmNminimumCellWidth 75
XmNminimumHorizontalCells 75
XmNminimumVerticalCells 75

XmNminWidth 109, 121
XmNmodified 109
XmNmonoSpaceString 62
XmNnavigationType 12
XmNnewVisualStyle 36, 37, 49
XmNnoCellError 24
XmNnodeCloseFolderPixmap 67, 69
XmNnodeOpenFolderPixmap 67, 69
XmNnodeState 69, 70
XmNnodeStateBeginEndCallback 68
XmNnodeStateCallback 68, 70
XmNnodeStateChangedCallback 68
XmNnodeStates 84
XmNnumChildren 94
XmNnumColumns 48, 49, 53
XmNnumRows 48, 49
XmNopenClosePadding 151
XmNopenFolderPixmap 67, 69
XmNoptionString 63
XmNorientation 7, 21, 28, 87, 89, 91, 94, 134,

146, 147, 149, 150
XmNotherString 63
XmNoverrideRedirect 36
XmNpalette 107, 110
XmNpaletteSize 110
XmNpaneMaximum 12, 92
XmNpaneMinimum 12, 92
XmNparentNode 69, 70
XmNpicture 40, 41, 42
XmNpictureErrorCallback 42
XmNpixmap 79, 80
XmNpixmapHeight 105, 110
XmNpixmapWidth 105, 110
XmNpopupBackground 134
XmNpopupCursor 36
XmNpopupDelay 132, 134
XmNpopupFontList 134
XmNpopupForeground 134
XmNpopupLabelEnabled 135
XmNpopupOffset 33, 36
XmNpopupShellWidget 36
XmNpreferredPaneSize 12, 88, 92
172 EnhancementPak Programmer’s Reference

Index

epak30IX.fm Page 173 Wednesday, January 21, 2009 4:27 PM
XmNpropSpaceString 63
XmNrecomputeSize 80
XmNredSliderLabel 24
XmNrefigureMode 68, 91
XmNreportCallback 98, 99, 101, 116, 117, 118
XmNresize 98
XmNresizeCallback 122
XmNresizeToPreferred 12, 88, 92
XmNrgbFile 25
XmNrightAttachment 12
XmNrightOffset 12
XmNrightPosition 12
XmNrightWidget 12
XmNrubberBand 98, 99, 100
XmNsampleText 63
XmNsashHeight 91
XmNsashIndent 91
XmNsashShadowThickness 91
XmNsashTranslations 91
XmNsashWidth 91
XmNscalingString 63
XmNselectCallback 49
XmNselectColor 128
XmNselectedColumn 49
XmNselectionPolicy 31, 39, 49, 50
XmNselectPixmap 128
XmNsensitive 12
XmNseparatorOn 91
XmNset 80
XmNsetAllString 110
XmNshadowThickness 37, 98, 117, 122
XmNshowEntryLabel 30
XmNshowFind 44, 50
XmNshowFontName 63
XmNshowLabel 37
XmNshowNameString 63
XmNshowNormalView 110
XmNshowSash 12, 93
XmNshowTitles 27
XmNsingleSelectionCallback 49, 54, 55, 56
XmNsizeString 63
XmNskipAdjust 12, 88, 93

XmNsliderHeight 98
XmNsliderTogLabel 25
XmNsliderWidth 98
XmNsliderX 98
XmNsliderY 98
XmNsortFunctions 50
XmNspacing 63, 91
XmNstackedEffect 126
XmNstretchable 28, 30
XmNSTRING_DIRECTION_L_TO_R 80
XmNSTRING_DIRECTION_R_TO_L 80
XmNstringDirection 50, 79, 80
XmNtabAlignment 129
XmNtabAutoSelect 126
XmNtabBackground 129
XmNtabBackgroundPixmap 130
XmNtabCornerPercent 126
XmNtabForeground 130
XmNtabLabelPixmap 129, 130
XmNtabLabelSpacing 126
XmNtabLabelString 130
XmNtabMarginHeight 126
XmNtabMarginWidth 126
XmNtabMode 127
XmNtabOffset 127
XmNtabOrientation 127
XmNtabPixmapPlacement 130
XmNtabSelectedCallback 128, 131
XmNtabSide 127, 128
XmNtabStringDirection 130
XmNtabStyle 128
XmNtextRows 63
XmNtile 110
XmNtipCallback 141
XmNtipEnabled 139, 142, 143, 145
XmNtipXOffset 139
XmNtipYOffset 139
XmNtitle 50
XmNtitleString 50
XmNtoolbarEntryData 135
XmNtoolbarGroup 132, 135
XmNtopAttachment 12
EnhancementPak Programmer’s Reference 173

Index

epak30IX.fm Page 174 Wednesday, January 21, 2009 4:27 PM
XmNtopOffset 12
XmNtopPosition 12
XmNtopWidget 12
XmNundoString 110
XmNuniformTabSize 128
XmNunitType 15, 139
XmNunpostDelay 140
XmNupdateShellCallback 36, 37, 39
XmNupdateTextCallback 36, 37, 39
XmNuseImageCache 128
XmNuserData 12
XmNuseScaling 63
XmNuseTextField 37
XmNvalidateCallback 42, 43
XmNvalue 39
XmNvalueChangedCallback 63
XmNverify 36, 37
XmNverifyTextCallback 36, 37, 39
XmNverticalDelta 149
XmNverticalMargin 5, 36, 68, 75, 79, 135
XmNverticalNodeSpace 148, 150
XmNverticalScrollBar 49
XmNvisibleItemCount 37, 50
XmNwidth 12, 116
XmNwidthInc 121, 123
XmNx 12, 116, 123
XmNxlfdString 63
XmNy 12, 116, 123
XmPrimitive resources 159
XmSINGLE_SELECT 50
XmString 15, 45, 77
XmSTRING_DIRECTION_L_TO_R 50, 80, 130
XmSTRING_DIRECTION_R_TO_L 50, 79, 130
XmStringCopy 130
XmStringFree 15
XmStringTable 15
XmText 37
XmTextField 37
XmUNSPECIFIED_PIXMAP 110
XmVERTICAL 7, 28, 89, 91, 94, 134, 147, 149,

150
XtAddCallback 5, 9

XtAddCallback() 141
XtAppInitialize() 143
XtCallbackList 6, 141
XtCallbackProc 9
XtConstraint 8
XtCreateManagedWidget 2
XtCreateWidget 2, 3
XtFree 10, 39
XtGeometryYes 14
XtGetMultiClickTime() 82
XtGetValues 5, 6, 13, 38
XtMakeGeometryRequest 14
XtMalloc 39
XtManageChild 3
XtManageChildren 3
XtNameToWidget 13
XtRemoveCallback 5, 9
XtSetValues 3, 5, 6, 8, 13, 15, 38
XtSetValues() 139
XtVaSetValues 3
Z
Zooming, pixmap editor widget 105
174 EnhancementPak Programmer’s Reference

	Copyright © 1997 Integrated Computer Solutions, In
	How to Use This Manual
	Chapter 1- Widget Documentation Format
	Chapter 2- Programming with EnhancementPak
	Chapter 3- Widget Reference

	XiButtonBox 18
	XiColorSelector 22
	XiColumn 26
	XiCombinationBox 31
	XiDataField 40
	XiExtended18List 44
	XiFontSelector 57
	XiHierarchy 66
	XiIconBox 73
	XiIconButton 77
	XiOutline 83
	XiPaned 87
	XiPanner 95
	XiPixmapEditor 102
	XiPorthole 114
	XiStretch 120
	XiTabStack 124
	XiToolbar 132
	XiToolTip 138
	XiTree 146
	Appendix
	Index 163

	howto.pdf
	How to Use This Manual
	Overview
	Overview
	Introduction to EnhancementPak

	EPak widget categories
	Notation Conventions
	epak-talk Mailing List
	Subscribing
	Unsubscribing
	Contributing
	Further Help

	docformat.pdf
	Widget Documentation Format 1
	Overview
	Widget Summary
	Class Name
	Class Pointer
	Superclass Name
	Creation Routine

	Geometry Management
	Classes and Inherited Resources
	Resources
	Resources Table Format

	Definitions
	Data Types
	Using Resource Names
	Class Names
	Resource Values
	Constraint Resources
	Translations and Actions
	Compound Widget Hierarchy
	Callback Routines
	Convenience Routines

	programming.pdf
	Programming with EnhancementPak 2
	Overview
	External Symbol and Resource Naming
	Compound Widgets
	Passing resources to components
	Controlling resources of components
	Resource specifications
	Building UNIX Applications with EnhancementPak

	Header files
	Standard Installation Example
	Custom Installation Example
	Version Information
	Subclassing EnhancementPak Widgets
	Programming Resolution-independent Interfaces

	Resolution independent mechanism
	Strings and Memory Management
	Utility Routine XiGetVersionInfo()

	buttonbox.pdf
	Widget Reference 3
	Overview

	XiButtonBox
	Figure 1. ButtonBox Widgets with XmNorientation Set to XmVERTICAL and XmHORIZONTAL, Respectively
	Classes and Inherited Resources
	Resources
	XmNequalSize
	XmNfillOption

	XiFillNone
	Figure 2. ButtonBox with XmNfillOption = XiFillNone and XmNorientation = XmHORIZONTAL

	XiFillMinor
	Figure 3. ButtonBox with XmNfillOption = XiFillMinor and XmNorientation = XmHORIZONTAL

	XiFillMajor
	Figure 4. ButtonBox with XmNfillOption = XiFillMajor and XmNorientation = XmHORIZONTAL

	XiFillAll
	Figure 5. ButtonBox with XmNfillOption = XiFillAll and XmNorientation = XmHORIZONTAL
	XmNmarginHeight
	XmNmarginWidth
	XmNorientation
	Translations and Actions

	colorselector.pdf
	XiColorSelector
	Figure 6. XiColorSelector Widgets with XmNcolorMode Set to XiListMode and XiScaleMode
	Classes and Inherited Resources
	Resources
	XmNblueSliderLabel
	XmNcolorListTogLabel
	XmNcolorMode
	XmNcolorName
	XmNfileReadError
	XmNgreenSliderLabel
	XmNmarginHeight
	XmNmarginWidth
	XmNnoCellError
	XmNredSliderLabel
	XmNrgbFile
	XmNsliderTogLabel

	Compound Widget Hierarchy

	column.pdf
	XiColumn
	Figure 7. Column Widget with XmNorientation Set to XmVERTICAL
	Figure 8. Column Widget with XmNorientation Set to XmHORIZONTAL
	Classes and Inherited Resources
	Resources
	XmNdefaultEntryLabelAlignment
	XmNdefaultEntryLabelFontList
	XmNdefaultFillStyle
	XmNdistribution
	XmNitemSpacing
	XmNlabelSpacing
	XmNorientation

	Constraint Resources
	XmNentryLabelAlignment
	XmNentryLabelFontList
	XmNentryLabelPixmap
	XmNentryLabelString
	XmNentryLabelType
	XmNfillStyle
	XmNshowEntryLabel
	XmNstretchable

	Translations and Actions

	combobox.pdf
	XiCombinationBox
	Figure 9. CombinationBox Widget in Unposted State
	Figure 10. CombinationBox Widget in Posted State
	Changeable resources
	Changes caused by setting children resources
	Geometry Management

	Determining size
	1. The arrow is always given its requested size.
	2. If the CombinationBox is larger than its desired size, all extra space is given to the Text widget.
	3. If the CombinationBox is smaller than its desired size, the Text and label widgets are each sized smaller than they desire in exactly the same ratio. For example:
	Global Translations
	XiComboListDown()
	XiComboListUp()
	XiComboCancel()

	Classes and Inherited Resources
	Resources
	XmNcomboTranslations
	XmNcustomizedCombinationBox
	XmNeditable
	XmNhorizontalMargin
	XmNverticalMargin
	XmNnewVisualStyle
	XmNpopupCursor
	XmNpopupOffset
	XmNpopupShellWidget
	XmNshadowThickness
	XmNshowLabel
	XmNupdateShellCallback
	XmNupdateTextCallback
	XmNuseTextField
	XmNverify
	XmNverifyTextCallback
	XmNvisibleItemCount

	Compound Widget Hierarchy
	XmNitems
	XmNitemCount
	XmNvalue
	XmNlabelString
	XmNselectionPolicy

	Callback Routines
	Convenience Routine
	XiCombinationBoxGetValue()

	datafield.pdf
	XiDataField
	Figure 11. An XiDataField Widget with XmNpicture Set to Accept US-Style Telephone Numbers
	Keyboard navigation
	Classes and Inherited Resources
	Resources
	XmNalignment
	XmNautoFill
	XmNpicture

	Character interpretations
	#
	?
	&
	@
	!
	;
	*
	[]
	{}
	,
	XmNpictureErrorCallback
	XmNvalidateCallback

	Callback Routines

	extendlist.pdf
	XiExtended18List
	Figure 12. Extended18List Widget
	Using the Resource Database
	Classes and Inherited Resources
	Resources
	XmNalignment
	XmNcolumnTitles
	XmNdoubleClickCallback
	XmNentryData
	XmNfindLabel
	XmNfirstColumn
	XmNfirstColumnPixmaps
	XmNfirstRow
	XmNfontList
	XmNhorizontalScrollBar
	XmNverticalScrollBar
	XmNitemFoundCallback
	XmNitemNotFoundCallback
	XmNnewVisualStyle
	XmNnumColumns
	XmNnumRows
	XmNselectCallback
	XmNselectedColumn
	XmNselectionPolicy
	XmNshowFind
	XmNsortFunctions
	XmNstringDirection
	XmNtitle
	XmNtitleString
	XmNvisibleItemCount

	Translations and Actions
	ButtonDown(type)
	Motion()
	ButtonUpOrLeave()

	Compound Widget Hierarchy
	XiExt18ListCallbackStruct Structure
	Xi18RowInfo Structure
	Callback Routine
	Sort Function
	Convenience Routines
	XiExt18ListDeselectItems
	XiExt18ListDeselectRow
	XiExt18ListGetSelectedRowArray
	XiExt18ListGetSelectedRows()
	XiExt18ListMakeRowVisible
	XiExt18ListSelectAllItems
	XiExt18ListSelectItems
	XiExt18ListSelectRow
	XiExt18ListUnselectAllItems()
	XiExt18ListUnselectItems()
	XiExt18ListToggleRow()

	fontselect.pdf
	XiFontSelector
	Basic Features
	Figure 13. FontSelector Widget

	Advanced Features
	Non XLFD Fonts
	Resolution Control
	Fixed or Proportional
	Font Scaling
	Encoding
	XLFD Name Display

	Classes and Inherited Resources
	Resources
	XmN100DPIstring
	XmN75DPIstring
	XmNanyLowerString
	XmNanyString
	XmNboldString
	XmNbothString
	XmNcurrentFont
	XmNdefaultEncodingString
	XmNencodingList
	XmNencodingString
	XmNfamilyString
	XmNitalicString
	XmNmarginHeight
	XmNmonoSpaceString
	XmNoptionString
	XmNotherString
	XmNpropSpaceString
	XmNsampleText
	XmNscalingString
	XmNshowFontName
	XmNshowNameString
	XmNsizeString
	XmNspacing
	XmNtextRows
	XmNuseScaling
	XmNvalueChangedCallback
	XmNxlfdString

	Compound Widget Hierarchy

	hierarchy.pdf
	XiHierarchy
	Classes and Inherited Resources
	Resources
	XmNautoClose
	XmNcloseFolderPixmap
	XmNopenFolderPixmap
	XmNhorizontalMargin
	XmNverticalMargin
	XmNnodeStateBeginEndCallback
	XmNnodeStateCallback
	XmNnodeStateChangedCallback
	XmNrefigureMode

	Constraint Resources
	XmNinsertBefore
	XmNnodeCloseFolderPixmap
	XmNnodeOpenFolderPixmap
	XmNnodeState
	XmNparentNode

	Callback Routine
	Convenience Routines
	XiHierarchyGetChildNodes()
	XiHierarchyOpenAllAncestors()
	Class Methods

	Change Node State Routine
	Map Node Routine
	Unmap Node Routine
	Unmap All Extra Nodes Routine
	Build Node Table Routine
	Reset Open Closed Button Routine
	Toggle Node State Routine

	iconbox.pdf
	XiIconBox
	Figure 14. IconBox Widget Containing Icon Buttons
	Classes and Inherited Resources
	Resources
	XmNhorizontalMargin
	XmNverticalMargin
	XmNminimumHorizontalCells
	XmNminimumVerticalCells
	XmNminimumCellWidth
	XmNminimumCellHeight

	Constraint Resources
	XmNcellX
	XmNcellY

	Convenience Routine
	XiIconBoxIsCellEmpty()

	iconbutton.pdf
	XiIconButton
	Figure 15. IconButtons Displayed in All Six Icon Placements
	Classes and Inherited Resources
	Resources
	XmNactivateCallback
	XmNalignment
	XmNarmColor
	XmNdoubleClickCallback
	XmNfontList
	XmNhorizontalMargin
	XmNverticalMargin
	XmNiconTextPadding
	XmNiconPlacement
	XmNlabel
	XmNlabelString
	XmNpixmap
	XmNrecomputeSize
	XmNset
	XmNstringDirection

	Translations and Actions
	XiToggle()
	XiNotify()
	XiButtonUp()
	XiArmAndActivate()

	Callback Routines

	outline.pdf
	XiOutline
	Figure 16. Outline Widgets with XmNconnectNodes Set to False and True
	Figure 17. Outline Widget with Some Nodes Closed
	Outline Node Types
	XiOpen
	XiClosed
	XiAlwaysOpen
	XiHidden

	Geometry Management
	Classes and Inherited Resources
	Resources
	XmNconnectNodes
	XmNconstrainWidth
	XmNindentSpace

	paned.pdf
	XiPaned
	Figure 18. Paned Widget with XmNorientation Set to XmVERTICAL
	Geometry Management
	Sizing children
	Resizing panes
	Rules for determined resizing
	1. Do not let a pane grow larger than its maximum or smaller than its minimum size. In addition do not let a pane without a sash shrink below its preferred size due to a sash movement of another pane.
	2. Do not adjust panes when XmNskipAdjust is True.
	3. Do not adjust panes away from their preferred size, although moving one closer to its preferred size is permitted.

	Search order
	Special considerations
	Classes and Inherited Resources
	Resources
	XmNcursor
	XmNmarginHeight
	XmNmarginWidth
	XmNorientation
	XmNrefigureMode
	XmNsashHeight
	XmNsashWidth
	XmNsashIndent
	XmNsashShadowThickness
	XmNsashTranslations
	XmNseparatorOn
	XmNspacing

	Constraint Resources
	XmNallowResize
	XmNpaneMaximum
	XmNpaneMinimum
	XmNpreferredPaneSize
	XmNresizeToPreferred
	XmNshowSash
	XmNskipAdjust

	Translations and Actions
	SashAction(Start)
	SashAction(Move)
	SashAction(Commit)
	SashAction(Key, Incr, Dir)

	Convenience Routine
	XiPanedGetPanes()

	panner.pdf
	XiPanner
	Figure 19. Panner and Porthole Widgets
	Classes and Inherited Resources
	Resources
	XmNcanvasHeight
	XmNcanvasWidth
	XmNdefaultScale
	XmNinternalSpace
	XmNreportCallback
	XmNresize
	XmNrubberBand
	XmNshadowThickness
	XmNsliderHeight
	XmNsliderWidth
	XmNsliderX
	XmNsliderY

	Translations and Actions
	XiStart()
	XiAbort()
	XiGetFocus()
	XiMove()
	XiNotify()
	XiPage(xamount, yamount)
	XiSet(what, value)
	XiStop()
	XiWarpTo()

	XiScrollReport
	Callback Routine
	Convenience Routine
	XiPortholeConnectPanner()

	pixmap.pdf
	XiPixmapEditor
	Figure 20. PixmapEditor Widget
	Supported functions
	Set All
	Undo
	Draw Point
	Draw Line
	Draw Circle
	Filled Circle
	Rectangle
	Filled Rectangle
	Copy
	Move
	Flood Fill
	Selecting and Adding Colors
	Resizing the Pixmap
	Panning and Zooming
	Figure 21. Pixmap Panner

	Input and Output
	Classes and Inherited Resources
	Resources
	XmNbitmapMode
	XmNcellHeight
	XmNcellWidth
	XmNcurrentColor
	XmNdrawable
	XmNdrawableInfo
	XmNeditCursor
	XmNgridSize
	XmNgridTranslations
	XmNimage
	XmNmaxHeight
	XmNmaxWidth
	XmNminHeight
	XmNminWidth
	XmNmodified
	XmNpalette
	XmNpaletteSize
	XmNpixmapHeight
	XmNpixmapWidth
	XmNsetAllString
	XmNshowNormalView
	XmNtile
	XmNundoString

	Translations and Actions
	XiStartPoint()
	XiEndPoint()
	XiMotion()
	XiNextColor()

	Compound Widget Hierarchy
	Convenience Routines
	XiPixmapEditorGetPictureData
	XiPixmapEditorGetRelevantData
	XiPixmapEditorRefresh

	porthole.pdf
	XiPorthole
	Figure 22. Panner and Porthole Widgets
	Geometry Management
	Classes and Inherited Resources
	Resources
	XmNforceChildToFill
	XmNmarginHeight
	XmNmarginWidth
	XmNreportCallback
	XmNshadowThickness

	Callback Routine
	XiScrollReport
	Convenience Routines

	XiPortholeConnectPanner()
	XiPortholeVisible()

	stretch.pdf
	XiStretch
	Classes and Inherited Resources
	Resources
	XmNheightInc
	XmNwidthInc
	XmNmaxHeight
	XmNmaxWidth
	XmNminHeight
	XmNminWidth
	XmNresizeCallback
	XmNshadowThickness

	Translations and Actions
	XiStart()
	XiEnd()
	XiMotion()

	Callback Routine
	XiStretchWidgetInfo Structure

	tabstack.pdf
	XiTabStack
	Figure 23. TabStack Widget
	Classes and Inherited Resources
	Resources.
	XmNfontList
	XmNhighlightThickness
	XmNstackedEffect
	XmNtabAutoSelect
	XmNtabCornerPercent
	XmNtabLabelSpacing
	XmNtabMarginHeight
	XmNtabMarginWidth
	XmNtabMode
	XmNtabOffset
	XmNtabOrientation
	XmNselectColor
	XmNtabSelectedCallback
	XmNselectPixmap
	XmNtabSide
	XmNtabStyle
	XmNuniformTabSize
	XmNuseImageCache

	Constraint Resources
	XmNfreeTabPixmap
	XmNtabAlignment
	XmNtabBackground
	XmNtabBackgroundPixmap
	XmNtabForeground
	XmNtabLabelPixmap
	XmNtabLabelString
	XmNtabPixmapPlacement
	XmNtabStringDirection

	Translations and Actions
	XiTabStackCallbackStruct Structure
	Convenience Routines
	XiTabStackGetSelectedTab
	XiTabStackSelectTab
	XiTabStackXYToWidget

	toolbar.pdf
	XiToolbar
	Toolbar Popup Labels
	Figure 24. Toolbar Widget

	Specifying Groups and Positions
	Classes and Inherited Resources
	Resources
	XmNenterChildCallback
	XmNgroupSpacing
	XmNhorizontalMargin
	XmNleaveChildCallback
	XmNorientation
	XmNpopupBackground
	XmNpopupDelay
	XmNpopupFontList
	XmNpopupForeground
	XmNpopupLabelEnabled
	XmNverticalMargin

	Constraint Resources
	XmNentryLabelString
	XmNgroupPosition
	XmNtoolbarGroup
	XmNtoolbarEntryData

	XiToolbarCallbackStruct Structure
	Convenience Routines
	XiToolbarMapGroup()
	XiToolbarUnmapGroup()
	XiToolbarManageGroup()
	XiToolbarUnmanageGroup()
	XiToolbarDestroyGroup()

	tooltip.pdf
	XiToolTip
	Figure 25. ToolTip Widget in a Data Entry Screen
	Resources
	XmNtipEnabled
	XmNtipXOffset
	XmNtipYOffset
	XmNunpostDelay

	Convenience Routines
	Creating ToolTips
	XiToolTipAddCallback()
	XiToolTipDestroyAll()
	XiToolTipDisable()
	XiToolTipEnable()
	XiToolTipGetValues()
	XiToolTipHideTip()
	XiToolTipInitialize()
	XiToolTipRegister()
	XiToolTipRemoveAllCallbacks()
	XiToolTipRemoveCallback()
	XiToolTipResume()
	XiToolTipSetValues()
	XiToolTipShowTip()
	XiToolTipSuspend()

	tree.pdf
	XiTree
	Figure 26. Tree Widget with XmNconnectStyle Set to XiTreeDirect and XmNorientation Set to XmHORIZONTAL
	Figure 27. Tree Widget with XmNconnectStyle Set to XiTreeLadder and XmNorientation Set to XmVERTICAL
	User Interaction
	XiOpen
	XiClosed
	XiAlwaysOpen
	XiHidden

	Geometry Management
	Classes and Inherited Resources
	Resources
	XmNcompressStyle
	XmNconnectStyle
	XmNhorizontalDelta
	XmNverticalDelta
	XmNhorizontalNodeSpace
	XmNverticalNodeSpace
	XmNorientation

	Constraint Resources
	XmNlineBackgroundColor
	XmNlineColor
	XmNlineStyle
	XmNlineWidth
	XmNopenClosePadding

	appendix.pdf
	Appendix A
	Classes and Inherited Resources
	Core Resources
	Composite Resources
	XmBulletinBoard Resources
	XmFrame Resources
	XmManager Resources
	XmPrimitive Resources
	XmTextField Resources

	epak30IX.pdf
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	epakFIN.pdf
	Copyright © 1997-2009 Integrated Computer Solutions, In
	How to Use This Manual
	Chapter 1- Widget Documentation Format
	Chapter 2- Programming with EnhancementPak
	Chapter 3- Widget Reference

	XiButtonBox 18
	XiColorSelector 22
	XiColumn 26
	XiCombinationBox 31
	XiDataField 40
	XiExtended18List 44
	XiFontSelector 57
	XiHierarchy 66
	XiIconBox 73
	XiIconButton 77
	XiOutline 83
	XiPaned 87
	XiPanner 95
	XiPixmapEditor 102
	XiPorthole 114
	XiStretch 120
	XiTabStack 124
	XiToolbar 132
	XiToolTip 138
	XiTree 146
	Appendix
	Index 163

