
��������	
����
�����
�����

Copyright © 2005 Integrated Computer Solutions, Inc.

The Using UIM/X with SoftBench™ manual is copyrighted by Integrated Computer Solutions, Inc., with all
rights reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system, or
transmitted in any form or by any means electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 Middlesex Turnpike, Bedford, MA 01730

Tel: 617.621.0060

Fax: 617.621.9555

E-mail: info@ics.com

WWW: http://www.ics.com

UIM/X Trademarks
UIM/X, Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software Development Kit, BX/Win
SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak, ViewKit ObjectPak, VKit,
and ICS Motif are trademarks of Integrated Computer Solutions, Inc.

Motif is a trademark of Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

All other trademarks are properties of their respective owners.
ii Using UIM/X with the SoftBench

http://www.ics.com

Contents

Preface ..v

Chapter 1—Using the UIM/X SoftBench Integration
Starting UIM/X From the SoftBench Tool Status Display Dialog 2
Starting UIM/X from the SoftBench Development Manager 3
Exiting UIM/X From SoftBench ... 4
Running the SoftBench Program Builder from UIM/X ... 5
Using the SoftBench Editor from UIM/X ... 6
Using the Version Control Menus ... 6
Message Integration Between SoftBench and UIM/X ... 8

Chapter 2—Using Encapsulator Libraries
The Application Before Encapsulation .. 12
Encapsulating the Application ... 12
The Steps in This Tutorial ... 13
Step #1: Building the Application Interface ... 13
Step #2: Setting Up the Main Event Loop ... 14
Step #3: Creating the Subprocess Object .. 14
Step #4: Integrating the GUI with the Subprocess Object .. 19
Step #5: Adding Messaging to the Application ... 20
Step #6: Initializing the Encapsulation from the GUI .. 24
Step #7: Writing Files and Compiling the Application ... 26
Conclusion .. 27

Appendix A—Messages Reference29
Summary of Messages .. 29
Request Messages Accepted by UIM/X ... 31
Request Messages Sent by UIM/X ... 35
Notify and Failure Messages Accepted by UIM/X .. 42
Notify and Failure Messages Sent by UIM/X .. 44

Appendix B—Error Messages ...47

Index..49
Using UIM/X with SoftBench iii

iv Using UIM/X with SoftBench

Preface

Overview
SoftBench is a development framework that allows utilities used in software
development to interact. These utilities include tools such as editors, version control
systems, compilers, and debuggers. UIM/X is designed to operate as an integral part
of the SoftBench software development environment.
Using UIM/X with SoftBench v

Who Should Use this Guide
This manual assumes you are familiar with the basics of UIM/X. Before using this
manual, review the UIM/X Beginner’s Guide and the UIM/X User’s Guide.

This manual also assumes that you are a software developer with knowledge of
programming, a general understanding of the X Window System, and familiarity
with UIM/X and SoftBench. You should also know how to use common items such
as menus, buttons, and scroll bars. If you are not familiar with these items, you may
find it useful to review the OSF/Motif User’s Guide and the UIM/X Motif
Developer’s Guide.

Before you begin, check with your system administrator to ensure that the software
has been installed as described in the UIM/X Installation Guide.

Before You Read this Guide
This guide makes the following assumptions:

• You are familiar with the basic functions of selecting from menus and dialog
boxes; opening, moving, resizing and closing windows, and clicking icons.

• You understand the functions of the three mouse buttons, which this guide
refers to as the Select button (left button), the Adjust button (middle), and the
Menu button (right). See “Using the Mouse” on page ix for more information.

The UIM/X Document Set and Related Books
This section lists the UIM/X document set, and provides a suggested list for further
reading.
vi Using UIM/X with SoftBench

The following list is the complete UIM/X document set:

• UIM/X Installation Guide. Explains how to install and run UIM/X. Includes
information on the files provided with UIM/X, backwards compatibility issues,
and compiler considerations.

• UIM/X Beginner’s Guide. Introduces UIM/X by presenting Novice Mode, the
simplified Palette that enables new users to be productive immediately.
Includes information on a number of important features for creating, testing,
and running applications.

• UIM/X Tutorial Guide. A series of step-by-step tutorials, teaching tools and
techniques that will greatly assist you in developing your own applications.
Features tutorials in Novice Mode, Standard Mode, and on advanced topics.

• UIM/X User’s Guide. Explores the UIM/X features essential to GUI
development. Includes discussions of how to use UIM/ X’s editors to set
properties, add behavior, etc.

• UIM/X Motif Developer’s Guide. An in-depth guide to the widgets, features
and capabilities of UIM/X as they relate specifically to Motif development.

• UIM/X Advanced Topics. Describes how to customize UIM/X, including
integrating new widget and component classes into the executable. Includes
reference information of an advanced technical nature.

• UIM/X Reference Manual. A comprehensive list of properties, methods, and
events, plus more, for Motif development. Designed for the experienced
developer.

Suggested Reading
For more information on designing GUIs, see any of the following books:

• OSF/Motif Style Guide release 1.2 (Prentice Hall, 1993, ISBN 0-13-643123-2)

• Visual Design with OSF/Motif (by Shiz Kobara, Addison-Wesley, 1991, ISBN
0-201-56320-7)

• New Windows Interface: An Application Guide (Microsoft Corporation, 1994,
ISBN 1-55615-679-0)

• Human Interface Guidelines: The Apple Desktop Interface (Addison-Wesley,
1987, ISBN 0-201-17753-6)
Using UIM/X with SoftBench vii

How this Guide Is Organized
• Chapter 1, “Using the UIM/X SoftBench Integration,” describes how to use

UIM/X with SoftBench.

• Chapter 2, “Using Encapsulator Libraries,” provides an example that
describes how to use the SoftBench Encapsulator libraries.

• Appendix A, “Messages Reference,” contains reference pages for requests
and messages sent and received by UIM/X.

• Appendix B, “Error Messages,” lists the SoftBench related error messages
that might be displayed in the Messages area of the UIM/X Project
Window.

Some Terms You Should Know
Certain basic terms recur throughout this guide, and it helps to understand them
from the outset.

An object is a building block you can use to build an interface with UIM/X.

A Motif widget is an object whose appearance and behavior precisely follows the
OSF/Motif Style Guide. The novice mode of UIM/X supports a number of popular
Motif widgets, including Push Button, Label, Text Field, and more.

A compound object consists of several Motif widgets combined into one object for
your convenience. The novice mode of UIM/X supports a number of compound
objects, including Application Window and Group Box, that save you the time you
might otherwise spend creating them.

An interface is a window or dialog box that you build up from objects with UIM/X.
The novice mode of UIM/X supports four different types of interfaces: Application
Window, Secondary Window, Message dialog box, and File Selection dialog box.
Certain menu options refer to an interface, such as Save Interface; these act only on
your selected interface.

A project contains all the interfaces (i.e., windows and dialog boxes) and their
associated files for a certain GUI you are building with UIM/X. The program can
automatically save and generate code for an entire project in one step. Certain menu
options refer to a project, such as Save Project; these act on all the windows and
dialog boxes in your project.
viii Using UIM/X with SoftBench

Conventions Used in this Guide

Typographic Conventions

The following table describes the typographic conventions used in this guide.

Installation Directories

Product installation directories can depend on the platform or the user’s
preferences. To keep things simple, this guide uses general names for product
installation directories. The following table lists the name and the corresponding
product installation directory:

Using the Mouse

Before starting the tutorial, take a moment to review the location and usage of your
mouse buttons, as illustrated in the Figure P-1and the following table:

Typeface or
Symbol

Meaning Example

AaBbCc12 The names of commands, files, and
directories;
or onscreen output;
or user input.

Edit your .login file.

Use ls -a to list all the files.
%You have mail.

AaBbCc12 A placeholder you replace with your
actual value;
or words to be emphasized;
or book titles.

To delete a file, type rm filename.

You must be root to do this. See
Chapter 6 in the User’s Guide.

File⇒Open The Open option in the File menu.
Choose the File⇒Open
command.

Alt+F4 Press both Alt and F4 at once. Press Alt+F4 to exit.
Return The key on your keyboard marked

Enter, Return, or .

Press Return.

Name Description

uimx_directory The UIM/X installation directory

softbench_directory The SoftBench installation directory
Using UIM/X with SoftBench ix

1: Select 2: Adjust 3: Menu

Throughout this book, you will use the mouse buttons along with the
mouse pointer to make selections, move the input pointer, or position the
text insertion point. You can perform any of the following mouse
operations.

Button: Called: Is used for:

1 Select Selecting objects, menus, toggles, and options.

2 Adjust Resizing and moving objects.

3 Menu Displaying popup menus.

Operation Description

Point to Move the mouse to make the pointer go as directed.

Press Hold down a mouse button.

Release Release a mouse button after pressing it.

Click
Quickly press and release a mouse button without moving the
mouse.

Drag Move the mouse while pressing a mouse button.

Double-click
Click a mouse button twice in rapid succession without moving the
mouse pointer.

Triple-click
Click a mouse button three times in rapid succession without moving
the mouse pointer.
x Using UIM/X with SoftBench

In general, instructions for mouse operations include the name of the mouse button.
The exceptions are Click, Double-click, and Drag. These common operations may
be described without specifying a mouse button. For example:

• Click on the applWindow1 icon in the Interfaces Area of the Project
Window.

• Drag the Push Button icon from the Palette.

In these cases, use the Select button to click and double-click, and the Adjust button
to drag.

Setting Application Defaults
Application Defaults configure the way UIM/X looks and set the default
preferences for many of its operations. You can set the Application Defaults for all
UIM/X users or for a single user. For more details on setting your Application
Defaults see The UIM/X Developer’s Guide.

For optimum performance, set the following resources in your Application
Defaults:

Mwm*autoKeyFocus: falseMwm*clientAutoPlace:
falseMwm*focusAutoRaise:
falseMwm*focusFollowsPointer:
trueMwm*keyboardFocusPolicy: pointer

If you have a gray-scale monitor, you might try the following settings:

Mwm*activeBackground: #666666
(gray40)Mwm*activeForeground: #e5e5e5
(gray90)Mwm*background: #666666
(gray40)Mwm*foreground: #e5e5e5
(gray90)Uimx3_0*calculatedColors:
falseUimx3_0*background: #ededed
(gray93)Uimx3_0*BottomShadowColor: #000000
(black)Uimx3_0*foreground: #000000
(black)Uimx3_0*TopShadowColor: #ffffff
(white)Uimx3_0*XmText.background: #b3b3b3
(gray70)Uimx3_0*XmTextField.background: #b3b3b3
(gray70)

Note: The resources above prefixed with Mwm are specific to the Motif Window
Manager. If you are using a different window manager consult your Systems
Administrator for the equivalent settings.
Using UIM/X with SoftBench xi

xii Using UIM/X with SoftBench

Using the UIM/X
SoftBench Integration 1

Overview
When UIM/X runs under SoftBench, it uses the SoftBench framework to
implement several basic features, such as editing code and make files and
compiling project code. New menu entries have been created to access
functionality available only through SoftBench.
Using UIM/X with SoftBench 1

USING THE UIM/X SOFTBENCH INTEGRATION
Starting UIM/X From the SoftBench Tool Status Display Dialog 1
Starting UIM/X From the SoftBench Tool Status
Display Dialog

1. The system must be able to find the SoftBench executable. If you have not
already done so, add softbench_directory to your path. For example, if
your softbench_directory is /opt/softbench/bin, add the following
to your PATH environment variable:

/opt/softbench/bin

2. Start SoftBench by entering the following command at the shell prompt:

softbench

For more details, consult your SoftBench documentation.

3. Click on the Show Running Tools button in the ToolBar window. The Tool
Status Display window is displayed on the screen.

4. Choose Tool⇒Start Auxiliary Tools from the Tool Status Display window.

 The Tool Status Display - Start window is displayed on the screen.

5. Double click on the UIBUILD tool in the scrolled list. If this entry is not
in the list, SoftBench has not been configured with UIM/X.

While UIM/X is being initialized, the Starting message is displayed in
the Tool Status Display window. The copyright notice for UIM/X is
also displayed. If you click on the Cancel button, UIM/X exits.

When UIM/X is initialized the Ready message is displayed in the SoftBench
Tool Status Display window.

Adding UIM/X to the ToolBar
1. The system must be able to find the SoftBench executable. If you have not

already done so, add softbench_directory to your path. For example, if
your softbench_directory is /opt/softbench/bin, add the following
to your PATH environment variable:

/opt/softbench/bin

2. Start SoftBench by entering the following command at the shell prompt:

softbench

For more details, consult your SoftBench documentation.

3. Choose Options⇒ToolBar Setup in the ToolBar window.

4. Click on the UIM/X tool in the Available Tools scrolled list in the ToolBar
Setup window. If the UIM/X tool is not in the list, SoftBench has not been
configured with UIM/X.
2 Using UIM/X with SoftBench

USING THE UIM/X SOFTBENCH INTEGRATION
Setting Context for UIM/X 1
5. Click on the Add to ToolBar button, then click OK in the ToolBar Setup
window.

The ToolBar Setup window closes and a UIM/X icon appears in the
ToolBar window.

6. Double click on the UIM/X icon to start UIM/X.

Starting UIM/X from the SoftBench Development
Manager

To start UIM/X:

1. Double click on the Development Manager icon in the ToolBar window.
The SoftBench Development Manager window appears.

2. Double click on a UIM/X file. This action will automatically load the file
into UIM/X.

OR

2. Select the file by clicking on it and choose Actions⇒UIBuild.

Note: A new UIM/X process is started if one is not already running. A new
process is also started if the context directory setting of the SoftBench
Development Manager (DM) and UIM/X are different (which depends on
UIM/X’s context scope setting).

Setting Context for UIM/X

UIM/X will change its context if one of the following occurs:

1. The current context directory is changed when:

• You enter a new directory in the File Selection box that appears
when you select Options⇒Current Directory from the UIM/X
startup interface.

• UIM/X receives a SET-CONTEXT request containing a new
directory.

Note: UIM/X does not support the context host for the change in file context.
Using UIM/X with SoftBench 3

USING THE UIM/X SOFTBENCH INTEGRATION
Exiting UIM/X From SoftBench 1
Command-Line Options

UIM/X supports the following standard SoftBench command-line options:

Exiting UIM/X From SoftBench
1. Select UIBUILD in the SoftBench Tool Status Display window.

2. Select Tool⇒Stop from the Tool Status Display window.

When you exit UIM/X, a STOP notification is broadcast. This occurs under
one of the following conditions:

• You select File⇒Exit from the UIM/X startup interface.

• UIM/X receives a STOP request from another tool.

Before exiting, UIM/X will send a STOP request to all tools that were started
from UIM/X.

Note: All temporary files created by UIM/X for use by other tools are
removed.

Files saved by the exiting tools after UIM/X has begun exiting will not be
incorporated back into UIM/X. Therefore, if you want to save the contents of
your edit session, save them under a new file name.

Option Description
-host host_name Used only when UIM/X is running in the SoftBench

environment. Since UIM/X does not support host
context, the host context will always be set to the host
name of the local machine.

-dir directory_path Sets the current directory context to directory_path.

-file file_name Loads file_name into UIM/X, where the file is one of
the following types: project, interface, or palette.
4 Using UIM/X with SoftBench

USING THE UIM/X SOFTBENCH INTEGRATION
Using Run Mode 1
Running the SoftBench Program Builder from
UIM/X

From the Generate Code Options dialog you can invoke the SoftBench
Program Builder using the following guidelines:

• If only the Run Makefile toggle is set, a build is started.

• SoftBench Program Builder runs a make on the specified target, using the
makefile.

• If only the Run Executable toggle is set, a message is sent to a Termsrv
tool to run the specified executable using the arguments as input
parameters to the executable.

• If both toggles are set, the build is started. At the same time, UIM/X also
sends a SET-MAKEFILE-NAME request to SoftBench Program Builder.
This allows you to subsequently build the executable from within
SoftBench Program Builder and to display the results of the build in
Messages Area of the UIM/X startup interface. When UIM/X receives
notification that the build was successful, then it will run the executable.

Note: SoftBench status messages are displayed in the Messages Area. Detailed
listings of compilation error messages are displayed in the SoftBench Program
Builder.

Using Run Mode

The relationship of Run Mode to Test Mode and Design Mode causes the
following behaviors:

• Going from Design Mode to Run Mode iconifies SoftBench Program
Editor, brings up SoftBench Program Builder, and if the build is
successful, the executable runs.

• Going from Run Mode to Design Mode stops SoftBench Program Builder,
terminates the executable running via the terminal server, and normalizes
any iconified tools.

• Going From Test Mode to Run Mode unblocks any message events,
normalizes any iconified terminal server, starts up SoftBench Program
Builder and if the build is successful, the executable runs.

• Going From Run Mode to Test Mode stops SoftBench Program Builder,
and the executable running via the terminal server.
Using UIM/X with SoftBench 5

USING THE UIM/X SOFTBENCH INTEGRATION
Using the SoftBench Editor from UIM/X 1
Using the SoftBench Editor from UIM/X
When running UIM/X under SoftBench, pressing the Text Editor (…) button
brings up your SoftBench configured text editor.

UIM/X copies its contents into a temporary file and invokes an EDIT
WINDOW request, passing the file name as a handle.

Whenever UIM/X receives a FILE-MODIFIED notification from the EDIT
tool that serviced the EDIT WINDOW request (whenever you save the tool’s
buffer), the contents of the file are read back into the Text widget.

When closing a UIM/X editor (for example, the Declarations Editor), all EDIT
sessions initiated from the UIM/X editor are closed, and the temporary files are
deleted. Any unsaved changes will not be incorporated back into the Text
Widget.

Exceptions

The Callback Editor, and Interpreter Window are special cases. These
windows already contain a scrollable Text widget for entering text, and do not
have a Text Editor (…) button that can call a SoftBench editor. To invoke a
SoftBench EDIT tool from these editors choose Modify Code from the Edit
pulldown menu in the menu bar.

Using the Version Control Menus
Some of the menus contain a submenu called Version Control that allows you
to check in, check out, and check out and lock a file by sending requests to the
SoftBench Configuration Manager (CM).

The Version Control submenu appears in the following places:

• The File menu in the Project Window, Palette, and Browser.

• The Selected Interfaces pop-up menu in the Interfaces Area of the Project
Window.

• The Selected Palettes pop-up menu in the Palettes Area of the Project
Window.

• The Tools menu in the Startup Interface.

The files that can be checked in and out vary, based on what menu is used:
6 Using UIM/X with SoftBench

USING THE UIM/X SOFTBENCH INTEGRATION
Exceptions 1
All of the Version Control submenus display a three-item submenu containing
these options: Check In, Check Out, and Check Out & Lock.

As an example of usage, when one of these menu items is chosen from the
Version Control submenu in the startup interface (Project Window, Browser)
Tool pulldown menu, UIM/X displays a file selection box where you can enter
a file name.

Note: SoftBench status messages are displayed in the Startup Interface
Messages Area.

Version Control requirements and restrictions:

• Files must already be under version control.

• The version control directory must be in the current context directory.

• You must be able to write to the current context directory.

Version control on a project will only work on the project file itself. Unlike the
Save Project command, which saves the project file and all associated files,
version control is applied only to the project file.

Menu Associated Files Acts Upon
Project Window File
menu

Project files The loaded project.

Palette File menu Palette files The loaded palette.

Browser File menu Interface files The interface loaded in the
Browser.

Selected Interfaces
pop-up menu

Interface files The selected Interfaces in the
Interfaces Area of the Project
Window.

Selected Palettes pop-up
menu

Palette files The selected palettes in the
Palettes Area of the Project
Window.

Startup Interface Tool
menu

Any file Any file selected in the File
Selection box.
Using UIM/X with SoftBench 7

USING THE UIM/X SOFTBENCH INTEGRATION
Message Integration Between SoftBench and UIM/X 1
Message Integration Between SoftBench and
UIM/X

Request messages are accepted by UIM/X from other SoftBench tools. UIM/X
will respond with a message if there is an error.

Loading UIM/X Files from the SoftBench Development
Manager

When you load a UIM/X file from SoftBench Development Manager, a
LOAD-UIFILE request to UIM/X is sent to UIM/X. The context operand
specifies the file to load.

UIM/X will send a failure message only if the load failed. If the file was loaded
in its entirety, but errors occurred while parsing the file, a notification is sent
rather than a failure message.

When loading a project file into a UIM/X session that already contains a
project, all SoftBench tools that were opened from this session are sent a STOP
request and UIM/X resets and loads in the new project. Before loading the
project UIM/X displays a warning dialog box, allowing you to cancel the
request.

Importing Motif UIL Files

You can import a Motif UIL (User Interface Language) file from other
SoftBench tools by sending an IMPORT-UIL request to UIM/X. The context
operand specifies the file to import. A reply is sent back indicating the result of
the command.

Doing Window Control

You can iconify or normalize all the windows in UIM/X by sending an
ICONIFY or NORMALIZE request to UIM/X, respectively. In addition, any
SoftBench tool started by UIM/X will also be affected.

Putting UIM/X in Test Mode

When you put UIM/X in Test Mode, all SoftBench tools that were opened
from your session will be sent an ICONIFY request. UIM/X will block all
message events from the BMS. This action protects the code from being
changed during execution.
8 Using UIM/X with SoftBench

USING THE UIM/X SOFTBENCH INTEGRATION
Putting UIM/X in Run Mode 1
When you change back to Design Mode, all SoftBench tools that were
iconified are sent a NORMALIZE request to open their windows and UIM/X
accepts all blocked messages that were queued by the BMS.

Note: If you open some of the iconified EDIT tool windows, make
modifications and save them while UIM/X is in Test Mode, these changes will
not take effect in UIM/X until you change back to Design Mode.

Putting UIM/X in Run Mode

When you put UIM/X in Run Mode, all SoftBench tools that were opened
from your session, will be sent an ICONIFY request. UIM/X will block all
message events from the BMS. This action protects the code from being
changed during execution.

The SoftBench Builder tool will be sent a MAKEFILE-BUILD request that
will initiate the compilation of the application. The SoftBench Termsrv tool
will be sent a NO-STDIO request that will run the application.

When you change back to Design Mode, the SoftBench Builder tool is sent a
STOP request, the Termsrv tool is sent a KILL-ALL request, all SoftBench
tools that were iconified are sent a NORMALIZE request to open their
windows, and UIM/X accepts all blocked messages that were queued by the
BMS.

Saving and Generating Files

A FILE-MODIFIED notification (one per file) is broadcast when one of the
following occurs:

• Saving interfaces, palettes or a project.

• Generating code.
Using UIM/X with SoftBench 9

USING THE UIM/X SOFTBENCH INTEGRATION
Message Integration Between SoftBench and UIM/X 1
10 Using UIM/X with SoftBench

Using Encapsulator
Libraries 2

Overview
The combination of UIM/X and the SoftBench encapsulator is a powerful tool
for building applications that provide a messaging-aware GUI to an existing
command line-driven tool. In this section, an example demonstrates using

UIM/X and the SoftBench Encapsulator libraries to develop GUI’s for
encapsulations. The Encapsulator libraries provide subprocess control and
message handling. UIM/X produces the GUI, main program body, and
Makefile.

This section shows by example the steps required in creating an encapsulation
with UIM/X and the SoftBench encapsulator libraries. The goal is to provide a
graphical user interface (GUI) and a broadcast message server (BMS) interface
to an existing application. Understanding this example requires familiarity
with UIM/X and the SoftBench Encapsulator.
Using UIM/X with SoftBench 11

USING ENCAPSULATOR LIBRARIES
The Application Before Encapsulation 2
The Application Before Encapsulation
The application in the example is a simple tty-based application to lookup
phone numbers from a simple database. The phone database application is
command line driven.

The existing application prompts the user for a command, reads and parses the
command, performs the query indicated, outputs the results, and then prompts
again.

The commands supported by this application are:

When the application comes up, it prints the string Command? to standard out
to prompt the user for a command. The user enters any of the above
commands, providing an argument if necessary. The application will perform
the query and print any results. It will then print the Command? prompt and
await further user input. The application performs this loop until the user
enters the Quit command.

Encapsulating the Application
The encapsulated application will have a graphical user interface (GUI). The
message interface will allow other tools to initiate queries. All of the
functionality of the original application will be available via the GUI.

There will be buttons to invoke each of the user commands described above.
The “Print” and “Quit” buttons don’t require any arguments, so these actions
will correspond directly to commands of the application. The other buttons
will correspond to commands which take an argument, so an input area is

Command Description

Print Print the contents of the database.

GetByLastName
Take one argument and return any entries whose Last
Name field matches this argument.

GetByFirstName
Take one argument and return any entries whose First
Name field matches this argument.

GetByNumber
Take one argument and return any entries whose Number
field matches this argument.

GetByAreaCode
Take one argument and return any entries whose Area
Code field matches this argument.

Quit Exit the application.
12 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
2

needed to provide for the user to supply the argument. For this example, there
is an input box named text1. Output from any of these commands will be
displayed in a text output box, text2.

The Steps in This Tutorial
This tutorial takes about 90 minutes to complete. It contains the following
steps:

Step #1: Building the Application Interface

Step #2: Setting Up the Main Event Loop

Step #3: Creating the Subprocess Object

Step #4: Integrating the GUI with the Subprocess Object

Step #5: Adding Messaging to the Application

Step #6: Initializing the Encapsulation from the GUI

Step #7: Writing Files and Compiling the Application

Step #1: Building the Application Interface
Use UIM/X to build an interface with buttons to initiate actions, a text area to
enter search parameters, and a text area to display search results.
Using UIM/X with SoftBench 13

USING ENCAPSULATOR LIBRARIES
Step #2: Setting Up the Main Event Loop 2
To allow for external access to the interface, use the Method Editor to define
methods like the following to clear the display area, enter text into the display
area, and retrieve text from the display area:

phone_clear_display(swidget UxThis, Environment
* pEnv)

phone__get_display_text(swidget UxThis,
Environment *pEnv)

phone__set_display_text(swidget UxThis, char
*data, Environment *pEnv)

Step #2: Setting Up the Main Event Loop
UIM/X uses a different Motif application context (UxAppContext) than the
Encapsulator. Because of this, the Encapsulator main loop hook functions must
be set to use this different application context. The main program and make
file templates include an implementation of this event loop. These can be
enabled by performing the following steps in the Program Layout Editor.

1. Select Options⇒Loop⇒Explicit Loop.

2. Edit the Makefile template to add the following lines:

ENCAP_LIBPATH= -L$(SB_DIR)/lib/SB5.0
-R$(SB_DIR)/lib/SB5.0ENCAP_LIBS= -lencapinit
-lencap_now -lbms -lspc -lfw -lsoftlib

ENCAP_CFLAGS= -I$(SB_DIR)/include/SB5.0
-DSB_ENCAP

More details on how to modify the Encapsulator main event loop can be found
in the SoftBench Encapsulator User’s Guide.

Step #3: Creating the Subprocess Object
A subprocess object is created to execute and communicate with the
application program. An application event is set up to monitor all output from
the subprocess; all output, excluding prompts, is displayed on the GUI using
the phone__set_display_text() method. Another application event
handles prompts, retrieving text from the GUI with the
phone__get_display_text() method and including it in a notification
message.
14 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
Define Functions to Send Commands to the Application 2
Define Functions to Send Commands to the
Application

In this example, it is possible to write a single routine,
send_phone_command() which handles all input to the subprocess. This
routine takes two arguments, the command name and a command argument.
This argument can be NULL for commands which don’t take an argument
(“Print”, “Quit”). This implementation of send_phone_command() will
also clear the text output box before it sends the output to the subprocess:

/* send_phone_command
 *
 * This function is used to send commands to
the subprocess.
 * First, the GUI is cleared. Then, a command
string is
* built and sent to the subprocess with
encap_send_command().
 */

int send_phone_command(const char *cmd, const
char *data)
{

encap_boolean result = encap_False;
encap_boolean have_data = (data && *data !=
’\0’); phone_clear_display(phone, &UxEnv);
result |= encap_send_command(spc_obj, cmd,
!have_data); if(have_data) {

 result |= encap_send_command(spc_obj, " ",
encap_False);
 result |= encap_send_command(spc_obj, data,
encap_True);

}
 return result;

}

Each time a command is sent, send_phone_command() will clear the text
output box. This is the desired behavior that causes queries to the database to
be logically distinct.
Using UIM/X with SoftBench 15

USING ENCAPSULATOR LIBRARIES
Step #3: Creating the Subprocess Object 2
Define Functions to Manage Application Events

This example application has two kinds of output:

• Regular output which is the result of any of the queries.

The system does not guarantee that all data from the subprocess will be
delivered to the encapsulation at one time. Because of this, make sure the
callbacks for these application events concatenate the results to the text
output box. Again, because send_phone_command() clears this

output box, you don’t have to put any logic in the callback handler to tell
the difference between an initial burst of data and a continuation burst.

• Command? prompt.

Logically, this signals that the previous query has completed and the appli-
cation is ready to perform another. In order to avoid cluttering up the

text output box, you don’t want to display this string. In addition, because
this logically signals the end of the query, you might want to do some
additional processing at this time. This will be revisited in Step 5 on mes-
saging.

/* print_results
 *

 * This callback is invoked when the encapsulation
receives * output from the subprocess. The
"Command?" prompt is

* handled specially. If the output is not
"Command?", it is

 * displayed on the GUI with
phone__set_display_text(). */static void
print_results (encap_object obj,
encap_instance inst, void* data){ encap_string
this_string =
encap_get_instance_pattern_var(inst, 0);
if(strncmp("Command", this_string,
7))phone__set_display_text(phone, this_string,
&UxEnv);

 encap_free_string(this_string);
}

16 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
Define Functions to Manage Application Events 2
/* notify_results
 *

 * This callback procedure is invoked when the
encapsulation

* receives the "Command?" prompt from the
subprocess. Text

 * stored in the GUI is retrieved via the function

 * phone__get_display_text(), and a reply message
is

* constructed and sent. */static void
notify_results (encap_object obj,
encap_instance inst, void* data)

{

 char *txt = phone__get_display_text(phone,
&UxEnv);

 encap_send_reply(msg_obj, reply, (txt && *txt) ?
"PASS" :

"FAIL", txt); reply=encap_NULL;}
Using UIM/X with SoftBench 17

USING ENCAPSULATOR LIBRARIES
Step #3: Creating the Subprocess Object 2
Define a Function to Create the Subprocess Object

Create a subprocess object and prepare it to handle application events. When
creating the subprocess object, differentiate between the two different kinds of
output by using two different application events.

• The first application event handles the output from queries, and is created
with a very general regular expression ("(.*)\n"). Its callback simply
takes the output from the application event and displays it in the text
output window. You don’t want to display the Command? prompt, so it is
filtered out in the generic output callback.

• The second application event is called when the Command? string is sent
by the subprocess, and is created with this very specific regular expression
(Command?). When creating the subprocess object, specify both of these
events:

/* set_up_application_events
 *

 * This function is used to create the subprocess
object and
 * to register application event handlers.
Finally, the
 * subprocess is started.
 */

void set_up_application_events(char *cmd)
{ encap_event app_event1, app_event2;
app_event1=encap_make_event(encap_Application,
"Command",

notify_results, 0);
app_event2=encap_make_event(encap_Application,
"(.*)\n",print_results, 0);

 spc_obj = encap_make_object(encap_NULL, "spc",
encap_Subprocess, encap_NULL,
encap_merge_attribute(encap_COMMAND(cmd),encap
_MODE("TerminalMode")),app_event1, app_event2,
0);

 encap_free_event(app_event1);
encap_free_event(app_event2);
encap_start_process (spc_obj);

}

18 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
Define a Function to Create the Subprocess Object 2
Step #4: Integrating the GUI with the Subprocess
Object

You can now attach application behavior to the GUI elements. For this
example, you need to send some input to the application when buttons are
pressed, and take the output from the application and display it in the GUI.

To access functions defined in the encapsulation interface, the interface will
need to include the function prototypes. In the “Includes, defines, global
variables” section of the Declarations Editor, include all necessary header files:

#include <stdio.h> #include <encap_object.h>

Note: encap_object.h represents a header file that includes declarations for
functions that you have defined for your encapsulated object.

To send input to the subprocess when buttons are pressed, we need to provide
some code for the ActivateCallback property under the Behavior
category in the Property Editor. This example is simple enough that all the
buttons can call send_phone_command() directly in this callback. In the
cases where an argument is wanted, call the function UxGetText(text1)
to get the value out of the text input box. Thus, the ActivateCallback for
the Print button would be:

send_phone_command("Print", "")

The ActivateCallback for the Get By First Name button would be:

send_phone_command("GetByFirstName",
UxGetText(text1))

The rest of the callbacks would be:

send_phone_command("GetByLastName",
UxGetText(text1));

send_phone_command("GetByAreaCode",
UxGetText(text1));

send_phone_command("GetByNumber",
UxGetText(text1));

send_phone_command("Quit", "")
Using UIM/X with SoftBench 19

USING ENCAPSULATOR LIBRARIES
Step #5: Adding Messaging to the Application 2
Step #5: Adding Messaging to the Application
A message object is created to receive and send messages. Message requests
are parsed, and corresponding commands are sent to the subprocess via
send_command(). Reply notifications are constructed and sent via the
message object.

Define Functions to Handle Messages

It is necessary to send a message to the encapsulation, have it use this message
as a query to the application, and return the results as the reply to

the message. For convenience, use the application commands (“Print”,
“GetByFirstName”, etc.) as the messaging commands. This saves having to
translate the command field from the inbound messages.

When creating the message object, specify which event handler will be
invoked for the incoming messages. Because the sample application is so
simple, we have only two classes of messages to handle:

• STOP requests

• Database query requests

For simplicity, arrange it so that all database query requests are handled by the
same function, receive_msg(). The STOP request can be handled by a
separate function, stop().

/* stop
 *

 * This callback procedure is invoked when the

* encapsulation receives a STOP message. Its
purpose is

 * to ensure that a reply message is sent and that
the

* encapsulation terminates. */static void
stop(encap_object obj, encap_instance inst,
void* data)
20 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
Define Functions to Handle Messages 2
{
/* When exiting a program, an explicit reply
MUST be

 * sent to the procedure exiting before the
default

* reply can be sent. */encap_send_reply(msg_obj,

encap_get_instance_replyto(inst), "PASS",
0);#ifndef
DESIGN_TIMEencap_quit(encap_True);#endif /*
DESIGN_TIME */

}

The receive_msg() function does two things:

• Takes the command name and any message data and passes them to
send_phone_command(), the application object function discussed in
the previous section.

• Record the replyto from the incoming message in a global variable for
later use, and indicate to the messaging system that the reply will be
delayed. This is done to collect the output from the command and return it
as the reply for the message.

As mentioned in Step 3, “Create the Subprocess Object”, the application event
callback for the Command? string is the place to do any special processing
when queries are complete. In this case, this callback calls
encap_send_reply() with the value of the global replyto variable, and
the contents of the text output buffer. This sends a response message to the
initial request message, which is what the messaging system expects. In effect,
there are three events involved in the proper servicing of a message based
request to this application:

• the incoming message event, which causes a command to be sent to the
subprocess

• the application event generated by receiving the result of the query

• the application event generated by the Command? prompt
Using UIM/X with SoftBench 21

USING ENCAPSULATOR LIBRARIES
Step #5: Adding Messaging to the Application 2
This first event handler has to exit back to the main loop in order for the next
event, the output from the application, to be sent to the text output window.
Again, this event handler has to exit before the third event, the application
event triggered by the Command?prompt, to take the data from the text output
window and return it as the reply value to the initial message.

For example, you may wish to send notification messages in the callback for a
specific application event:

/* receive_msg
 *

 * This callback procedure is invoked when the

* encapsulation receives a request message. The
requested

* action and any accompanying data are parsed from
the

* message. Then the appropriate command is sent to
the

* subprocess via send_phone_command. The message
object

* is notified that a reply message will be sent
later.
*/

static void receive_msg(encap_object
obj,encap_instance inst, void*
data){encap_string inst_action =
encap_get_instance_action(inst);encap_string
inst_data =

encap_get_instance_data(inst);reply =
encap_get_instance_replyto(inst);send_phone_co
mmand(inst_action,
22 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
Define a Function to Create a Message Object 2
inst_data);encap_send_reply(msg_obj, reply,
"REPLYLATER",

encap_NULL);
}

Define a Function to Create a Message Object

With functions defined to handle the various message events, you are ready to
define a function to create the message object:

/* set_up_messages *

 * This function is used to create a message
object and to

* register message event (service request)
handlers.

* Finally, the message connection is started.

 */
void set_up_messages(void)
{

#define mer(x)
encap_make_event(encap_ServiceRequest, \x,
receive_msg, 0)#define meq(x)
encap_make_event(encap_ServiceRequest, \x,
stop, 0)

int i;encap_event event[6];

/* Make the request events and add them to the
application.*/

msg_obj = encap_make_object(encap_NULL,

"msg", encap_Message, encap_NULL,
encap_TOOLCLASS("PHONE"), event[0] =
meq("STOP"), event[1] = mer("Print"),
event[2] = mer("GetByLastName"), event[3]
Using UIM/X with SoftBench 23

USING ENCAPSULATOR LIBRARIES
Step #6: Initializing the Encapsulation from the GUI 2
= mer("GetByFirstName"), event[4] =
mer("GetByNumber"), event[5] =
mer("GetByAreaCode"), 0);

for(i=0; i<6;
i++)encap_free_event(event[i]);encap_start_mes
sage_connection(msg_obj);return;

}

Step #6: Initializing the Encapsulation from the
GUI

For convenience, write a function that will initialize the subprocess object and
the message object, as well as keep track of the GUI so that the appropriate
methods may be called. This function can also perform any other checking that
may be required to ensure that the application will run successfully.

/* set_up_encapsulation
 *

* This function is used to set up message and
application

* events for the subprocess, and to start the
subprocess.

* The swidget passed in is used to invoke methods
for

* displaying back to the user.

 */
void set_up_encapsulation(swidget gui)
{

char *cmd = "phone_app";char *dat =
"phone_app.book";
24 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
Define a Function to Create a Message Object 2
if(0 != access(cmd, X_OK)) {

fprintf(stderr, "Cannot find executable: %s.\n",
cmd);

exit(1);

}

if(0 != access(dat, R_OK)) {

fprintf(stderr, "Cannot find data file: %s.\n",
dat);

exit(1);

}

phone = gui;

set_up_messages();

set_up_application_events(cmd);
}

Next, arrange for this initialization function to be called from the GUI. A
convenient place is in the explicit loop of the main program. Using the
Program Layout Editor, edit the explicit loop to add the call. Be sure to include
the header file to define the function.

/*---

* The event loop used to make SoftBench
encapsultions.
---/

#ifdef _NO_PROTOvoid EncapInit();void
EncapEventLoop();
Using UIM/X with SoftBench 25

USING ENCAPSULATOR LIBRARIES
Step #7: Writing Files and Compiling the Application 2
#elsevoid EncapInit(int *argc, char
*argv[]);void EncapEventLoop(void);

#endif /* _NO_PROTO */

#include "encap_phone.h"

EncapInit(&argc, argv);

Step #7: Writing Files and Compiling the
Application

1. Select Options⇒Code Generation... and set ANSI C.

2. In the Program Layout Editor, set the Application Class to Phone.

3. In the Program Layout Editor, edit the Makefile to compile the necessary
extra files:

APPL_OBJS = $PJ_SPECIAL_MODULES encap_object.o

Note: encap_object.o is the object file for the source that will contain your
encapsulated application.

4. In the Program Layout Editor, press Apply.

5. Select File⇒Save Project As and save the project.

6. Select File⇒Generate Code As, click on Run Makefile, and click OK.
26 Using UIM/X with SoftBench

USING ENCAPSULATOR LIBRARIES
Define a Function to Create a Message Object 2
Conclusion
To recap how to write an encapsulation with UIM/X:

• Build the application interface, including methods.

• Set up the main event loop for Encapsulator events by selecting Explicit
Loop and by adding the encapsulator macros in the Makefile.

• Create the subprocess object, defining functions to send data to the
subprocess and setting up handlers for application events.

• Integrate the GUI with the subprocess object by writing callback
functions.

• Add messaging to the application by creating a message object and
defining handlers for message events.

• Initialize the encapsulation from the GUI by invoking the functions to
create the subprocess object and the message object. This can be done in
the Explicit Loop of the main program.

• Write the project and interface files, and compile the application.
Using UIM/X with SoftBench 27

USING ENCAPSULATOR LIBRARIES
Conclusion 2
28 Using UIM/X with SoftBench

Messages Reference A
Summary of Messages

Requests Accepted

Requests Sent

Requests Accepted by UIM/X Replies Sent
R UIBUILD ICONIFY N/F UIBUILD ICONIFY
R UIBUILD IMPORT-UIL N/F UIBUILD IMPORT-UIL
R UIBUILD LOAD-UIFILE N/F UIBUILD LOAD-UIFILE
R UIBUILD NORMALIZE N/F UIBUILD NORMALIZE
R UIBUILD SET-CONTEXT N/F UIBUILD SET-CONTEXT
R UIBUILD STATUS N UIBUILD STATUS
R UIBUILD STOP N UIBUILD STOP

Requests Sent by UIM/X Replies Accepted
R BUILD MAKEFILE-BUILD N/F BUILD MAKEFILE-BUILD
R BUILD SET-MAKEFILE-NAME F BUILD SET-MAKEFILE-NAME
R BUILD STOP Ignored
R CM VERSION-CHECK-IN N/F CM VERSION-CHECK-IN
R CM VERSION-CHECKOUT - - CO- N/F CM VERSION-CHECK-OUT - -

CO-
R CM VERSION-CHECKOUT - - CO -
LOCK-

N/F CM VERSION-CHECK-OUT- -
CO -
-LOCK-

R EDIT STOP Ignored
R EDIT WINDOW N/F EDIT WINDOW
R TERM KILL-ALL N TERM KILL-ALL
R TERM NO-STDIO N/F TERM NO-STDIO
R TERM STOP N TERM USER-MESSAGE
Using UIM/X with SoftBench 29

Summary of MessagesA
Notify and Failure Messages Accepted

Notify and Failure Messages Sent

N/F Messages Accepted by UIM/X (as a result of successful request to other
tools)
N/F BUILD BUILD-TARGET
N BUILD STOP
N EDIT FILE-MODIFIED
N EDIT STOP

N/F Messages Sent by UIM/X
N UIBUILD FILE-MODIFIED
N UIBUILD SET-CONTEXT
N UIBUILD STOP
N UIBUILD STATUS
30 Using UIM/X with SoftBench

R UIBUILD ICONIFY host dir operand A
Request Messages Accepted by UIM/X
The REQUEST messages in this section are accepted by UIM/X from other
SoftBench Tools.

Note: All messages include the host, dir, and operand context parameters.
They are described in the Parameters and Reply sections below only when they
are of primary importance.

R UIBUILD ICONIFY host dir operand

Description: Request to iconify all open UIM/X windows.

Parameters: Not used by UIM/X.

Action: Iconifies all opened UIM/X windows.All tools initiated by UIM/X are
also iconified, using their own icons.

Reply: N UIBUILD ICONIFY The operation was successful.

F UIBUILD ICONIFY The operation was not successful.

R UIBUILD IMPORT-UIL host dir operand

Description: Request to import a Motif UIL file into UIM/X and create the necessary
interface files.

Parameters: dir: The directory path.
operand: The file name, including the path and the extension

.uil. The path is absolute or relative to the dir param-
eter.

Action: Converts the UIL file into UIM/X format and loads the converted files.

Reply: N UIBUILD IMPORT-UIL dir operand The file has been imported suc-
cessfully.

F UIBUILD IMPORT-UIL dir operand error_message The file has not
been imported.
Using UIM/X with SoftBench 31

Request Messages Accepted by UIM/X A
R UIBUILD LOAD-UIFILE host dir operand

Description: Request to load a UIM/X format file.

Parameters: dir: The context path.
operand: The file name. The absolute path or the path relative to

the dir parameter.

Action: Loads a project, interface, or palette into UIM/X. Errors are displayed in
the Messages Area.

When loading a project file into a UIM/X session that already contains a
project, all SoftBench tools that were opened from this session are sent a
STOP request and UIM/X loads in the new project.

Before loading a new project, UIM/X displays a warning dialog box,
allowing you to cancel the request.

Reply: N UIBUILD LOAD-UIFILE dir operand The file has been loaded suc-
cessfully. Note that a successfully loaded file does not imply that there are
no errors in the file.

F UIBUILD LOAD-UIFILE dir operand error_message The file has not
been loaded. The file will be loaded only if the file header is valid.

R UIBUILD NORMALIZE host dir operand

Description: Request to open all UIM/X windows previously iconified via SoftBench
messages.

Parameters: Not used by UIM/X.

Action: Opens all UIM/X windows that were iconified by an ICONIFY request.
All tools that were initiated by UIM/X are also normalized.

Reply: NUIBUILD NORMALIZE

The operation was successful.

F UIBUILD NORMALIZE

The operation was not successful.
32 Using UIM/X with SoftBench

R UIBUILD SET-CONTEXT host dir operand newhost newdir newoperand A
R UIBUILD SET-CONTEXT host dir operand newhost
newdir newoperand

Description: Request to change the UIM/X context.

Parameters: newhost: host (required, but ignored by UIM/X)

newdir: directory

newoperand: project file

Action: UIM/X changes current directory to newdir and loads newoperand if and
only if the operand is a project file.

If the new project file is replacing an existing one, UIM/X sends a STOP
request to all tools that were called from UIM/X. UIM/X displays a warn-
ing dialog box allowing you to cancel the request.

Note: UIM/X does not support remote hosts. Therefore, while the context host
can be set, it is ignored by UIM/X.

Reply: N UIBUILD SET-CONTEXT host dir operand newhost newdir newoper-
and

The context has been successfully set.

F UIBUILD SET-CONTEXT current_host current_dir current_operand
error_message

The context change has been unsuccessful. The request returns the current
context.

R UIBUILD STATUS host dir operand

Description: Request to return the current status of UIM/X.

Parameters: Not used by UIM/X.

Action: Not Applicable.

Reply: N UIBUILD STATUS status The value of status can be READY or
BUSY.
Using UIM/X with SoftBench 33

Request Messages Accepted by UIM/X A
R UIBUILD STOP host dir operand

Description: Request to exit UIM/X.

Parameters: Not used by UIM/X.

Action: Commences the SHUTDOWN procedure. All SoftBench tools started by
UIM/X are also closed.

Reply: N UIBUILD STOP
The shutdown procedure has been completed.
34 Using UIM/X with SoftBench

R BUILD MAKEFILE-BUILD host dir operand A
Request Messages Sent by UIM/X
The REQUEST messages in this section are sent by UIM/X to other SoftBench
Tools.

Note: All messages include the host, dir, and operand parameters. They are
listed in the Parameters and Expected Reply sections below only when they are
of primary importance.

R BUILD MAKEFILE-BUILD host dir operand

Description: Request to BUILD tool to run make using operand as the name of the
makefile. The action is executed when you select the Run Makefile option
in the Generate Code dialog box.

The status, given by the reply message, is displayed in the Messages Area.

Parameters: dir: The directory containing the makefile.
operand: The makefile name, relative to dir.

Expected Reply: N BUILD MAKEFILE-BUILD operand The BUILD tool finished the
make successfully.

F BUILD MAKEFILE-BUILD operand error_message The make termi-
nated with an error.

Related Messages: N/F BUILD BUILD-TARGET

R BUILD SET-MAKEFILE-NAME

R BUILD STOP

R BUILD SET-MAKEFILE-NAME host dir operand

Description: Request to BUILD tool to set the name of the makefile. If the command
fails in the BUILD tool, you will not be able to perform subsequent builds
within the BUILD tool because the makefile name is not set to the correct
file name. To rectify this problem manually, set the makefile through the
BUILD tool’s user interface.

Parameters: dir: The directory containing the makefile.
operand: The name of the makefile, relative to dir.
Using UIM/X with SoftBench 35

Request Messages Sent by UIM/X A
Expected Reply: F BUILD SET-MAKEFILE-NAME operand error_message

The BUILD tool failed to change the makefile. The error_message is dis-
played in the Messages Area.

Note: UIM/X does not listen for N BUILD SET-MAKEFILE-NAME message
because no action will be taken as a result of the reply.

Related Messages: R BUILD MAKEFILE-BUILD

N/F BUILD BUILD-TARGET

R BUILD STOP host dir operand

Description: Request to exit the BUILD tool. This request is sent when UIM/X exits or
a user loads another project file.

Parameters: dir: The directory containing the makefile.

operand: The name of the makefile, relative to dir.

Expected Reply: The reply is ignored.

Related Messages: R BUILD MAKEFILE-BUILD

R CM VERSION-CHECK-IN host dir operand

Description: Request to Configuration Manager tool to check in a file already under
version control. The file must already be checked out and locked by you.

To check in a project file, select Check In from the Version Control sub-
menu in the File pulldown menu in the Project Window.

To check in an interface, select Check In from the Version Control sub-
menu in either the Selected Interfaces popup menu in the Project Window,
or the File pulldown menu in the Browser.

To check in a palette, select Check In from the Version Control submenu
in either the Selected Palettes popup menu in the Project Window, or the
File pulldown menu in the Palette.

The Check In item in the Version Control submenu in the Tools pulldown
menu in the Startup Interface brings up a file selection box where you can
enter the file name to be checked-in.

The status, given by the reply message, is displayed in the Messages Area.

Parameters: operand: The file name, including the full path.
36 Using UIM/X with SoftBench

R CM VERSION-CHECK-OUT host dir operand “- - CO -” A

Expected Reply: N CM VERSION-CHECK-IN operand message The file was placed

under version control successfully.

F CM VERSION-CHECK-IN operand error_message The file was not
placed under version control.

Related Messages: R CM VERSION-CHECK-OUT - - CO -
R CM VERSION-CHECK-OUT - - CO - LOCK -

R CM VERSION-CHECK-OUT host dir operand “- - CO -”

Description: Request to the Configuration Management tool to copy the latest version
of operand under version control into current directory—that is, the file is
not locked.

To check out a project file, select Check Out from the Version Control
submenu in the File pulldown menu in the Project Window.

To check out an interface, select Check Out from the Version Control sub-
menu in either the Selected Interfaces popup menu in the Project Window,
or the File pulldown menu in the Browser.

To check out a palette, select Check Out from the Version Control sub-
menu in either the Selected Palettes popup menu in the Project Window, or
the File pulldown menu in the Palette.

The Check Out item in the Version Control submenu in the Tools pull-
down menu in the Startup Interface brings up a file selection box where
you can enter the file name to be checked-out.

The status, given by the reply message, is displayed in the Messages Area.

Parameters: operand: The file name, including full path.

Expected Reply: N CM VERSION-CHECK-OUT operand message The file was checked
out successfully.

F CM VERSION-CHECK-OUT operand error_message The file was not
checked out.

Related Messages: R CM VERSION-CHECK-IN

R CM VERSION-CHECK-OUT - - CO - LOCK -
Using UIM/X with SoftBench 37

Request Messages Sent by UIM/X A
R CM VERSION-CHECK-OUT host dir operand “- - CO -
LOCK -”

Description: Request to the Configuration Management tool to copy the latest version
of file under version control into the current directory, locking the operand
to prevent other users from checking out and locking the same file.

To check out and lock a project file, select Check Out & Lock from the
Version Control submenu in the File pulldown menu in the Project Win-
dow.

To check out and lock an interface, select Check Out & Lock from the
Version Control submenu in either the Selected Interfaces popup menu in
the Project Window, or the File pulldown menu in the Browser.

To check out and lock a palette, select Check Out & Lock from the Ver-
sion Control submenu in either the Selected Palettes popup menu in the
Project Window, or the File pulldown menu in the Palette.

The Check Out & Lock item in the Version Control submenu in the Tools
pulldown menu in the Startup Interface brings up a file selection box
where you can enter the file name to be checked-out and locked.

The status, given by the reply message, is displayed in the Messages Area.

Parameters: operand: The file name, including full path.

Expected Reply: N CM VERSION-CHECK-OUT file message The file was checked out
successfully.

F CM VERSION-CHECK-OUT file error_message The file was not
checked out.

Related Messages: R CM VERSION-CHECK-IN

R CM VERSION-CHECK-OUT - - CO -

R EDIT STOP host dir operand

Description: Request to exit the EDIT tool. This action is executed when a user closes
or modifies the context of the UIM/X editor, loads another project file, or
exits UIM/X.

For example, selecting a new item in the Menu Editor changes the widget
context within the editor. This will close the edit tool window.

Parameters: operand: Generated temporary file, including the full path.

Expected Reply: The reply is ignored.
38 Using UIM/X with SoftBench

R EDIT WINDOW host dir operand A

Related Messages: R EDIT WINDOW

R EDIT WINDOW host dir operand

Description: Request to edit the contents of a text widget. The user selects UIM/X’s
edit button (…). UIM/X writes the contents of the text widget to a tempo-
rary file and sends a request to the EDIT tool to edit the file. (When
UIM/X is not running in the SoftBench environment, this normally brings
up UIM/X’s own text editor.)

The file is created in the current directory and is given the prefix .UxSb
and a unique identifier. The name of the file indicates the source of the
text. A typical name, for example, is the following:

.UxSbCAAa24372_Declarations_Editor_Instance_speci
fic_variables

Parameters: operand: The file to be edited, including the full path.

Expected Reply: N EDIT WINDOW operand The tool successfully loaded the file.

F EDIT WINDOW operand error_message The tool did not load the file.
The error_message is displayed in the Messages Area.

Related Messages: N EDIT FILE-MODIFIED

R EDIT STOP

R TERM KILL-ALL host dir operand terminal-id <how to
kill>

Description: UIM/X sends this Request to kill the stand alone application process exe-
cuted from Run Mode and Run Executable. By default a SIGTERM signal
will be sent the process instructing it to terminate. If the string ‘‘KILL’’ is
used in the <how-to-kill> field, a SIGKILL will be used instead.

Parameters: host, dir operand: Ignored and have no impact on the message.

terminal-id: This is the terminal-id field returned in the Notify reply
from TERMINAL, NO-STDIO, SHELL-TERMINAL and
DBOX-TERMINAL messages.

how-to-kill: This option may be omitted to have a SIGTERM signal
used to kill the specified terminal emulator or the string
KILL may be used to have s SIGKILL used instead.

Expected Reply: N TERM KILL-ALL.
Using UIM/X with SoftBench 39

Request Messages Sent by UIM/X A
Related Messages: R TERM NO-STDIO

R TERM STOP

N/F TERM NO-STDIO

N TERM KILL-ALL

N TERM USER-MESSAGE

R TERM NO-STDIO host dir operand exec-args
exec-host program args

Description: UIM/X sends this Request to start up a terminal server (without a window)
from Run Mode or Run Executable to run the built stand alone applica-
tion. This is useful for running programs that create their own windows
(e.g. X11 programs).

Parameters: host: Not used by UIM/X.
dir Not used by UIM/X.
operand: Not used by UIM/X.
exec-args: This is a comma separated list of arguments to be

passed onto the terminal emulator. No blanks are
allowed.

exec-host: The host where the terminal emulator window will be
created. The type of emulator window (for example,
hpterm, xterm, or shelltool) is determined by identify-
ing the type of machine exec-host is and looking up the
appropriate entry in the softtermsrv configuration file.

program: The program to execute.
arg: The arguments to pass to the program being executed

(if any).

Expected Reply: N TERM NO-STDIO

F TERM NO-STDIO

Related Messages: R TERM KILL-ALL

R TERM STOP N TERM KILL-ALL

N TERM USER-MESSAGE

R TERM STOP host dir operand

Description: UIM/X send this Request to stop the terminal server that is running the
executable.
40 Using UIM/X with SoftBench

R TERM STOP host dir operand A

Parameters: file: Not used by UIM/X.

Expected Reply: The reply is ignored.

Related Messages: R TERM KILL-ALL

R TERM NO-STDIO

R TERM STOP

N/F TERM NO-STDIO

N TERM USER-MESSAGE
Using UIM/X with SoftBench 41

Notify and Failure Messages Accepted by UIM/X A
Notify and Failure Messages Accepted by UIM/X
The NOTIFY messages in this section are accepted by UIM/X from other
SoftBench Tools, as a result of successfully starting the tools.

Note: All messages include the host, dir, and operand parameters. They are
described in the Parameters section below only when they are of primary
importance.

N/F BUILD BUILD-TARGET host dir operand
error_message

Description: Notification/Failure received from BUILD tool indicating the user suc-
cessfully/unsuccessfully completed a build through the Tools interface.
This message is accepted only if the BUILD tool has been called.

Parameters: operand: The name of the Makefile originally sent in the REQUEST
to SETMAKEFILE-NAME in the BUILD tool.

Action: Displays message indicating success/failure in the Messages Area.

Related Messages: R BUILD MAKEFILE-BUILD

R BUILD SET-MAKEFILE-NAME

N BUILD STOP host dir operand error_message

Description: Notification sent by a BUILD tool that it has been closed.

Parameters: Not used by UIM/X.

Action: Display a message in Messages Area. All BUILD tool messages are
unregistered with the BMS.

Related Messages: R BUILD MAKEFILE-BUILD

N EDIT FILE-MODIFIED host dir operand

Description: When a temporary UIM/X file is saved by an EDIT tool, notification is

broadcast indicating that file has been saved by that tool.

Parameters: operand: The name of modified file-contains the absolute path.
42 Using UIM/X with SoftBench

N EDIT STOP host dir operand A

Action: Loads the contents of the file into the text widget from which the text was

originally taken.

Related Messages: R EDIT WINDOW

N EDIT STOP host dir operand

Description: Notification sent by an EDIT tool that it has been closed.

Parameters: Not used by UIM/X.

Action: The temporary file is deleted and the text widget from which the EDIT
tool was started is made sensitive. All EDIT messages with the same con-
text are unregistered with the BMS.

Related Messages: R EDIT WINDOW
Using UIM/X with SoftBench 43

Notify and Failure Messages Sent by UIM/X A
Notify and Failure Messages Sent by UIM/X
The NOTIFY and FAILURE messages in this section are broadcast by
UIM/X to other SoftBench Tools.

Note: All messages include the host, dir, and operand parameters. They are
listed in the Parameters area below only when they are of primary importance.

N UIBUILD FILE-MODIFIED host dir operand

Description: Broadcast notification that UIM/X has written a file to disk. This can
occur in the following situations:

• A project, interface, or palette has been saved.

• While generating code-that is, while the interface source, header,
main, makefile, UIL, or .rf files are generated.

Parameters: dir: The absolute directory path where the file was saved.

operand: The name of the saved file, including full path.

N UIBUILD SET-CONTEXT host dir operand

Description: Broadcast notification that UIM/X has changed context. This can occur if
the current directory has been changed through the Current Directory in
the Options pulldown.

Parameters: dir: The absolute directory path where the file was saved.

operand: The name of the saved file, including full path.

Note: UIM/X does not support remote hosts. Therefore, the context host will
always be the hostname on which UIM/X is executing.

N UIBUILD STATUS host dir operand

Description: Notification sent by UIM/X of its own status.

N UIBUILD STOP host dir operand

Description: Notification sent by UIM/X that it is shutting down. This occurs when
selecting Exit from the File pulldown in the menu bar of the startup inter-
face.
44 Using UIM/X with SoftBench

N UIBUILD STOP host dir operand A

Parameters: host The current context host.

dir: The current context directory.

operand: The current context operand.
Using UIM/X with SoftBench 45

Notify and Failure Messages Sent by UIM/X A
46 Using UIM/X with SoftBench

Error Messages B
Overview

The following SoftBench-related error messages are displayed in the Messages
Area.

Error Error Message Description
206 SoftBench tool (tool_name) -

error occurred while
executing command:
returned_error_message

An error occurred while executing
the specified command in the called
tool.

266 Failed to call SoftBench
tool (tool_name)

The tool is not configured
inSoftBench.

267 Failed to generate
temporary file name for
SoftBench tool (tool_name)

Problem creating a file in the
current directory. Verify
permissions.

268 Failed to open file_name The file either does not exist or
permissions do not allow the user to
open the file.

269 Failed to write to file_name This is an internal error. UIM/X
cannot write a temporary file in the
context directory.

270 Failed to read file_name This is an internal error. UIM/X
cannot open a temporary file in the
context directory.

757 SoftBench Error: Unknown
message type used to
display returned message
from tool. Returned
Message:
SoftBench_message

Invalid input parameter used when
calling�UxSbDisplayMsg()

760 SoftBench command line
argument - host does not
support remote hosts.
Setting context to
(current_host).

The host context will be set to the
host name of the machine on which
UIM/X is running.
Using UIM/X with SoftBench 47

B

Note: Any strings in the data field of a Notify or Failure message will also be
displayed.

Note: Text set in italics—file_name, tool_name, command,
returned_error_message, current_host and SoftBench_message—is replaced
with the relevant information.
48 Using UIM/X with SoftBench

Index
Index

A
adding messaging to an application 20
Adjust mouse button x
Alt key ix
application defaults xi

B
building an Application Interface 13

C
compiling the application 26
compound objects

definition viii
creating a subprocess object 14

D
definition

compound object viii
interface viii
Motif widget viii
object viii
project viii

Design Mode 5

E
EDIT WINDOW request 6
Enter key ix
error messages 47
example application 12

F
FILE-MODIFIED notification 6, 9
files

generating 9

saving 9

G
Generate Code Options dialog 5
generating files 9

I
ICONIFY request 8
importing Motif UIL files 8
IMPORT-UIL request 8
initializing the encapsulation from the GUI 24
installation directories ix
integrating a GUI with a subprocess object 19
interface

definition viii

L
Loading UIM/X Files from the SoftBench Devel-

opment Manager 8
LOAD-UIFILE request 8

M
Menu mouse button x
messages

summary of 29
Messages Area of the Project Window 5
Motif UIL files

importing 8
Motif widget

definition viii
mouse

adjust button x
menu button x
select button x
usage ix

mouse button
Using UIM/X with SoftBench 49

Index
naming conventions for ix

N
N BUILD STOP notification/failure message 42
N EDIT FILE-MODIFIED notification/failure

message 42
N EDIT STOP notification/failure message 43
N UIBUILD FILE-MODIFIED notification/failure

message 44
N UIBUILD SET-CONTEXT notification/failure

message 44
N UIBUILD STATUS notification/failure message

44
N UIBUILD STOP notification/failure message 44
N/F BUILD BUILD-TARGET notification/failure

message 42
naming conventions

menu options viii
mouse buttons vi
Return key ix
shell prompts ix

NORMALIZE request 8, 9
notification/failure messages

accepted by UIM/X 30, 42
N BUILD STOP 42
N EDIT FILE-MODIFIED 42
N EDIT STOP 43
N UIBUILD FILE-MODIFIED 44
N UIBUILD SET-CONTEXT 44
N UIBUILD STATUS 44
N UIBUILD STOP 44
N/F BUILD BUILD-TARGET 42
sent by UIM/X 30, 44

O
object

definition viii
OSF/Motif Style Guide vii

P
PATH environment variable

setting 2

project
definition viii

Project Window
Messages Area in 5

R
R BUILD MAKEFILE-BUILD request message

35
R BUILD SET-MAKEFILE-NAME request mes-

sage 35
R BUILD STOP request message 36
R CM VERSION-CHECK-IN request message 36
R CM VERSION-CHECK-OUT request message

37, 38
R EDIT STOP request message 38
R EDIT WINDOW request message 39
R TERM KILL-ALL request message 39
R TERM NO-STDIO request message 40
R TERM STOP request message 40
R UIBUILD ICONIFY request message 31
R UIBUILD IMPORT-UIL request message 31
R UIBUILD LOAD-UIFILE request message 32
R UIBUILD NORMALIZE request message 32
R UIBUILD SET-CONTEXT request message 33
R UIBUILD STATUS request message 33
R UIBUILD STOP request message 34
request messages

accepted by UIM/X 29, 31
R BUILD MAKEFILE-BUILD 35
R BUILD SET-MAKEFILE-NAME 35
R BUILD STOP 36
R CM VERSION-CHECK-IN 36
R CM VERSION-CHECK-OUT 37, 38
R EDIT STOP 38
R EDIT WINDOW 39
R TERM KILL-ALL 39
R TERM NO-STDIO 40
R TERM STOP 40
R UIBUILD ICONIFY 31
R UIBUILD IMPORT-UIL 31
R UIBUILD LOAD-UIFILE 32
R UIBUILD NORMALIZE 32
50 Using UIM/X with SoftBench

Index

R UIBUILD SET-CONTEXT 33
R UIBUILD STATUS 33
R UIBUILD STOP 34
sent by UIM/X 29, 35

resources
setting xi

Return key ix
Run Executable toggle 5
Run Makefile toggle 5
Run Mode 5

of UIM/X 9
using 5

running SoftBench Editors from UIM/X 6

S
saving and generating files 9
saving files 9
Select mouse button x
SET-MAKEFILE-NAME request 5
setting application defaults xi
setting context for UIM/X 3
setting up a Main event loop 14
setting your PATH environment variable 2
SoftBench

defined v
exiting from UIM/X 4

SoftBench Development Manager
loading UIM/X files from 8
starting UIM/X from 3

SoftBench Editors
running from UIM/X 6

SoftBench Encapsulator libraries
using UIM/X with 11

SoftBench Program Builder
running from UIM/X 5

SoftBench Tool Status Display dialog
starting UIM/X from 2

softbench_directory ix
STOP request 8
summary of messages 29

T
Test Mode 5

of UIM/X 8
Text Editor

button 6
toggle

Run Executable 5
Run Makefile 5

Typographic Conventions ix

U
UIM/X

editors 6
exiting from SoftBench 4
in Run Mode 5, 9
in Test Mode 8
setting context for 3
starting from SoftBench Development Manag-

er 3
starting from SoftBench Tool Status Display

dialog 2
UIM/X editors

closing 6
uimx_directory ix
using Run Mode 5
using Version Control menus 6

V
Version Control Menus

using 6

W
window control 8
writing project and interface files 26
Using UIM/X with SoftBench 51

Index
52 Using UIM/X with SoftBench

	Preface
	Overview
	Who Should Use this Guide
	Before You Read this Guide
	The UIM/X Document Set and Related Books
	Suggested Reading
	How this Guide Is Organized
	Some Terms You Should Know
	Conventions Used in this Guide
	Typographic Conventions
	Installation Directories
	Using the Mouse

	Setting Application Defaults

	Using the UIM/X SoftBench Integration 1
	Overview
	Starting UIM/X From the SoftBench Tool Status Display Dialog
	Adding UIM/X to the ToolBar

	Starting UIM/X from the SoftBench Development Manager
	Setting Context for UIM/X
	Command-Line Options

	Exiting UIM/X From SoftBench
	Running the SoftBench Program Builder from UIM/X
	Using Run Mode

	Using the SoftBench Editor from UIM/X
	Exceptions

	Using the Version Control Menus
	Message Integration Between SoftBench and UIM/X
	Loading UIM/X Files from the SoftBench Development Manager
	Importing Motif UIL Files
	Doing Window Control
	Putting UIM/X in Test Mode
	Putting UIM/X in Run Mode
	Saving and Generating Files

	Using Encapsulator Libraries 2
	Overview
	The Application Before Encapsulation
	Encapsulating the Application
	The Steps in This Tutorial
	Step #1: Building the Application Interface
	Step #2: Setting Up the Main Event Loop
	Step #3: Creating the Subprocess Object
	Define Functions to Send Commands to the Application
	Define Functions to Manage Application Events
	Define a Function to Create the Subprocess Object

	Step #4: Integrating the GUI with the Subprocess Object
	Step #5: Adding Messaging to the Application
	Define Functions to Handle Messages
	Define a Function to Create a Message Object

	Step #6: Initializing the Encapsulation from the GUI
	Step #7: Writing Files and Compiling the Application
	Conclusion

	Messages Reference A
	Summary of Messages
	Requests Accepted
	Requests Sent
	Notify and Failure Messages Accepted
	Notify and Failure Messages Sent

	Request Messages Accepted by UIM/X
	R UIBUILD ICONIFY host dir operand
	R UIBUILD IMPORT-UIL host dir operand
	R UIBUILD LOAD-UIFILE host dir operand
	R UIBUILD NORMALIZE host dir operand
	R UIBUILD SET-CONTEXT host dir operand newhost newdir newoperand
	R UIBUILD STATUS host dir operand
	R UIBUILD STOP host dir operand

	Request Messages Sent by UIM/X
	R BUILD MAKEFILE-BUILD host dir operand
	R BUILD SET-MAKEFILE-NAME host dir operand
	R BUILD STOP host dir operand
	R CM VERSION-CHECK-IN host dir operand
	R CM VERSION-CHECK-OUT host dir operand “- - CO -”
	R CM VERSION-CHECK-OUT host dir operand “- - CO - LOCK -”
	R EDIT STOP host dir operand
	R EDIT WINDOW host dir operand
	R TERM KILL-ALL host dir operand terminal-id <how to kill>
	R TERM NO-STDIO host dir operand exec-args exec-host program args
	R TERM STOP host dir operand

	Notify and Failure Messages Accepted by UIM/X
	N/F BUILD BUILD-TARGET host dir operand error_message
	N BUILD STOP host dir operand error_message
	N EDIT FILE-MODIFIED host dir operand
	N EDIT STOP host dir operand

	Notify and Failure Messages Sent by UIM/X
	N UIBUILD FILE-MODIFIED host dir operand
	N UIBUILD SET-CONTEXT host dir operand
	N UIBUILD STATUS host dir operand
	N UIBUILD STOP host dir operand

	Error Messages B
	Overview

	Index

