
User’s Guide

ii UIM/X User’s Guide

Copyright © 2005-2007 Integrated Computer Solutions, Inc.

The UIM/X User’s Guide™ manual is copyrighted by Integrated Computer Solutions, Inc., with all rights
reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system, or transmitted
in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the
prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 Middlesex Turnpike, Bedford, MA 01730

Tel: 617.621.0060

Fax: 617.621.9555

E-mail: info@ics.com

WWW: http://www.ics.com

UIM/X Trademarks
UIM/X, Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software Development Kit, BX/Win
SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak, ViewKit ObjectPak, VKit,
and ICS Motif are trademarks of Integrated Computer Solutions, Inc.

Motif is a trademark of Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

All other trademarks are properties of their respective owners.

Contents

UIM/X User’s Guide iii

Preface ..vii

Chapter 1—Running UIM/X
Starting UIM/X ... 2
Using UIM/X Command-Line Options.. 4
Starting UIM/X in Novice Mode.. 5
Starting UIM/X in a Different Language Mode ... 6
Configuring UIM/X’s Start-Up Desktop .. 6
Setting Start-Up Geometry .. 13
Resetting UIM/X... 16
Exiting UIM/X ... 17

Chapter 2—Building Interfaces
Working with Shells ... 20
Reparenting Objects .. 22
Recreating Objects .. 23
Naming Conventions ... 23
Browsing Interfaces ... 24

Chapter 3—Building Palettes
About Palette Modes ... 30
Creating an Object Library... 30
Working with Palettes .. 32
Working with Categories in a Palette... 35
Working with Objects ... 36

Chapter 4—Setting Properties
Opening the Property Editor .. 40
Setting the Loading Options .. 40
Selecting the Property Category.. 43
Setting Properties .. 44
Changing a Property Source ... 48
Editing Properties for Multiple Objects... 50
Changing Object Names.. 50
Changing the Scope of an Object.. 51
Reparenting Objects .. 51

iv UIM/X User’s Guide

Chapter 5—Specifying Callbacks and Connections
The Callback Editor.. 56
Making Connections .. 57
The Relationship Between Callbacks and Connections .. 64

Chapter 6—Editing Interface Code
General Code Guidelines... 69
Linking Interfaces Together ... 75
Linking Interfaces Together Using Instances... 76
Passing the Parent to the Interface Function... 76
Styles of Handling Interfaces ... 77

Chapter 7—Building Parametric Interfaces
Adding Arguments ...84
Putting Code in Properties ...84
Expressions That Don’t Have a Legal Value ... 84
Putting Arguments in Properties .. 85
Multiple Copies of Interfaces.. 86
Building Reusable Components... 90
Parametric Instances ... 90

Chapter 8—Building Reusable Interface Components
Understanding the UIM/X Component Model .. 94
Understanding the Generated C++ Code .. 106
Generating C++ Code without C++ Bindings... 117
Passing Arguments to Base Class Constructors ... 120

Chapter 9—Working with Components, Subclasses, and
Instances

Creating a Component ...124
Managing Instances... 125
Promoting an Object to Top-Level ... 126
Adding Editable Properties to an Instance... 126
Adding Callbacks to Instances... 129
Setting Instance Geometry .. 130
Creating an Instance.. 131
Creating a Subclass... 131
Creating Children of an Instance ... 132
Generating Code for Components ... 133
When the Component Exists Only as Code...134

UIM/X User’s Guide v

Declaration Properties ... 135
Storing an Instance in a Palette... 136
Sharing Components Among Projects and Developers .. 136

Chapter 10—Methods
Understanding the Method Editor .. 140
Creating, Changing, and Reverting Methods... 142
Reserved Words .. 142
Overriding Methods in Subclasses .. 142
Calling Methods ... 143
Calling Methods in Other Interfaces .. 144
Using Methods... 148
Method Dispatch in Generated C Code... 150
Methods in C++ Code.. 154

Chapter 11—Using the Interpreter
Translation Units.. 158
Evaluating Code with the Interpreter ... 159
Opening Files and Loading Source Code.. 161
Calling Functions with the Interpreter .. 163
The Interpreter Mode and Code Generation.. 164
Notes about the Interpreter.. 165

Chapter 12—Mixing Compiled and Interpreted Code
Augmenting UIM/X... 170

Appendix A—Advanced C++ Programming in UIM/X.......177
Configuring UIM/X for C++ Development .. 178

Appendix B—Frequently Asked Questions.......................189
Index..195

vi UIM/X User’s Guide

UIM/X User’s Guide vii

Preface

Overview
Well-designed applications with iconic user interfaces have many advantages:
they are easy to learn, easy to use, and can provide users with the support
needed to effectively work with the application. Unfortunately, good iconic
user interfaces are difficult and time-consuming to develop.

UIM/X allows you, the software developer, to interactively create and test
sophisticated iconic user interfaces quickly and easily. You can use UIM/X for
a wide range of applications—from existing applications currently driven by
keyboard input to state-of-the-art applications with direct-manipulation user
interfaces. UIM/X is a powerful tool that can help you create iconic user
interfaces in a fraction of the time it normally takes to program. You don’t have
to be a user interface specialist to use UIM/X—virtually any software
developer can use it.

UIM/X brings you all the benefits of iconic user interfaces, none of the
drawbacks, and many additional benefits exclusive to it.

viii UIM/X User’s Guide

Who Should Use this Guide
This manual assumes you are familiar with the basics of UIM/X. Before using
this manual, review the UIM/X Beginner’s Guide.

This manual also assumes that you have some knowledge of programming and
a general understanding of the X Window System. You should also know how
to use common items such as menus, buttons, and scroll bars. If you are not
familiar with these items, you may find it useful to review the OSF/Motif
User’s Guide and the UIM/X Motif Developer’s Guide.

Before you begin, check with your system administrator to ensure that the
software has been installed as described in the UIM/X Installation Guide.

Before You Read this Guide
This guide makes the following assumptions:

• You are familiar with the basic functions of selecting from menus and
dialog boxes; opening, moving, resizing and closing windows, and
clicking icons.

• You understand the functions of the three mouse buttons, which this guide
refers to as the Select button (left button), the Adjust button (middle),
and the Menu button (right). See “Using the Mouse” on page xiii.

• Either you have enough familiarity with programming to enter your own
callback code; or you are using the novice mode of UIM/X to help design
user interfaces for which a colleague can provide any code required.

UIM/X User’s Guide ix

The UIM/X Document Set and Related Books
This section lists the UIM/X document set, and provides a suggested list for
further reading.

The following list is the complete UIM/X document set:

• UIM/X Installation Guide. Explains how to install and run UIM/X.
Includes information on the files provided with UIM/X, backwards
compatibility issues, and compiler considerations.

• UIM/X Beginner’s Guide. Introduces UIM/X by presenting Novice Mode,
the simplified Palette that enables new users to be productive immediately.
Includes information on a number of important features for creating,
testing and running applications.

• UIM/X Tutorial Guide. A series of step-by-step tutorials, teaching tools
and techniques that will greatly assist you in developing your own
applications. Features tutorials in Novice Mode, Standard Mode, and on
advanced topics.

• UIM/X User’s Guide. Explores the UIM/X features common to both
Motif and cross-platform development. Includes discussions of how to use
UIM/X’s editors to set properties, add behavior, etc.

• UIM/X Motif Developer’s Guide. An in-depth guide to the widgets,
features and capabilities of UIM/X as they relate specifically to Motif
development.

• UIM/X Advanced Topics. Describes how to customize UIM/X, including
integrating new widget and component classes into the executable.
Includes reference information of an advanced technical nature.

• UIM/X Reference Manual. A comprehensive list of properties, methods,
and events, plus more, for Motif development. Designed for the
experienced developer.

x UIM/X User’s Guide

Suggested Reading

For more information on designing GUIs, see any of the following books:

• OSF/Motif Style Guide release 1.2
(Prentice Hall, 1993, ISBN 0-13-643123-2)

• Visual Design with OSF/Motif
(by Shiz Kobara, Addison-Wesley, 1991, ISBN 0-201-56320-7)

• New Windows Interface: An Application Guide
(Microsoft Corporation, 1994, ISBN 1-55615-679-0)

• Human Interface Guidelines: The Apple Desktop Interface
(Addison-Wesley, 1987, ISBN 0-201-17753-6)

How this Guide Is Organized
Chapter 1, “Running UIM/X” , covers the basic concepts of starting and
running UIM/X.

Chapter 2, “Building Interfaces”, explains some of the features that
allow you to interact with UIM/X to build your interface.

Chapter 3, “Building Palettes”, explains how to build and modify
palettes.

Chapter 4, “Setting Properties”, explains how to use the Property Editor
to manipulate the appearance and behavior of the objects in your
interface.

Chapter 5, “Specifying Callbacks and Connections”, shows how to use the
Callback Editor and the Connection Editor to specify behavior.

Chapter 6, “Editing Interface Code”, explains how to use the Declaration
Editor to edit portions of your generated code.

Chapter 7, “Building Parametric Interfaces”, explains how to build
interfaces with a dynamic initial state.

Chapter 8, “Building Reusable Interface Components”, shows how to save
time and increase consistency by turning a useful group of widgets into a
reusable component.

Chapter 9, “Working with Components, Subclasses, and Instances”,
explains how to better use components by creating subclasses and instances.

Suggested Reading

UIM/X User’s Guide xi

Chapter 10, “Methods”, describes the Method Editor and explains how to
use it while building your interfaces.

Chapter 11, “Using the Interpreter”, explains how to use the Interpreter to
evaluate and test your code.

Chapter 12, “Mixing Compiled and Interpreted Code”, shows how to
augment the UIM/X executable with the object code of other applications.

Appendix A, “Advanced C++ Programming in UIM/X”, explains
object-oriented development, and how to use C++ within UIM/X.

Appendix B, “Frequently Asked Questions”, provides answers to a list of
frequently asked questions.

Some Terms You Should Know
Certain basic terms recur throughout this guide, and it helps to understand
them from the outset.

An object is a building block you can use to build an interface with UIM/X.

A Motif widget is an object whose appearance and behavior precisely follows
the OSF/Motif Style Guide. The novice mode of UIM/X supports a number of
popular Motif widgets, including Push Button, Label, Text Field, and more.

A compound object consists of several Motif widgets combined into one object
for your convenience. The novice mode of UIM/X supports a number of
compound objects, which save you the time you might otherwise spend
creating them, including Application Window and Group Box.

An interface is a window or dialog box that you build up from objects with
UIM/X. The novice mode of UIM/X supports four different types of interfaces:
Application Window, Secondary Window, Message dialog box, and File
Selection dialog box. Certain menu options refer to an interface, such as Save
Interface; these act only on your selected interface.

A project contains all the interfaces (i.e., windows and dialog boxes) and their
associated files for a certain GUI you are building with UIM/X. The program
can automatically save and generate code for an entire project in one step.
Certain menu options refer to a project, such as Save Project; these act on all
the windows and dialog boxes in your project.

xii UIM/X User’s Guide

Conventions Used in this Guide

Installation Directories

Product installation directories can depend on the platform or the user’s
preferences. To keep things simple, this guide uses general names for product
installation directories. The following table lists the name and the
corresponding product installation directory:

Typographic Conventions

The following table describes the typographic conventions used in this guide.

Name Description

uimx_directory The UIM/X installation directory.

Typeface or
Symbol Meaning Example

AaBbCc12 The names of commands,
files, and directories;
or onscreen output;
or user input.

Edit your .login file.

%You have mail.
Use ls -a to list all the
files.

AaBbCc12 A placeholder you replace
with your actual value;
or words to be emphasized;
or book titles.

To delete a file, type rm
filename.

You must be root to do this.
See Chapter 6 in the User’s
Guide.

File⇒Open The Open option in the File
menu.

Choose the File⇒Open
command.

Alt+F4 Press both Alt and F4 at
once.

Press Alt+F4 to exit.

Return The key on your keyboard
marked Enter, Return, or ↵.

Press Return.

Typographic Conventions

UIM/X User’s Guide xiii

Using the Mouse
Before starting the tutorial, take a moment to review the location and usage of
your mouse buttons, as illustrated below and in the following table:

Throughout this book, you use the mouse buttons along with the mouse pointer
to make selections, move the input pointer, or position the text insertion point.
You can perform any of the following mouse operations.

1: Select 2: Adjust 3: Menu

Button Called Is used for

1 Select Selecting objects, menus, toggles, and options.

2 Adjust Resizing and moving objects.

3 Menu Displaying popup menus.

Operation Description

Point to Move the mouse to make the pointer go as directed.

Press Hold down a mouse button.

Release Release a mouse button after pressing it.

Click Quickly press and release a mouse button without moving
the mouse.

Drag Move the mouse while pressing a mouse button.

Double-click Click a mouse button twice in rapid succession without
moving the mouse pointer.

Triple-click Click a mouse button three times in rapid succession
without moving the mouse pointer.

xiv UIM/X User’s Guide

In general, instructions for mouse operations include the name of the mouse
button. The exceptions are Click, Double-click, and Drag. These common
operations may be described without specifying a mouse button. For example:

• Click on the applWindow1 icon in the Interfaces Area of the Project
Window.

• Drag the Push Button icon from the Palette.

In these cases, use the Select button to click and double-click, and the Adjust
button to drag.

Setting Application Defaults
Application Defaults configure the way UIM/X looks and set the default
preferences for many of its operations. You can set the Application Defaults
for all UIM/X users or for a single user. For more details on setting your
Application Defaults see UIM/X Advanced Topics.

For optimum performance, set the following resources in your Application
Defaults.

Note: The resources above prefixed with Mwm are specific to the Motif
Window Manager. If you are using a different window manager consult your
Systems Administrator for the equivalent settings.

Mwm*autoKeyFocus: false
Mwm*clientAutoPlace: false
Mwm*focusAutoRaise: false
Mwm*focusFollowsPointer: true
Mwm*keyboardFocusPolicy: pointer

UIM/X X User’s Guide 1

Running UIM/X 1
Overview

This chapter covers the basic concepts of running UIM/X. Topics covered in
this chapter include:

• Starting UIM/X

• Using UIM/X command-line options

• Starting UIM/X in Novice Mode

• Configuring the start-up desktop

• Resetting UIM/X

• Exiting UIM/X

RUNNING UIM/X
Starting UIM/X

2 UIM/X User’s Guide

1

Starting UIM/X

To Start a UIM/X Session
1. Start the X Window System.

2. Open a terminal window.

3. Start UIM/X from the UNIX prompt:

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

4. After a brief pause, a copyright notice window appears on the screen, to
show that UIM/X is being initialized. Click on the OK to make the notice
disappear, or just wait—the notice will disappear once UIM/X is
initialized. Clicking on Cancel quits UIM/X.

5. When you see the UIM/X Project Window and the Ux palette (see
Figure 1-1), you are ready to begin.

6. Iconify the terminal window.

The Project Window is the main window of UIM/X. When you start
UIM/X, an empty Project Window appears on your screen. The Ux palette,
from which you can select the objects for your project, appears beside the
project window as shown in Figure 1-1.

uimx &

uimx_directory/bin/uimx &

RUNNING UIM/X
To Start a UIM/X Session

UIM/X User’s Guide 3

1

Figure 1-1 Project Window and Ux Palette

RUNNING UIM/X
Using UIM/X Command-Line Options

4 UIM/X User’s Guide

1

Using UIM/X Command-Line Options
By default UIM/X starts up in Design mode with the Ux palette and an
empty project window. By specifying options on the command line,
however, you can start UIM/X and load projects, interfaces, and palettes.

UIM/X accepts a number of command-line options. These include:

Loading Files

UIM/X supports three basic files types:

By using UIM/X’s -file command-line option, you can tell UIM/X to
start-up and automatically load a specific project, interface, or palette file.
For example, the following command will cause UIM/X to load the Toolbar
project at start up.

You can load an interface and palettes the same way.

-file filename filename can be a project, an interface,
or palette file. The filename can include
an absolute path name or can be
relative to either the current
directory or to the -dir value.

-dir path Set UIM/X’s current directory to path.

-novice Starts UIM/X in Novice Mode.

-xrm options Any specification that you would
otherwise put into a resource file. For
example:

uimx -xrm "*UxPECompound.set: false"

-language
language

One of: krc, ansic, or c++

.prj Project file

.i Interface file

.pal Palette file

uimx_directory/bin/uimx -file ToolBar.prj &

RUNNING UIM/X
Loading Files

UIM/X User’s Guide 5

1

Starting UIM/X in Novice Mode
UIM/X provides a Novice Mode to help new users learn how to use the
product. When you start UIM/X in Novice Mode, you get a basic set of
features and tools that makes it easier to learn UIM/X.

To start UIM/X in Novice Mode, specify the -novice option on the UIM/X
command line:

Figure 1-2 shows the start-up interface for Novice Mode. For more
information about Novice Mode, see the UIM/X Beginner’s Guide.

Figure 1-2 UIM/X Novice Mode

uimx_directory/bin/uimx -novice &

RUNNING UIM/X
Starting UIM/X in a Different Language Mode

6 UIM/X User’s Guide

1

Starting UIM/X in a Different Language Mode
By default, UIM/X starts in C++ mode. Alternatively, you can start UIM/X
in ANSI C mode or K&R C mode by using the -language argument.

For example, to start UIM/X in K&R C mode, specify the -language
option on the Unix command line, as follows:

Configuring UIM/X’s Start-Up Desktop

Note: In general, UIM/X will provide the best viewing results when displayed
on a color monitor with a minimum resolution of 1280 x 1024 pixels and
suitable color support (>256 colors) for typical X applications.

The start-up desktop is the initial working environment UIM/X provides for
the user at start-up. You can configure the following elements of UIM/X’s
start-up desktop:

• The start-up mode. UIM/X can be started in either Design or Test Mode.

• UIM/X’s main application window, referred to as the start-up interface.
You can use either the Project Window or the Browser as the start-up
interface.

• The additional tools and editors that pop-up at start-up. The Property
Editor and the Browser can be added to the start-up desktop.

• The initial arrangement and size of the interfaces in the start-up desktop.

• The interfaces, project, and palettes loaded at start-up.

Configuring the start-up desktop allows you to tailor UIM/X to the needs of
your users. Resources control the configuration of the start-up desktop. You
can set these resources in the Application Defaults. For example, the
following resource specification makes the Browser the start-up interface:

You can hard-code resource settings. For example, you could also create a
version of UIM/X that always starts in Test mode by hard-coding the value
of UxStartupInterface.value.

uimx_directory/bin/uimx -language krc &

Uimx3_0*UxStartupInterface.value: browser

RUNNING UIM/X
Loading Files

UIM/X User’s Guide 7

1

The following table is provided as a quick reference. It lists the resources
and gives a summary description of the possible resource settings. The
remainder of this section discusses the configurable elements of the start-up
desktop in detail.

Resource Value Description

UxStartup
Interface.value

project Project Window is start-up
interface.

browser Browser is start-up interface.

test Load interface or project and enter
Test mode.

UxBrOnStartup.set
(applicable only with
the Project Window as
the start-up
interface)

false No Browser in start-up desktop.

true Browser pops up at start-up.

UxPEOnStartup.set false No Property Editor at start-up.

true Property Editor pops up at
start-up.

UxBrowserVisible.set
(applicable only with
the Browser as the
start-up interface)

false Browser Area not visible.

true Browser Area visible.

UxPaletteAreaVisible.
set

false Palettes Area not visible.

true Palettes Area visible.

UxStartingPalettes.va
lue

text List of .pal files to load at
start-up.

UxPalettePath.value text Path to .pal files.

brgeometry geometry
string

Browser size and position.

BrOutlineWindowHeight
(applicable only with
the Browser as the
start-up interface)

pixel Height of the Browser Area (the
window where the object
hierarchy is displayed).

BrMessageWindowHeight pixel Height of the Browser Messages
area.

RUNNING UIM/X
Configuring UIM/X’s Start-Up Desktop

8 UIM/X User’s Guide

1

Loading Interfaces and Projects

UIM/X can load interface and project files specified on its command line.
You tell UIM/X which file to load using the following syntax:

where path is the path to the file you want to load, and filename is the name
of the interface or project file to load.

UIM/X exits if you do not supply a valid file name and path.

You can use these command-line options to load a file into any of the
start-up interfaces (Test, Project, or Browser).

Running UIM/X with the Project Window Start-Up
Interface

You make the Project Window the start-up interface by setting
UxStartupInterface.value to project:

This is the default setting found in the UIM/X resource file. When
UxStartupInterface.value is set to project, UIM/X starts in Design
mode, and the Project Window is the main application window.

pegeometry geometry
string

Property Editor size and position.

prgeometry geometry
string

Project Window size and position.

PjInterfaceWindowHeig
ht

pixel The height of the Project
Window’s Interfaces Area.

PjPaletteWindowHeight pixel The height of the Project
Window’s Palettes Area.

PjMessageWindowHeight
(applicable only with
the Project Window as
the start-up
interface)

pixel The height of the Project
Window’s Messages Area.

Resource Value Description

uimx [-dir path] [-file filename]

Uimx3_0*UxStartupInterface.value: project

RUNNING UIM/X
Running UIM/X with the Browser Start-Up Interface

UIM/X User’s Guide 9

1

Adding the
Browser to the
Start-Up Desktop

Setting UxBrOnStartup.set to true adds the Browser to the start-up
desktop when the Project Window is the start-up interface. The Browser
will pop-up automatically at start-up.

UxBrOnStartup.set is ignored if UxStartupInterface.value is not
set to project.

Running UIM/X with the Browser Start-Up Interface

By default, UIM/X starts up with the Project Window interface and the Ux
palette. However, by setting a resource in your Application Defaults, you
can cause UIM/X to start with the Browser as the start-up interface. For
example, the following resource specifications make the Browser the
start-up interface:

The UxBrowserVisible.set resources makes the Browser area visible.
By default, the Browser area is not visible in the Browser start-up interface.
Figure 1-3 shows the Browser start-up interface.

Figure 1-3 Browser Start-Up Interface

Uimx3_0*UxStartupInterface.value: browser
Uimx3_0*UxBrowserVisible.set: true

Browser Area

Messages Area

RUNNING UIM/X
Configuring UIM/X’s Start-Up Desktop

10 UIM/X User’s Guide

1

If your start-up interface is the Browser, you can still use UIM/X
command-line options to load interface and palette files. As a project
usually consists of several interface files, specifying a project file at start-up
does not load anything into the Browser. An empty Browser is presented,
with the available interfaces listed in the Browser Interfaces menu.

During program initialization, UIM/X creates the menu bars and pulldown
menus of the Browser and the Project Window. When the Browser is the
start-up interface, a number of changes are made to the menu bars and icon
bars:

• The Options and Tools menus move from the Project Window menu bar to
the Browser menu bar.

• The Browser option is removed from the Project Window’s Tools menu.

• An Interfaces menu is added to the Browser menu bar. This menu contains
one item for each interface that currently exists within UIM/X. Each time
you select an interface from the menu it is loaded into the Browser. The
Interfaces menu can list up to 15 interfaces. If there are 16 or more
interfaces, the Interfaces menu will include a More item. Selecting this
item displays a SelectionBoxDialog for choosing interfaces.

• Open and Open UIL move from the Project Window’s File menu to
replace Load on the Browser’s File menu.

• Exit replaces Close on the Browser’s File menu, and Close replaces Exit
on the Project Window’s File menu.

These changes reflect the fact that the Browser, not the Project Window,
is now UIM/X’s main window. An application’s main window must
permit the user to load files and either reset or exit the application.

• Project Window is added to the Browser’s Tools menu.

• Open replaces Load on the Browser’s icon bar. The Design, Test, and Run
icons move to the Browser.

The client area of the Browser start-up interface also contains two window
panes. One window pane is the Browser Area, and the other is the Messages
Area. The Project Window has no message area when the Browser is the
start-up interface.

When the Browser is UIM/X’s main window, there is only one browser
window available. Each time you select an interface, the Browser Area
displays the object tree (or outline) of the selected interface.

RUNNING UIM/X
Showing the Palettes Area

UIM/X User’s Guide 11

1

Showing the Palettes Area

The Palettes Area of the Project Window is shown by setting
UxPaletteAreaVisible.set to true. By default,
UxPaletteAreaVisible.set is set to false.

If you make the Palettes Area visible, you will want to adjust the height of
the Project Window.

Note also that the UIM/X resource file contains geometry settings for either
case.

Loading System Palettes

You can use resources to automatically load palette files at start-up.

Note: As shipped, UIM/X loads a palette of Motif objects at start-up. The
UIM/X resource file contains the following resource specifications:

Uimx3_0*UxStartingPalettes.value: Ux.pal

Uimx3_0*UxPalettePath.value: uimx_directory/palettes

UxStartingPalettes This resource specifies the palette files loaded at start-up. You can load one
or more palette files. These palette files are loaded before any files specified
on the UIM/X command line. These palettes are not saved with projects
saved by the user.

As shown below, you can use UxStartingPalettes.value to specify the
absolute pathnames of the palettes you want to load. Note that a pathname
must begin with the forward-slash (/) character.

Alternatively, you can specify only the names of the palette files in
UxStartingPalettes.value, and use the UxPalettePath.value
resource to specify the path to the named files:

Uimx3_0*UxStartingPalettes.value:/usr/bilal/
Bilal.pal

Uimx3_0*UxStartingPalettes.value: pal1.pal\pal2.pal
Uimx3_0*UxPalettePath.value: /usr/palettes*

RUNNING UIM/X
Configuring UIM/X’s Start-Up Desktop

12 UIM/X User’s Guide

1

Note: To load more than one palette, you must insert \n between palette file
names.

UxPalettePath This resource specifies where UIM/X will look for the palette files named
by the resource UxStartingPalettes.value. You must specify an
absolute pathname. A pathname must begin with the forward-slash
character (/). There should be no trailing spaces after the pathname:

Setting the Palette Modes

A Palette has two mode properties, viewMode and createMode. The
viewMode property determines whether the Palette lists its elements by
name, by icon, or by name and icon. The createMode property determines
whether the Palette is in Create Mode or Edit Mode. These modes are set
from the Palette’s View and Mode menus.

Suppose you want the Palette loaded at start-up to show only icons and to
be in Create Mode. To do this, simply save the Palette with the View and
Mode settings you want to see at start-up.

You can also set the initial View and Mode settings of a Palette from within
its .pal file:

• A Palette’s viewMode property controls the initial viewing mode of the
Palette (by name, by icon, or by name and icon). This property is given an
integer value specifying an option on the Palette’s View menu:

• By Name

• By Icon

• By Name and Icon

• A Palette’s createMode property controls whether or not the Palette is in
Create Mode when it is loaded. The value 0 sets the initial mode to Create
Mode; the value 1 sets the initial mode to Edit Mode.

Adding System Palettes

UIM/X supports two kinds of palettes: user palettes and system palettes.
User palettes, like interfaces, are part of a project. You load user palettes
from the command line with the -file option, or by choosing File⇒Open
from the Project Window.

Uimx3_0*UxPalettePath.value: /usr/nathalie

RUNNING UIM/X
Project Window Geometry

UIM/X User’s Guide 13

1

System palettes are not part of any project. System palettes are tools
provided by UIM/X. The Ux palette is the default system palette. The
resource UxStartingPalettes.value lists the system palettes loaded by
UIM/X at start up.

To add your own palettes to the list of system palettes, set the following
resources in your Application Defaults:

The palette name is the name of the palette file with a .pal extension. The
absolute path name is the path from the root to the directory containing the
palettes. For example, the following resource specifications load 3 palettes
from the directory /usr/thien/palettes:

Setting Start-Up Geometry
You can set the size and position of the UIM/X interfaces in the start-up
desktop. With the exception of palettes, the size and position of the
interfaces in the start-up desktop are set using standard X Toolkit geometry
strings. Palettes have separate x, y, width, and height properties.

Note: UIM/X’s geometry settings are ignored if either of the OSF/Motif
window manager resources clientAutoPlace or interactivePlacement
is set to true.

Project Window Geometry

The following sample resource specification shows how to set the initial
size and position of the Project Window:

The resources PjInterfaceWindowHeight, PjPaletteWindowHeight,
and PjMessageWindowHeight control the height of the windows in the
Project Window. Setting a resource fixes the height of the window—the

Uimx3_0*UxStartingPalettes.value: palette_name
Uimx3_0*UxPalettePath.value: absolute_path_name

Uimx3_0*UxStartingPalettes.value:
pal1.pal\npal2.pal\npal3.pal
Uimx3_0*UxPalettePath.value: /usr/thien/palettes

Uimx3_0.prgeometry: 500x300+360+1

RUNNING UIM/X
Setting Start-Up Geometry

14 UIM/X User’s Guide

1

height will not change even if the Project Window is resized. You can
override the height setting by using the sash to resize the window. If the
resource is not set, the Project Window manages the height of the window.

These resources can be set as follows in a resource file:

Note: Setting all three of these resources prevents UIM/X from properly
resizing the Project Window. If the height of all three windows is fixed, blank
space appears when the height of the Project Window exceeds the sum of the
window heights.

Browser Geometry

The resource brgeometry controls the initial size and position of the
Browser. This resource accepts standard geometry strings:

If brgeometry contains no x and y offsets, UIM/X centers the Browser
under the current position of the mouse pointer.

The resources BrOutlineWindowHeight and BrMessageWindowHeight
control the height of the windows in the Browser. Setting a resource fixes
the height of the window—the height will not change even if the Browser is
resized. You can override the height setting by using the sash to resize the
window. If the resource is not set, the Browser manages the height of the
window.

These resources can be set as follows in a resource file:

Note: Setting both resources prevents UIM/X from properly resizing the
Browser. If the height of both windows is fixed, blank space appears when the
height of the Browser exceeds the sum of the window heights.

Uimx3_0*PjInterfaceWindowHeight: 120
Uimx3_0*PjPaletteWindowHeight: 100
Uimx3_0*PjMessageWindowHeight: 120

Uimx3_0.brgeometry: 500x300+360+330

Uimx3_0*BrOutlineWindowHeight: 280
Uimx3_0*BrMessageWindowHeight: 120

RUNNING UIM/X
Property Editor Geometry

UIM/X User’s Guide 15

1

Property Editor Geometry

The resource pegeometry controls the initial size and position of the
Property Editor. This resource accepts standard geometry strings:

If pegeometry contains no x and y offsets, UIM/X centers the Property
Editor under the current position of the mouse pointer.

Palette Geometry

A palette’s .pal file contains its size and position. If you want a palette to
have a given size and position when it is loaded:

1. Load the palette into UIM/X.

2. Position and resize the palette.

3. Save the palette.

The Palette’s size and position are now stored in the .pal file. The next
time UIM/X loads the Palette, it sizes and positions the Palette according to
the information in the .pal file.

Editing the Palette
File

You can also set a Palette’s geometry by using a text editor to modify the
values in the Palette’s .pal file. A Palette’s x, y, width, and height
attributes control its geometry.

However, if you want UIM/X to check file keys, you still have to load the
Palette into UIM/X and save it. Otherwise the modified .pal file will not
contain the proper file key, and UIM/X will refuse to load the file when file
key checking is enabled.

The file key checking feature prevents other users from editing the .pal
file.

Uimx3_0.pegeometry: 600x500-1-1

RUNNING UIM/X
Resetting UIM/X

16 UIM/X User’s Guide

1

Suppose you had saved a Palette named dbaseForm. If you were to
examine the file dbaseForm.pal, you would see something like the
following near the top of the file:

You can set the Palette’s geometry by modifying the Palette’s x, y, width,
and height properties and saving the file.

The viewMode and createMode attributes are discussed in “Setting the
Palette Modes” on page 12. The iconBitmap property is the name of the
file containing the pixmap for the Palette’s icon.

Resetting UIM/X
When you are working in UIM/X, you may want to start over on a
particular project or change and work on another project. You can start over
or change projects by resetting UIM/X.

To reset UIM/X
1. Select File⇒Reset from the Project Window to reset UIM/X and begin

again from scratch. A dialog box similar to Figure 1-4 appears on the
screen:

Figure 1-4 Reset Dialog

*dbaseForm.class: palette
*dbaseForm.name: dbaseForm
*dbaseForm.editable: true
*dbaseForm.x: 472
*dbaseForm.y: 375
*dbaseForm.width: 350
*dbaseForm.height: 206
*dbaseForm.iconBitmap: palette.xpm
*dbaseForm.viewMode: 2
*dbaseForm.createMode: 0

RUNNING UIM/X
To exit UIM/X:

UIM/X User’s Guide 17

1

2. Click on OK to reset UIM/X. (Click on Cancel to return to UIM/X.)

Be sure to save any work that you do not want to lose before
resetting UIM/X. During the reset process, you will lose any
interfaces and Palettes that have not been saved. All current
UIM/X windows disappear from view. Once UIM/X is
re-initialized, the Project Window and Ux Palette appear on your
screen.

You can also reset UIM/X by loading a new project:

1. Select File⇒Open from the Project Window.

2. Select the project you want using the file selection box and click on the
OK button.

3. UIM/X will pop-up a warning dialog box advising you that it is going to
reset.

4. Click on OK to reset UIM/X and load the new project. (Click on Cancel to
return to the current project).

Exiting UIM/X
Before exiting UIM/X, it is important to save your work.

To exit UIM/X:
1. Select File⇒Exit from the Project Window.

If you attempt to exit UIM/X without first saving your
project, a warning message will prompt you to confirm that
you wish to exit, as shown in Figure 1-5.

Figure 1-5Warning Dialog

RUNNING UIM/X
Exiting UIM/X

18 UIM/X User’s Guide

1

If you do not have any unsaved project, a dialog box appears
on the screen, as shown in Figure 1-6:

Figure 1-6 Exit Dialog

2. Click on OK to exit UIM/X. (Click on Cancel to return to UIM/X). All
UIM/X windows disappear from view.

Note: If you have entered changes in any of its text editors but failed to apply
those changes, UIM/X will not warn you that your changes will be lost if you
exit UIM/X.

UIM/X User’s Guide 19

Building Interfaces 2
Overview

UIM/X provides a complete set of tools and features for building interfaces.
This chapter explains some of the features that allow you to interact with
UIM/X to build your interfaces.

You will learn that you can control how your interface interacts with the
window manager, or let UIM/X control the interaction for you. You will
learn how to reparent and recreate objects in your interface. You will also
learn how to use the Browser to view and edit complex object hierarchies.

BUILDING INTERFACES
Working with Shells

20 UIM/X User’s Guide

2

Working with Shells
The first object in any object hierarchy is a top-level object. Because a
top-level object interacts with the window manager, it must be assigned a
Shell object to manage the interaction. In UIM/X, you can create these Shell
objects explicitly, or let UIM/X assign them to objects. Shells that you
create are referred to as explicit Shells. Shells assigned by UIM/X are
referred to as implicit Shells.

By assigning a Shell object explicitly, you can control how the object
interacts with the window manager. Through the Property Editor, you have
access to all the properties necessary to change the Shell’s behavior when it
interacts with the window manager.

Implicit Shells, on the other hand, are convenient, but you cannot access
their properties.

Implicit Shells

Implicit Shell objects serve two purposes. First, they conveniently enable
new users to become productive quickly. You can create interfaces without
worrying about setting Shell object properties or how Shells interact with
the window manager. As you become more familiar with window manager
behavior—and want more control over the interaction—you can reparent
your top-level objects. You can assign them explicit Shells more suited to
your needs, whose properties you can access.

Components—reusable hierarchies of objects—can also use implicit shells.
Objects serving as Components are top-level objects, and must therefore
have a Shell. However, an implicit Shell is only temporary, and is
automatically stripped away when an Instance of the Component is placed
into another object.

Implicit Shells for Dialog Objects

Dialog objects are used to present file selection boxes, warning messages,
etc. Because they also interact directly with the window manager, they have
a Shell. Dialog objects always receive the same implicit shell, the Dialog
Shell.

Unlike other top-level objects with implicit Shells, you cannot reparent a
Dialog object to give it another Shell. Even changing the default Shell (see
below) does not affect Dialog objects.

BUILDING INTERFACES
Controlling Implicit Shells

UIM/X User’s Guide 21

2

Controlling Implicit Shells

While the properties of implicit Shells are not available in the Property
Editor, all top-level objects have a property called AllowShellResize,
to which you have access. This property determines whether or not the
Shell grows or shrinks. When set to false, the Shell ignores all geometry
requests from its children.

No UIM/X swidget exists for implicit Shells. (A swidget is a structure used
by UIM/X to maintain state information about the corresponding Motif
widget.) Therefore, the Ux Convenience Library functions
UxPutProperty() and UxGetProperty() cannot be applied to implicit
Shells. Only Xt or Xm calls can be used.

Changing the Default Implicit Shell

By default, top-level objects receive the implicit Shell topLevelShell. The
default Shell is specified through the defaultShell resource. You may
select another default implicit Shell by changing the resource. Alternatively,
you can change the implicit default Shell via the Default Shell selection of
the Project Window’s Option menu.

Note: Selecting a new default implicit shell does not change the implicit shells
of objects that have already been created.

Changing an Existing Object’s Shell

To Change an
Existing Object’s
Shell

1. Create the new Shell object.

2. Load the object with the implicit Shell into the Property Editor.

3. Select the Declaration properties from the Category option menu.

4. In the Parent property area, enter the name of the Shell object and click
Apply.

5. The Shell is stripped from the object and the object is reparented to the
Shell object you created explicitly.

BUILDING INTERFACES
Reparenting Objects

22 UIM/X User’s Guide

2

Reparenting Objects
The objects within a hierarchy are related to each other as parent and child.
The first object of an interface, the top-level object, has no parent. All child
objects have one parent. Some objects cannot have children.

Every object in the hierarchy, except the top-level object, has one and only
one parent object and is a child object to that parent. These child objects are
usually themselves the parents of still other child objects.

Objects might be reparented for a variety of reasons including:

• The interface design has changed and you want the object to behave
differently.

• The object has an implicit shell and you want to reparent to an explicit
shell.

Objects can be reparented in three ways:

• Interactively in an interface.

• Interactively in the Browser.

• Using the Property Editor.

Interactive reparenting means dragging and dropping an object in an
interface or in an interface hierarchy in the Browser to a valid parent.

The potential parent could reside in the same interface or Browser or in
another interface or Browser. However, the operation is mutually exclusive.
You cannot drag an object from a Browser and drop it into an interface; you
cannot drag an object from an interface and drop it into an object hierarchy
in a Browser.

In a receiving interface, the dropped object is reparented to the object
directly under the compass when the Adjust mouse button is released.
However, if that object cannot accept children, the dropped object is
automatically made a child within that object’s hierarchy. The most
appropriate parent is automatically selected.

In the Browser, the dropped object must be placed directly over the
appropriate parent.

BUILDING INTERFACES
Changing an Existing Object’s Shell

UIM/X User’s Guide 23

2

Recreating Objects
Recreating an object during development shows you what the object will
look like when created at run time. The Recreate option can be accessed in
two ways:

• By choosing Selected Objects⇒Other⇒Recreate.

• By choosing Edit⇒Other⇒Recreate, in both Browser and Project
Window.

During development of an interface, sometimes the geometry of an object
may not appear to have been properly managed by its parent. For example,
if you add a child to an object that already has children, management
policies may be updated but not reflected throughout the object hierarchy.

Another common use of the Recreate feature is to verify the position and
size of an object. If an object has been moved or resized using the window
manager (rather than with the UIM/X move and resize operations), the
object will only appear to have changed its geometry. Recreating the object
will move it back to its true location and size.

You should use the Recreate command in one of the following situations:

• Before saving the interface as an interface file.

• Before generating code for the interface.

• If you do not get what you expected.

• After using Test Mode.

Naming Conventions
When you create an object, UIM/X automatically gives it a name obtained
by appending a number to the object’s class name. For example, Form
objects you create will be named form1, form2, form3, etc. Interfaces
and icons are named similarly.

An object’s name is also declared as a variable name in UIM/X, and you
can refer to it in code. These variable names are of type “swidget” (for
shadow widget). A swidget is a structure used by UIM/X to maintain
information about the corresponding Motif widget and to provide a more
complete error checking and handling mechanism than Motif.

BUILDING INTERFACES
Browsing Interfaces

24 UIM/X User’s Guide

2

When using C++ Convenience Library C++ Bindings, Motif objects are
declared not as swidgets, but as objects of the appropriate Motif wrapper
class provided by the Ux C++ Convenience Library.

You can change the name of any object using the Property Editor. The
Name property is located in the Declaration property category. The new
name can be any unused, valid variable name.

Note: If you change an object’s name after writing your own code that refers to
it—in callbacks, for example—be sure to update the code.

Browsing Interfaces
The Browser, shown in , allows you to view and edit complex hierarchies.
In the Browser, you can easily reorder and reparent objects. Furthermore, it
is a convenient way to select objects and object hierarchies to be stored in a
palette for future use.

The Browser displays one interface at a time and its functions are
performed on the entire interface or any of its objects.

Figure 2-1 Browser

BUILDING INTERFACES
Opening the Browser

UIM/X User’s Guide 25

2
The Browser makes it easy to edit objects, and is very useful when working
on objects that are partially or completely hidden. For example, pop-up
menu objects are not visible in an interface, but they are visible in the
Browser. Using the Browser you can:

• Select objects.

• Duplicate, delete, reparent, move, and resize objects.

• Cut or copy objects to the UIM/X Clipboard, then paste them to any
interface or palette.

Opening the Browser

To Open an Empty
Browser

Choose Tools⇒Browser from the Project Window, with nothing selected.
An empty Browser will appear. An interface can then be loaded by choosing
File⇒Load from the Browser or by clicking on the Load icon in the
Browser’s icon bar.

To Open the
Browser with an
Interface Loaded

1. Select the interface by clicking on it, or by clicking on its icon in the Inter-
faces Area of the Project Window.

2. Choose Tools⇒Browser from the Project Window.

OR

1. Select any object in the interface.

2. Choose Selected Objects⇒Tools⇒Browser.

OR

1. Select the interface by clicking on its icon in the Interfaces Area of the
Project Window.

2. Choose Selected Interfaces⇒Tools⇒Browser.

The Browser is displayed, loaded with the selected interface.

Clearing and Loading Interfaces

To Clear an
Interface from the
Browser

Select File⇒Reset from the Browser.

To Load an
Interface into the
Browser

1. Select the interface to be loaded into the Browser by clicking the Select
mouse button on the interface icon in the Project Window or, if the inter-
face is open, using the Select mouse button to click on the interface or any
object in the interface.

BUILDING INTERFACES
Browsing Interfaces

26 UIM/X User’s Guide

2

2. Select File⇒Load from the Browser, or click on the Load icon in the
Browser’s icon bar.

The Load option in the Browser’s File menu is sensitive only when an
interface, an object in an interface, or an interface icon in the Interfaces
Area of the Project Window is selected.

Only one interface can be loaded into the Browser at a time.

Selecting Objects in the Browser

There are several ways to select the objects displayed in the Browser.

If the interface loaded in the Browser is open, select or unselect operations
in the Browser are duplicated in the interface. Any object you select or
unselect in the Browser is simultaneously selected or unselected in the
interface and vice versa.

Note: Selecting an object also unselects all previously selected objects, unless
you are holding down the Control key.

To Do This Do This

Select an object. Click the Select button on the object.

Select an additional
object.

Press and hold the Control key and
click on more objects.

Select a group of
objects.

Press the Select button and drag the
mouse pointer over the interface icons.

Select all objects in
the interface

Choose Edit⇒Select All from the
Browser or choose Selected
Objects⇒Select All in the Browser.

Cancel a selection of
a group of objects.

Press the Escape key.

Unselect an object. Hold the Control key and click on the
object again.

Unselect all objects. Click in an empty portion of the
Interfaces area. You can also choose
Edit⇒Deselect All from the Browser, or
choose Selected Objects⇒Deselect All.

BUILDING INTERFACES
Duplicating Objects

UIM/X User’s Guide 27

2

Duplicating Objects

To Duplicate an
Object Using the
Browser

1. Open the Browser and load the interface.

2. Select the objects to be duplicated in the Browser.

3. Click on the Duplicate icon in the Browser’s icon bar, or choose Selected
Objects⇒Duplicate, or choose Edit⇒Duplicate from either the Browser
or the Project Window.

In the Browser, the duplicate is placed after the last object in the hierarchy.
In the interface, the duplicate is offset to the lower right of the original.

When a parent is duplicated, it and all its children are duplicated. When the
top-level interface in the Browser is duplicated, a new top-level interface is
created.

Deleting Objects

To Delete Objects
Using the Browser

1. Open the Browser and load the interface.

2. Select the object or objects to be deleted in the Browser.

3. Choose Selected Objects⇒Delete, or choose Edit⇒Delete from the
Browser.

A dialog box prompts you to confirm deletion.

4. Click OK or, with the mouse pointer in the Dialog box, press Return. To
cancel deletion, click Cancel.

The deleted object disappears from the interface and the Browser. The
deleted object’s children are also deleted from both windows.

Reparenting Objects

To Reparent
Objects Using the
Browser

1. Open the Browser and load the interface.

2. Select the objects to be reparented.

3. Press and hold the Adjust mouse button over the objects to be reparented.

4. Drag the Browser objects to their new location in the hierarchy. The
pointer must be positioned directly over the intended parent.

5. Release the mouse button. The objects are reparented both in the interface
and in the Browser.

If more than one Browser is open, you can reparent objects in one to parents
in another.

BUILDING INTERFACES
Browsing Interfaces

28 UIM/X User’s Guide

2

Changing Your View of the Loaded Interface

You can view an interface loaded into the Browser in two formats: outline
and tree. In the outline format, objects are arranged vertically, with child
objects listed under their parent and indented to the right. In tree format,
objects are arranged horizontally with parent and child objects connected by
a thin line. Tree format is the default. Only one format can be active at a
time. The active view format is unselected in the View menu. The icon for
the active view format is also indented in the Browser’s icon bar.

To Change the
Browser’s View

Click on the icon for the desired view in the Browser’s icon bar, or choose
it from the Browser’s View menu. The view changes to the selected format.
By default, every child object in a hierarchy is displayed.

To Hide Children 1. Select any parent object in the hierarchy.

2. Select View⇒Contract Node from the Browser, or double-click on the
parent object, or choose Selected Objects⇒Contract Node in the Browser.

The parent object’s outline is thickened in the Browser to indicate that it
has hidden children. If the parent object’s name is showing, an asterisk is
added.

To Show Children 1. Select any parent in the hierarchy with an asterisk indicator in it.

2. Choose View⇒Expand Node from the Browser, or double-click on the
parent, or choose Selected Objects⇒Expand Node in the Browser.

UIM/X User’s Guide 29

Building Palettes 3
Overview

A palette is a storage area for reusable interface building blocks for your
applications. Palettes can be shared across applications and between users.
Palettes are composed of one or more categories, each category capable of
storing any number of objects. The Ux palette, for example, contains
categories for primitive objects, manager objects, menus, dialog objects,
shell objects, and gadgets, plus the compound objects used in novice mode.
Each of these categories holds the icons that represent the objects available
in that category. Objects are identified with an icon, a label, or both.

Once stored in the palette, each object can be selected and easily added to
the interface that you are creating or used to create a new interface. UIM/X
is shipped with the Ux palette, containing all the Motif interface building
blocks. This palette is loaded by default at start-up. For more information
on the Ux palette, see the UIM/X Motif Developer’s Guide.

BUILDING PALETTES
About Palette Modes

30 UIM/X User’s Guide

3

About Palette Modes
A palette has two modes: Create and Edit. When a palette is in Create
mode, selecting an object in the palette will allow you to make a copy of the
palette item for use in your application. Edit mode makes available a series
of commands that are used to manage the palette contents (adding and
deleting objects, changing attributes, and so on). The Ux palette may also
have objects or categories added, removed, or modified, in the same fashion
as palettes that you create.

Selecting Create Mode

To select Create mode, choose Mode⇒Create from the palette. When you
first create a new palette the mode will be set to Edit to facilitate initial
setup. Once the setup is complete, the palette must be set to Create mode so
that the objects in it may be used to create your application.

When you are in Create mode, the Edit menu and the Selected Objects
pop-up menus are unavailable. All other menus are available.

Selecting Edit Mode

To select Edit mode, choose Mode⇒Edit from the palette. When you are in
Edit mode, you can manipulate the categories in the palette and the objects
in the categories. You cannot copy objects from the palette to your
interfaces.

Creating an Object Library
The creation of a library of objects for use in your applications begins with
the creation of a palette.

Creating a Palette

To create your own palette, select Create⇒Palette from the Project Window.

UIM/X creates and names a palette. The name it assigns is palette, with a
number indicating the order of creation: palette1 for the first palette you
create. The filename of the new palette will be palette1.pal. This name
can be changed by choosing File⇒Save As from the new palette.

All objects within a palette are stored in categories. By default, UIM/X
creates an empty category when a new palette is created. You can easily add
new categories to help organize your palette objects.

BUILDING PALETTES
Storing Objects in a Category

UIM/X User’s Guide 31

3
The default category is named Untitled. The category name can be
changed by selecting Edit⇒Change Attributes from the new palette.

Figure 3-1 shows a new palette (with the default name palette1) and a
category named myCategory.

Figure 3-1 Palette with a Named Category

Storing Objects in a Category

Objects can be stored within the categories of a palette. You can drag an
object to a palette from an interface or from the Browser. You can always
drag objects into the palette—the palette can be in either Create or Edit
mode.

To Drag an Object
to a Palette

1. Select the object. You can select multiple objects to put into the palette. If
the objects you select have children, the entire hierarchy must be selected.

For example, if you have a Form with two Push Buttons on it, selecting
the Push Buttons will make two entries in the palette. Selecting the Form
and the two Push Buttons will make one entry (containing all three items)
in the palette. Selecting the Form and only one of the Push Buttons is an
error. UIM/X does not allow you to put a portion of an object hierarchy in
the palette. Selecting the Form without selecting either of the two Push
Buttons results in the same behavior as selecting the Form and both Push
Buttons.

2. Drag the objects to the palette and drop them in a palette category.

Note: UIM/X never allows you to drop a fragmented hierarchy, such as a
parent and only some of its children, or only a subcomponent of a menu to the
palette. UIM/X displays an error dialog in either case.

BUILDING PALETTES
Working with Palettes

32 UIM/X User’s Guide

3

Figure 3-2 shows the result of storing an object called workingDialog in
the myCategory category.

Figure 3-2 Palette with a Stored Object

Working with Palettes
When a palette is created it becomes part of the current project. Palettes can
be manipulated in a variety of ways within the project. You can:

• Save the palette.

• Open and close palettes.

• Add an existing palette to a project.

• Insert one palette into another.

System palettes, which are loaded at start up, are never saved with the
project. (System palettes are specified by setting the resource
UxStartingPalettes in your Application Defaults.) They do not become
part of the project, even when a system palette is saved under a new name
with the Save As selection in the palette File menu.

However, you may wish to customize the objects offered by a system
palette and make those customized versions available during project design.
To do so, save the system palette under a new filename and specify that
name when you set the UxStartingPalettes resource. The file will need
to be saved in the directory specified by the UxPalettePath resource. See
“Loading System Palettes” on page 11 for further information.

Alternatively, if the system palette file has write access, save the modified
palette under its current filename, overwriting the original version.

BUILDING PALETTES
Saving an Individual Palette

UIM/X User’s Guide 33

3

Saving an Individual Palette

The palettes you open and create during a design session are saved with
your project. You can also save palettes individually.

To Save a Palette 1. Choose File⇒Save As from the palette.

A File Selection box prompts you to enter a palette file name.

By default, the palette file is written to the current directory under the
palette’s current name. You can choose a different directory and enter a
different name.

2. Click OK to save the file. Click Cancel to cancel the operation.

Alternatively, you can choose File⇒Save from the palette. If the palette has
not already been saved, it functions exactly like choosing File⇒Save As.
Once the palette has been given a name, choosing File⇒Save stores the
palette using the current settings, without displaying a prompt.

File⇒Save As and File⇒Save are available in both Create and Edit Mode.

Note that when the Palettes Area is displayed in the Project Window, both
File⇒Save and File⇒Save As are available in the Selected Palettes popup
menu.

When you save a palette, the following information is saved in the palette
file:

• Palette geometry (x, y, width, and height).

• Palette View setting.

• Palette Mode setting.

• All categories and objects.

Note: If you change only the size and position of a palette, you must choose
File⇒Save As to save the new geometry settings in the palette file. Choosing
File⇒Save does not modify the palette file if the geometry settings are the
only changes made to the palette.

Displaying the Palettes Area

When you work with your own palettes, it is convenient to display the
Palettes Area of the Project Window. This allows you to select different
palettes and perform operations on them.

1. Choose View⇒User Palettes Area from the Project Window.

BUILDING PALETTES
Working with Palettes

34 UIM/X User’s Guide

3

Closing a Palette
1. Choose File⇒Close from the palette.

OR
2. Select the palette icon in the Palettes Area.
3. Choose Selected Palettes⇒Hide.

All palettes created during a session are saved when the project is saved,
regardless of whether the palette is open or closed.

Showing a Palette
1. Point to the palette icon in the Palettes Area of the Project Window.
2. Double-click the Select mouse button.

OR
3. Select the palette icon in the Palettes Area of the Project Window.
4. Choose Selected Palettes⇒Show.

Adding an Existing Palette to a Project

Palettes already saved with a project are automatically included when the
project is opened. You can also add new palettes to your project.

To Add a Palette to
a Project

1. Choose File⇒Open from the Project Window.

2. In the File Selection box that appears, specify the directory containing the
palette and the name of the palette file.

3. Click OK.

The palette interface will appear. If the Palettes Area is visible an icon will
be added for the loaded palette.

Inserting One Palette Into Another

You can insert the contents of one palette into another.

1. Open the destination palette.

2. Select File⇒Insert from the destination palette.

3. In the File Selection box that appears, specify the directory containing the
palette and the name of the palette file.

4. Click OK.

All of the source palette’s categories and objects are written to the
destination palette.

BUILDING PALETTES
Deleting a Palette from a Project

UIM/X User’s Guide 35

3

Deleting a Palette from a Project

You can remove a palette from a project.

1. Select the palette’s icon in the Palettes area of the Project Window.

2. Choose Selected Palettes⇒Delete.

OR

2. Choose Edit⇒Delete from the Project Window.

Deleting a palette from a project does not delete the palette file itself.

Working with Categories in a Palette
The categories within a palette can be manipulated when the palette is in
Edit mode.

Creating a Palette Category

You can create additional categories for storing objects.

1. Make sure the palette is in Edit Mode.

2. Select Edit⇒Create Category from the palette.

UIM/X displays a dialog titled New Category where you name the
category. UIM/X provides a default name Untitled suffixed with a
number, to ensure that the name is unique within the current palette.

3. Enter a new name for the category, remembering that all category names
for this palette must be unique.

If a duplicate name was entered, a dialog will be displayed and the
operation is cancelled.

4. Click OK to complete the operation. UIM/X creates a category inside the
palette. The name you assigned is displayed in the category’s border. An
arrow on the border opens and closes the category.

Selecting a Category
1. Make sure the palette is in Edit Mode.

2. Click on the category’s border with the Select mouse button.

The category is highlighted.

To select more than one category, press the Control key while clicking on
the categories. Alternatively, press and hold the Select mouse button and
drag the pointer over the desired categories.

BUILDING PALETTES
Working with Objects

36 UIM/X User’s Guide

3

Once a category has been selected, you can change its attributes, delete it,
or paste into it objects that are currently in the clipboard.

Changing a Category’s Name
1. Make sure the palette is in Edit Mode.

2. Select a category.

3. Choose Edit⇒Change Attributes from the palette.

4. In the dialog box that appears enter a new name for the category.

5. Click OK to change the name.

Deleting Categories
1. Make sure the palette is in Edit Mode.

2. Select the category or categories to be deleted.

3. Choose Edit⇒Delete from the palette or choose Selected
Objects⇒Delete.

A dialog prompts you to confirm the deletion.

4. Click OK.

Opening and Closing a Category

Whether the palette is in Create or Edit mode, all categories can be opened
and closed as required.

The expand arrow to the left of the category’s name is a toggle button that
expands and collapses the category. When a category is expanded, all the
object icons it contains are visible. When a category is collapsed, only the
category border with the category name is visible.

Working with Objects
The objects in a palette can be manipulated only when the palette is in Edit
mode.

Changing Object Attributes
1. Make sure the palette is in Edit Mode.

2. Select the object. When changing attributes, you can select only one
object at a time.

3. Choose Edit⇒Change Attributes from the palette.

BUILDING PALETTES
Deleting an Object

UIM/X User’s Guide 37

3
The Attributes window appears, allowing you to change the object’s
name, its icon, or both.

4. To change the object’s name, click on the Icon Name text field and enter a
new name.

To change the icon, click on the Icon Pixmap field and enter the file name
of the desired icon. UIM/X recognizes pixmap or bitmap files.

5. Click OK.

Deleting an Object
1. Make sure the palette is in Edit Mode.

2. Select the object or objects to be deleted.

3. Select Edit⇒Delete from the palette or choose Selected Objects⇒Delete.

A dialog prompts you to confirm the deletion. The delete operation cannot
be undone.

4. Click OK.

 Deletion does not place the object icon in the clipboard.

Pasting an Object into a Category

You can use cut and paste to rearrange the objects in a category, or to move
objects from one category to another.

1. Open the destination palette and put it in Edit Mode.

2. Use the Cut or Copy command to paste an object to the clipboard.

3. Select an object from the destination category or the destination category
itself.

4. In the destination palette, choose Edit⇒Paste Before or Edit⇒Paste After,
or choose Selected Objects⇒Paste Before or Selected Objects⇒Paste
After.

Paste Before will place the clipboard contents before the selected object or
at the beginning of the selected category.

Paste After will place the clipboard contents after the selected object or at
the end of the selected category.

BUILDING PALETTES
Working with Objects

38 UIM/X User’s Guide

3

UIM/X User’s Guide 39

Setting Properties 4
Overview

The Property Editor displays the properties of an object and their
initial values, and allows you to change those initial values.
Properties can be changed for a single object or common properties
can be changed for more than one object at a time.

Figure 4-1 Property Editor

SETTING PROPERTIES
Opening the Property Editor

40 UIM/X User’s Guide

4

Opening the Property Editor
You can open the Property Editor empty or with an object loaded. To
open an empty Property Editor, do the following:
1. Make sure no object is selected.

2. Choose Tools⇒Property Editor from the Project Window.

The Property Editor appears, ready for you to load an object into it. If the
Property Editor is open but hidden by other windows, this brings it to the
top of your open windows.

To open the Property Editor with an object loaded, do the following:
1. Double-click on any object in your interface.

OR

2. Click on any object to select it.

3. Choose Selected Objects⇒Tools⇒Property Editor.

OR

4. Choose Tools⇒Property Editor from the Project Window.

The Property Editor appears, loaded with your selected object.

Setting the Loading Options
After you open the Property Editor, you can choose from three
possible loading options. These loading options let you customize
how you load objects into an open Property Editor. The following
table lists the available options:

Option Description

Replace List Loading objects into the Property Editor replaces any
objects already present.

Add To List Loading objects adds to the list of objects already in the
Property Editor.

Automatic
Load

Selecting objects automatically loads them into the Property
Editor, replacing objects already present.

SETTING PROPERTIES
Using Replace List

UIM/X User’s Guide 41

4
The Replace List and Add To List loading options support the
standard ways of loading an object:

• Dropping the object in the Object List area.

• Entering the name of the object in the Add Object text field.

• Selecting the object (either in the interface or in the Browser) and then
selecting File⇒Load from the Property Editor menu.

• Selecting the object (either in the interface or in the Browser) and then
clicking on the Load icon in the Property Editor’s icon bar.

The Automatic Load option provides one way to load objects: by
selecting them, either in the Browser or in the actual interface.

Using Replace List

With the Replace List option, loading objects into the Property Editor
replaces any objects already in the Property Editor. The Replace List
option is the default loading option. Typically, you use the Replace
List option when you want to edit objects one at a time.

To choose the Replace List option, click on the Replace List icon
in the Property Editor’s icon bar, or choose Options⇒Replace List
from the Property Editor.

Using Add To List

With the Add to List option, each time you load an object it is added
to the Object List. To remove objects from the Property Editor, select
the objects you want to remove, then choose Edit⇒Remove Objects.

To choose the Add To List option, click on the Add To List icon
in the Property Editor’s icon bar, or choose Options⇒Add To List
from the Property Editor.

Using Automatic Load

The Automatic Load option allows you to load objects by selecting
them, either in an interface or in the Browser. To load multiple
objects, you select multiple objects. To remove an object, you unselect
the object.

SETTING PROPERTIES
Setting the Loading Options

42 UIM/X User’s Guide

4

When you select Automatic Load, the only way to load objects is by
selecting them. Note that when Automatic Load is active, selecting
Edit⇒Remove Objects cancels the Automatic Load option, and
replaces it with the Replace List option.

To choose the Automatic Load option, click on the Automatic Load
icon in the Property Editor’s icon bar, or choose
Options⇒Automatic Load from the Property Editor.

Removing Objects from the Property Editor

You can remove objects from the Object List in the following ways:

• In the Object List, select the objects to be removed, and then choose
Edit⇒Remove Objects.

• Choose File⇒Reset to remove all objects currently displayed on the
Object List. If you are using Automatic Load, File⇒Reset will cancel it
with a warning message. The Object List changes to Replace List mode.

Searching for Widgets

You can search for existing widgets in your interface by typing part
of the widget’s name or placing pattern in the Add/Search field:
• Type the widget’s name or pattern in the Add/Search field. For example,

the following pattern “^form\d*” will allow you to find all widgets whose
name starts with the text “form”.

• Press Find Next. The Add/Search field will change to the matched
widget.

• If you want to search further, press Find Next.

• To add/load a matched widget to the Resource Editor, press Add/Load.

SETTING PROPERTIES
Searching for Widgets

UIM/X User’s Guide 43

4

Selecting the Property Category
To make it easier to find and edit properties, the Property Editor
divides an object’s properties into categories. The Category Option
menu lists the available categories, as shown in the following table.

Property
Category Description

Core Properties such as X, Y, Width, and Height that are common
to all objects.

Specific Specific properties are those specific to that object class,
such as the arrow direction for the Arrow Button.

Constraint Constraint properties are those added to an object by its
parent, if the parent provides functions for maintaining its
children in a particular spatial arrangement.
For example, children of a Form object receive additional
properties that determine their position with respect to the
Form and to each other.
Constraint properties exist due to the parent object. If the
child of a Form is moved to become a child of a Bulletin
Board, its constraint properties disappear.
Not all parents confer Constraint properties to their children.

All Resources Lets you view and edit all of an object’s core, specific, and
constraint properties at the same time.

Behavior Behavior properties determine how the object reacts to
callback events. For example, a Push Button has an
ActivateCallback property, where you can specify the
callback code that is executed when the button is pushed.
Each callback has a corresponding ClientData property.
The ClientData property is a pointer whose value is
passed to the corresponding callback each time the callback
is invoked, for example, each time you click on a Push
Button.

Compound Compound properties are properties defined by UIM/X.
These properties allow you to control the editing operations
that can be applied to an object.

SETTING PROPERTIES
Setting Properties

44 UIM/X User’s Guide

4

Setting Properties
A number of guidelines will help you to understand how to set
properties. The first is that you specify the value in the same way
you would in an X resource file. For example, to set a color, rather
than allocating Color Map entries and setting pixels you can use
"SlateBlue" or "#6a6a5a5acdcd". UIM/X also has a Color Viewer
that allows you to specify colors. The Color Editor can be opened
from the Property Editor. To specify a list of strings, place items in a
string separated by commas.

The second guideline gives UIM/X tremendous power: property
values are all code expressions. You can put into a property any
expression that returns the correct type, including constants, global
variables, and functions that take arguments. You can use this
technique to set values dynamically at run time.

There are a number of standard property value types:

Declaration Declaration properties are specific to an object, such as its
name, class, parent, and scope. Objects whose scope is
defined as static will be declared statically in the generated
code, while global objects will be declared non-statically.

All Lets you view and edit properties of all categories at the
same time.

Property
Category Description

Property
Value Description

Integer Either an integer or an expression that evaluates to an
integer.

Float An integer, a float, or an expression that evaluates to an
integer or a float.

String A string constant enclosed in quotation marks (" "), or an
expression that returns a char*.

Boolean Either the character string "true" or "false", or an
expression that returns a char*.

SETTING PROPERTIES
Searching for Widgets

UIM/X User’s Guide 45

4

Color Any color name recognized by your server and enclosed in
quotes; an expression that returns a char*; or a value in the
rgb format where hexadecimal digits represent the r, g, and b
values, for example: “#6a6a4c4c8d8d"
(MediumSlateBlue).
For properties that require colors as their values, the
property name appears as a button on the Property Editor.
Choosing this button opens the Color Viewer.

FontList Any font list with font names recognized by your X server.
For properties that require font names as their values, the
property name appears as a button on the Property Editor.
Choosing this button opens the Font Viewer.

Pixmap Any pixmap found by your application. For properties that
require pixmap names as their values, the property name
appears as a button on the Property Editor. Choosing this
button opens the Icon Viewer.

Enumerated
Type

Many object properties have a small number of strings as
possible values, listed in an option menu beside the property
name. For example, the value for the EditType property can
be the string constant "edit", "append", or "read".

Code Any legal expression or statement of the correct type for the
property.

Property
Value Description

SETTING PROPERTIES
Setting Properties

46 UIM/X User’s Guide

4

Setting Pixmap Properties

Interfaces you create with UIM/X often use pixmap files. For
example, a Push Button might feature a pixmap indicating its
purpose, rather than a text label. Rather than storing the pixmap
itself in the object, UIM/X stores the name of the file containing the
pixmap. At run time, UIM/X and applications with interfaces
generated by UIM/X look for the file in specific directories.

These directories are listed in the path list UxBitmapPath (a path list is
a data structure that lists a set of search paths). UxBitmapPath lists
the default search path for pixmap files:
1. uimx_directory/icons

2. The current directory

3. The developer’s $HOME directory

4. /usr/include/X11/bitmaps/app_class_name, where
app_class_name is the class name of the application (the second argument
passed to XtAppInitialize() in the generated main program file).

For UIM/X, app_class_name is Uimx3_0. For applications generated by
UIM/X, app_class_name is the value entered in the Application Class
name field of the Program Layout Editor.

5. /usr/include/X11/bitmaps

Note: On Solaris, the include/X11/bitmaps directory is found within
/usr/openwin, rather than within /usr.

You can modify UxBitmapPath using the Ux Convenience Library
functions UxInitPath() and UxAddPath(). A related function,
UxExpandBitmapFilename(), takes a pixmap file name and looks for
that file in the search path defined by UxBitmapPath. It returns the
file name prefixed by its directory path.

Default Property Values

When you open the Property Editor for an object to find out what its
default values are, UIM/X asks the object for those values. There are
a number of ways an object property gets a default value—each has
certain implications.

First, if properties are not specified in any other manner, an object
class has default values for all properties.

SETTING PROPERTIES
Using Resource Files to Set Property Values

UIM/X User’s Guide 47

4
Second, you may have specified a property value by setting an X
resource. Note that values set in this way are transferred to the end
user of the generated application only if that user has a
corresponding setting of the resource.

Third, the object may determine the value dynamically depending on
the values of other properties. For example, when you change the
background color of a Push Button, the top and bottom shadow
colors—if not explicitly set—dynamically change to colors that match
well. Another special case to be aware of is the constraint attachment
properties—left, right, top, and bottom—for children of Forms. The
default values for these are respectively: attach_form, attach_none,
attach_form, and attach_none.

When you change the right attachment to attach_form, you might
expect the others to stay the same and for the right edge of the object
to move to the Form. Instead, new default values are calculated for
the other three attachments. The new values are: attach_none,
attach_form, attach_form, and attach_none.

Using Resource Files to Set Property Values

Often it is desirable to have the properties for all or a portion of the
objects in an interface be the same value. For example, you may want
the background color of every object in an interface to be red. One
way to accomplish this is to load all of the objects in the interface
into the Property Editor and change the value of the property. As an
alternative, you may use the standard mechanism in the X Window
system. In the appropriate user resource file, you may set values as
shown in the following table:

Resource Description

appName.objectName.propertyName:
value

Sets the property propertyName of the
object objectName to value.

appName.objectName*propertyName:
value

Sets the property propertyName of the
object objectName and all its children
to value.

appName*propertyName: value Sets the property propertyName of all
objects to value.

SETTING PROPERTIES
Changing a Property Source

48 UIM/X User’s Guide

4

Note: The above example sets default values and will not apply to values set
explicitly in the application.

Setting values with too wide a scope (for example,
*LeftAttachment) may adversely affect interfaces.

Changing a Property Source
Each property has a source, indicating how the property is treated
when you generate code. Its meaning depends on the category of the
property as shown in the table below.

By default, the source column is hidden. To see the Source menu,
unselect the Hide Source toggle button in the Property Editor View
menu.

The Property Source menu lets you set the following:

appName.objectClass.propertyName:
value

Sets the property propertyName of all
objects of class objectClass to value.

appName is the name of the application or class.

Resource Description

Properties Source Description

Core
Specific
Constraint

Default Determined by object default. No value
appears in the generated code.

Public Set in a generated resource file.

Private Set in the object creation section of the
generated code.

Lock Cannot be edited further without first
unlocking it.

SETTING PROPERTIES
Notes on Property Sources

UIM/X User’s Guide 49

4

Notes on Property Sources
• Some properties cannot be set in a resource file, in which case the Public

entry in the source menu is insensitive.

• When a property is locked, a lock symbol appears beside the value field,
the Initial Value text fields and option menus are insensitive, and an
Unlock entry appears in the Source option menu.

• Some properties are locked and the lock symbol is grayed-out. This means
the property is set via an editor external to the Property Editor (such as the
Menu Editor), or that the properties are set dynamically by a Manager
object. In both cases you cannot unlock the property.

• When you change a resource value with a Default source, UIM/X
automatically changes the source to Private.

• When you change a callback, UIM/X changes the source to Static (or
Virtual in C++) or Extern, depending on whether the callback function
was declared static or extern in the Callback Editor.

Behavior None No callback.

Extern Callback is specified as the name of a
function. The function is defined elsewhere in
the auxiliary declarations or in a separate
source file.

Static/Virtual Callback specified is actual code to be
executed.

Lock Cannot be edited.

Name Global Swidget variable declared global in generated
code.

Static Swidget variable declared static in generated
code.

Lock Cannot be edited.

Parent Private Parent determined by code.

Lock Cannot be edited.

Properties Source Description

SETTING PROPERTIES
Editing Properties for Multiple Objects

50 UIM/X User’s Guide

4

Editing Properties for Multiple Objects
The Property Editor also allows you to edit properties for more than
one object at a time. If more than one object appears in the Object
List, only the properties those objects share appear in the Properties
area. Changes made to any shared property apply to all objects on
the Object List. For example, to change the highlight color of all
objects in an interface, load all the objects into the Property Editor,
change and then apply the HighLightColor property value.

Note: Shared properties are those that have the same point of definition in the
Motif widget class hierarchy. For example, the LabelString property of a
Push Button object is defined by the Motif Label class. The LabelString
property of a Push Button gadget is defined by the Motif LabelGadget class.
Although the name of the property is the same, the Push Button and the Push
Button gadget do not actually share the LabelString property. The
LabelString property is not shown in the Property Editor when a Label and
a Label Gadget are placed together in the Object List.

A property shared by several objects but with values that differ from
object to object is highlighted by a not-equals sign to the left of the
Initial Value field. For example, consider two objects that share the
Background property. For one, Background is set to Blue; for the
other, Grey. If both objects are loaded into the Property Editor, a
not-equals sign appears to the immediate left of the Background
property and the Initial Value field is blank.

If the sources of a shared property differ, the not-equals sign appears
in the Source column. For example, the shared property may be set to
Public in one object and to Private in another. When the values
differ, the Initial Value field will be blank and the not-equals sign
will appear in the Source column.

Changing Object Names
The name of an object is one of its Declaration properties. The Name
property is not a string, but the name of the variable that holds a
pointer to the object. In UIM/X and in generated code that uses the
Ux Convenience Library, this variable holds a swidget pointer. In
generated Xt code, the variable holds a widget pointer. When Ux

SETTING PROPERTIES
To Change the Scope of an Object’s Name from Static to Global

UIM/X User’s Guide 51

4
Convenience Library C++ Bindings are used, the variable holds an
object of the appropriate Motif wrapper class (which contains a
swidget pointer).

(A swidget is a shadow widget, a data structure used by UIM/X to
represent the actual object.)

Changing the Scope of an Object
The scope of an object can be set to Static or Global depending on
how you want the object to be accessed. This affects how the object
variable is declared in the generated code. If it is static, then the
variable is declared statically; if it is global, the variable is not
declared statically and can be referenced from other files by means of
an extern declaration.

To Change the Scope of an Object’s Name from Static
to Global
1. In the Property Editor, set the Source to Global for the Name property (in

the Declarations properties).

Note: If the object’s name is set to Global, you cannot use multiple copies of
the interface.

Reparenting Objects
An object can be reparented by loading the object into the Property
Editor, choosing the Declaration properties from the Category option
menu, and then entering the name of the new parent object in the
Parent field.

Explicit and Implicit Shells

By default, all top-level interfaces, whether they have explicit or
implicit shells, are created with the value UxParent in the Parent
field. UxParent is an argument passed to the interface function of the
interface and is the parent of that interface.

In a number of special cases, top-level interfaces do need a real
parent. For example, you may wish to make all top-level shells the
children of a single application shell so that they all iconify with the
application shell. Another example is making a dialog shell the child

SETTING PROPERTIES
Reparenting Objects

52 UIM/X User’s Guide

4

of the interface from which it is called so that input can be locked out
from that interface (setting the DialogStyle to
dialog_application_modal).

Reparenting Explicit Shells

When you change the parent of an explicit shell, initially you will see
no effect. It is only when you create and pop-up the interface using
the interface function that the change will take effect.

Reparenting Objects with Implicit Shells

When you attempt to reparent an object with an implicit shell
statically, a warning dialog displays the following message:

Figure 4-2 Warning Dialog

If you click OK, the manager will become a child of the parent you
specified, as expected. This is often used when you begin polishing
the interface or window manager interaction, changing the
properties of the explicit shell. Typically you reparent an implicit
shell manager to an explicit shell.

Dynamic Parenting

Dynamic parenting is made possible when a valid code expression is
entered into the Parent field of the Property Editor. When you edit
the interface to which you have dynamically added the implicit shell
manager, you will see a message that informs you that you will
delete and/or recreate all dynamically created objects in the
interface. The message will ask if you want to continue. By choosing
OK, the implicit manager will be recreated as a top-level.

SETTING PROPERTIES
Reparenting Objects

UIM/X User’s Guide 53

4

Reparenting Objects

Child objects can also be reparented. When created, their parent is
the object under the mouse pointer when the mouse button is
released. However, design needs may dictate that the child of one
object become the child of another object.

For example, consider a top-level Bulletin Board interface, named
bulletinBoard1, with two Push Buttons as its children. You decide
that the Push Buttons should be managed by a RowColumn object.
The RowColumn object, named rowColumn1, is created in the same
Bulletin Board interface. The two Push Buttons are loaded into the
Property Editor. In the Parent field of the Declaration property for
the Push Button objects, change the name in the Parent field from
bulletinBoard1 to rowColumn1.

The Push Button objects are transferred from the Bulletin Board
object to the RowColumn object.

Child objects can also be reparented in the Browser and in the actual
interface. Use the Adjust mouse button to select the object to be
reparented and drag it until it is directly over its new parent. The
child is reparented when the Adjust button is released.

To Reparent an
Object in the
Property Editor

1. In the Parent field, enter the name of the new parent.

The new parent can be any object that accepts children, whether in
the current interface or in another interface. The new parent can be
NO_PARENT, that is, the object can be promoted to top-level status.

To Reparent a
Child Object in the
Browser

1. Drag the object to its new parent and drop the object.

The object will be reparented to the new parent. Because only one
interface at a time can be displayed in the Browser, the new parent must
itself be a child in the same top-level interface.

Promoting a Child Object to Top-Level Status

Promoting a child object to top-level status is a form of reparenting.
It is most commonly used when a child object is to serve as a
Component.

Any child object, except a menu and a gadget, can be promoted to
top-level. Promotion to top-level automatically adds the default
implicit shell to the newly promoted object.

SETTING PROPERTIES
Reparenting Objects

54 UIM/X User’s Guide

4

To Promote a Child
Object to
Top-Level Status

Set the Parent property to the value NO_PARENT, or drag the object
onto the desktop.

In both operations, the child object is removed from the interface
where it resided. The default implicit shell is applied automatically
to the newly promoted object.

Note: Menus and gadgets cannot be promoted to top-level status.

UIM/X User’s Guide 55

Specifying Callbacks
and Connections 5

Overview
Adding callbacks to an object is done in the Callback Editor or
Connection Editor. The Callback Editor is available in the Behavior
category of the Property Editor. Callbacks consist of C or C++ code.

You have a great deal of flexibility in the code you can use in a
callback. You can use:

• The callback arguments (they are already declared for you).

• Ux Convenience Library function calls—the names of objects in
the interface can be used directly with these calls (they are
declared for you).

• Xm, Xt, or X functions (they are already linked in).

• Calls to your compiled functions and references to your
compiled global variables if you have added them to UIM/X.

• Code that has been loaded into the Interpreter. Note that the
Interpreter has three modes: K&R C, ANSI C, and C++ (the
default).

Note: If you specify an external function for the source of the callback code,
you must declare the function as extern in the Declaration Editor global
variables section before applying the callback. Otherwise the external function
will not be recognized.

SPECIFYING CALLBACKS AND CONNECTIONS
The Callback Editor

56 UIM/X User’s Guide

5

The Callback Editor
The Callback editor allows you to enter code to specify the behavior
you want in your application.

Opening the Callback Editor
1. Select an object and load it into the Property Editor.
2. Select the Behavior category of Properties.

3. Click on the edit button (…) beside the any callback property.

The Callback Editor appears, as shown in Figure 5-1.

Opening the
Connection Editor
from the Callback
Editor

Figure 5-1 Callback Editor

The Connection Access area of the Callback Editor indicates whether
any connections have been made from the callback you are editing.
Clicking on the (...) button in the Connection Access area brings up
the Connection Editor, allowing you to add, edit, or delete
connections from that callback.

Callback

Arguments

Callback

Code

Connection

Access Area

SPECIFYING CALLBACKS AND CONNECTIONS
Using Callback Arguments and Variables

UIM/X User’s Guide 57

5

Using Callback Arguments and Variables

When specifying behavior in the Callback Editor, all standard Motif
callback arguments are available for use. These are shown in
Figure 5-1, and explained below:

In addition, two variables are available:

Making Connections
The Connection Editor establishes a behavioral connection between a
source and target object by automatically creating snippets of
callback code based on user-specified criteria.

Each connection is defined as a rule of the form: For Source Object, on
Callback, perform Method on Target Object.

An example of a simple behavioral connection might be:
For pushButton1 (source), on ActivateCallback (callback), use
SetBackground (method) to change the color of text1 (target).

Connections can only be established between objects of the same
interface. That is, connections across interfaces are impossible.

Argument Description

UxWidget The widget argument to the callback.

UxCallbackArg The callback argument to the callback as supplied by the
object. This argument must be cast to the appropriate type.

UxClientData The client data argument to the callback. If a value was
specified for the client data of this callback in the object’s
Property Editor, this argument will have the specified value.
Otherwise, it will be equal to UxContext.

Variable Description

UxThisWidget The swidget corresponding to the object.

UxContext UxContext is a pointer to an interface-dependent context
structure.

SPECIFYING CALLBACKS AND CONNECTIONS
Making Connections

58 UIM/X User’s Guide

5

Opening the Connection Editor

You can open the Connection Editor in three different states; with a
source object loaded, with both source and target objects loaded, or
with no object loaded. You open the Connection Editor as follows:
1. Choose Tools⇒Connection Editor from the Project Window.

If no object was selected in your interface, an empty Connection Editor
appears. If an object was selected, the Connection Editor appears with that
object loaded as the source.

OR

1. Drag the mouse pointer (using the Select mouse button) from a
source object to a target object while depressing the Shift key.
A line drawn between the source and target objects appears during this
operation to indicate the intended connection.

2. Release the mouse button.

The Connection Editor appears, loaded with your chosen source and target
objects.

OR

1. Choose Selected Objects⇒Tools⇒Connection Editor.
The Connection Editor appears with the selected object loaded as the
source.

OR

1. Click on the Text Editor (...) button in any Callback Editor’s
Connection Access area.
The Connection Editor appears with the selected object loaded as the
source.

OR

1. Choose Edit⇒Connection From or Edit⇒Connection To from the
Menu Editor.
The Connection Editor appears, loaded with your chosen menu object as
the source or target, respectively.

SPECIFYING CALLBACKS AND CONNECTIONS
About the Connection Editor

UIM/X User’s Guide 59

5

About the Connection Editor

The Connection Editor comprises six main areas, as illustrated in
Figure 5-2.

Figure 5-2 Main Areas of the Connection Editor

• Menu Bar: Provides a File menu to load source and target objects
and reset or close the Connection Editor, and a Help menu to
provide online help.

• Icon Bar: Provides icons for loading source and target objects.

• Object area: Enables selection of Source and Target objects.

• Operations area: Enables selection of the type of callback and
method.

• Arguments area: Displays the values of the arguments for the
currently selected method (including the return value, where
applicable), and allows the user to change these values. Default
values are provided initially.

• List/Update area: Provides a display area for the created connections
and enables selection for subsequent actions using command
buttons.

Menu Bar

Object

Operations

Arguments

List/
Update

Icon Bar

SPECIFYING CALLBACKS AND CONNECTIONS
Making Connections

60 UIM/X User’s Guide

5

Loading a Source

To load a Source object:

Select an object in your interface, then choose File⇒Load Source or
click on the Load Source icon in the Connection Editor.

OR

Drag an object from your interface or from the Browser and drop it
in the Source field.

OR

Type the object name into the Source text field and press Enter.

The selected object and its associated callbacks are then loaded into
the Connection Editor.

Loading a Target

To load a Target object:

Select an object in your interface, then choose File⇒Load Target or
click on the Load Target icon in the Connection Editor.

OR

Drag an object from your interface or from the Browser and drop it
in the Target field.

OR

Type the object name into the Target text field and press Enter.

The selected object and its applicable methods are then loaded into
the Connection Editor.

Defining Connections

With both Source and Target loaded, you can begin to define a
connection. To define a connection, you must select a Callback and a
Method from the Operations area:
1. Click on a callback in the Callback scrolled window.
2. Click on a method name in the Method scrolled window.

SPECIFYING CALLBACKS AND CONNECTIONS
Modifying Connections

UIM/X User’s Guide 61

5
When applicable to the selected method, the default values of the
method’s associated arguments (including a return value, where
applicable) are displayed in their respective text fields in the Arguments
area. You can change the arguments by typing in new values or by
selecting a (...) button to invoke the Text Editor.

3. Click on the Create command button.

The created connection is displayed and highlighted in the list section of
the Connection Editor’s List/Update area, for example:

To create additional connections, repeat the above steps. Always
click on the Create command button to create a new connection. The
Connection Editor will add the new connection to the end of the list
rather than replace the existing (highlighted) connection.

To duplicate a connection, highlight the connection and select Create.
The connection is duplicated and appended to the list.

Modifying Connections

With the connection highlighted, you can perform further operations
by selecting a command button in the List/Update area or selecting a
different type of callback or method from the Operations area.

To Modify a
Connection

1. If the connection is not already selected, select it from the list by
clicking it, then click Edit.

2. Select a callback and/or method from the Operations area, as earlier
described. Edit the argument values if you like.

3. Click on the Update command button.

The newly created connection appears in the list section, replacing
the previously selected connection.

To Modify
Arguments

1. Click on a connection to select it, then click Edit.
The current values of the arguments appear in their respective text fields in
the Arguments area.

2. Type in a new value for the argument or select the (...) button adjacent to
the text field to invoke the Text Editor.

3. Click on the Update command button.

ActivateCallback--->text1::SetBackground("green")

SPECIFYING CALLBACKS AND CONNECTIONS
Making Connections

62 UIM/X User’s Guide

5

The connection is updated with the new argument value.

To Delete a
Connection

1. Click on a connection to select it.
2. Click on the Delete command button.

The connection is erased from the list.

Types of Connections

When the target object is the instance of a component, the list of
methods shown in the Connection Editor is the list of interface
methods defined for that component. The code segment generated
for a connection to an interface method consists of a call to that
method.

When the target object is a Motif swidget, a special list of methods
called swidget methods is shown. Swidget methods are not methods as
such, but more like macros that expand into the appropriate code
segment during code generation. The code segment generated for a
swidget method is determined by the chosen code generation option.
For example, the following connection:

will generate one of the following code segments, depending on the
type of code being generated:

When the target object is the top-level swidget of an interface, both
the swidget methods and the interface methods are shown. This
mechanism allows any swidget within an interface to make a
connection to the interface methods of its parent interface.

ActivateCallback--->text1::SetText("Hello World!")

Xt code XtVaSetValues(text1, XmNvalue, "Hello World!",
NULL);

Ux code UxPutText(text1, "Hello World!");

C++ Bindings code text1.SetText("Hello World!");

SPECIFYING CALLBACKS AND CONNECTIONS
Closing the Connection Editor

UIM/X User’s Guide 63

5
Some methods accept a return value. If an interface method accepts a
return value, it is optional, but if a swidget method accepts a return
value, one must be supplied. A return value supplied for a
connection must be a variable of the proper type visible within the
scope of the corresponding callback. This variable is assigned the
result of the connection when it is triggered.

Closing the Connection Editor

To close the Connection Editor:

Choose File⇒Close from the Connection Editor.
OR

Double-click on the Connection Editor’s Window menu button.
OR

Press Alt+F, then press C with the Connection Editor active,
OR

Press Alt+F4 with the Connection Editor active.

SPECIFYING CALLBACKS AND CONNECTIONS
The Relationship Between Callbacks and Connections

64 UIM/X User’s Guide

5

The Relationship Between Callbacks and
Connections

When a connection is established between two objects, appropriate
code is automatically added to the specified callback of the source
object. This code comes after any code added to the callback by the
Callback Editor, and is added in the order that the connections are
displayed in the Connection Editor.

For example, consider an interface containing a top-level Form, a
Push Button, a Text Field, and a Label, where the interface has a
method called MyMeth, and the Push Button has the following code
in its ActivateCallback:

If the following connections are made from the Push Button:

char *text;
cout << "Transferring text." << endl;

ActivateCallback--->textField1::GetText()
ActivateCallback--->label1::SetLabelString(text)
ArmCallback--->form1::MyMeth(42, &UxEnv)

SPECIFYING CALLBACKS AND CONNECTIONS
Closing the Connection Editor

UIM/X User’s Guide 65

5
where the first connection in the list specifies “text” as the return
value, and C++ code is generated with Ux Convenience Library C++
Bindings enabled, the following two callbacks are generated for the
Push Button:

void _UxCform1::activateCB_pushButton1(
 Widget wgt,
 XtPointer cd,
 XtPointer cb)

{
 Widget UxWidget = wgt;
 XtPointer UxClientData = cd;
 XtPointer UxCallbackArg = cb;
 swidget UxThisWidget;

 UxThisWidget = UxWidgetToSwidget(UxWidget);
 {
 char *text;
 cout << “Transferring text.” << endl;

 // Connection code
 text = textField1.GetText();
 label1.SetLabelString((text));
 }

}

void _UxCform1::armCB_pushButton1(
 Widget wgt,
 XtPointer cd,
 XtPointer cb)

{
 Widget UxWidget = wgt;
 XtPointer UxClientData = cd;
 XtPointer UxCallbackArg = cb;
 swidget UxThisWidget;

 UxThisWidget = UxWidgetToSwidget(UxWidget);

 // Connection code
 MyMeth(42,&UxEnv);

}

SPECIFYING CALLBACKS AND CONNECTIONS
The Relationship Between Callbacks and Connections

66 UIM/X User’s Guide

5

UIM/X User’s Guide 67

Editing Interface Code 6
Overview

UIM/X generates the code for each interface into a separate source
file. The Declaration Editor acts as a template for the generated code.

The Declaration Editor allows you to edit portions of the file which
will be generated.

Notice the standard function call declaration and the curly braces
shown on the Declaration Editor which mark the beginning and the
end of the create function. All text that you enter in the text fields
will appear directly in the generated file, with minor exceptions
(such as prefixing parameter and interface-specific variable names
with _Ux).

EDITING INTERFACE CODE

68 UIM/X User’s Guide

6

Figure 6-1 Declaration Editor

Opening the Declaration Editor
1. Select the interface’s icon in the Project Window.
2. Choose Tools⇒Declaration Editor from the Project Window, or choose

Selected Interfaces⇒Tools⇒Declaration Editor.

OR

1. Select the interface by clicking on it, or by clicking on an object
within it.

2. Choose Tools⇒Declaration Editor from the Project Window, or choose
Selected Objects⇒Tools⇒Declaration Editor.

EDITING INTERFACE CODE
Modifying Code with the Declaration Editor

UIM/X User’s Guide 69

6

Modifying Code with the Declaration Editor

Following the code guidelines established for UIM/X, enter text in
the appropriate text fields for the sections of the code that you want
to modify. The Text Editor (…) button accesses the Text Editor. The
Text Editor offers more visible space for entering code than the
Declaration Editor.

Once you have entered your code, click on OK or Apply in the
Declaration Editor. This new code will be included when code for the
interface is generated.

Reserved Words

You should not use the words parent or name anywhere in code
specified in the Declaration Editor.

General Code Guidelines
When entering code into the Declaration Editor, keep in mind the
following guidelines:

C++ Code Guidelines

When you wish to include C++ header files while in ANSI C mode
or K&R C mode, the files must be properly protected as follows:

Interface
Functions

You can call the Interface Function of another interface. It
should be declared extern since it will appear in a
different file.

Global
Variables

Any global variables defined in the Declaration Editor of
another interface can be used. They should be declared
extern since they will appear in a different file.

Auxiliary
Functions

You can call any non-static functions defined in the
Auxiliary Functions section of the Declaration Editor of
another interface. They should be declared extern since
they will appear in a different file.

#ifdef __cplusplus
#include <Alok.h> // C++ header file
#endif /* __cplusplus */

EDITING INTERFACE CODE
General Code Guidelines

70 UIM/X User’s Guide

6

All code in the Declaration Editor will be written as is to the
generated C++ file. Therefore, if you declare C variables or include C
specific header files, you must use the C++ linkage specification
statement as follows:

Declaring Global Variables

UIM/X writes the declarations of global and static variables at the
beginning of the source file generated for the interface. You can
reference global variables from other files if you have first declared
the global variables to be extern.

The following variables are declared globally when the source file is
generated:

• Variables specified as global in the Declaration Editor.

• Variable names for swidgets whose scope is set to global in the Property
Editor.

Global variables and constants defined in the Includes, Defines,
Global Variables section of the Declaration Editor may be used in
code for objects of the corresponding interface, and in other fields on
the Declaration Editor.

Note: Do not define a structure in the Globals section of the Declaration Editor
having the same name as any of the interface specific variables. This could
result in an unwanted macro expansion. See “Restrictions Concerning
Interface-Specific Variables” on page 72 for more information.

If you want to use functions in code, the appropriate include files
must be entered here. Apply the changes so that the Interpreter will
recognize the functions.

#ifdef __cplusplus
extern "C" {
#endif
/* C declarations and #includes entered here */
#ifdef __cplusplus
}
#endif /* __cplusplus */

EDITING INTERFACE CODE
Declaring Global Variables with C++ Bindings

UIM/X User’s Guide 71

6

The Includes, Defines, Global Variables section also allows you to:

• Specify include files using the #include directive.

• Define constants using the #define directive.

• Declare global variables.

Declaring Global Variables with C++ Bindings

When Ux Convenience Library C++ Bindings are used, swidgets are
declared as objects of the appropriate Motif wrapper class. Therefore
when making an extern declaration of a global swidget in another
interface, the appropriate C++ wrapper class name must be specified.
Because this type of declaration is incompatible with that needed
when Ux Convenience Library C++ Bindings are not in use (in which
case all objects are declared as type swidget), it is best to provide a
conditional declaration. For example:

Declarations made in this way will work regardless of whether or
not Ux Convenience Library C++ Bindings are used.

Declaring Interface-Specific Variables

In the generated code, interface-specific variables are declared as
elements of an allocated structure (the context structure).

The following variables are declared as elements of the context
structure:

• Variables specified as interface-specific in the Declaration Editor. Any
variables entered in the Interface Specific section will be added to the
context structure.

• Variable names for swidgets whose scope is local.

• Variable names for parameters passed to the Interface Function, as
specified in the Declaration Editor.

#if defined(__cplusplus) && !defined(XT_CODE) \
&& !defined(UX_NOBINDINGS)

extern UxPushButton pushButton1;
#else

extern swidget pushButton1;
#endif

EDITING INTERFACE CODE
General Code Guidelines

72 UIM/X User’s Guide

6

Unlike the global variables, the interface-specific variables are
specific to each interface. Interface-specific variables may therefore
have a different value in each copy of the interface. This is
implemented by means of the context structure.

Note: In generated C++ code, the context structure is the interface class itself.
Therefore, interface-specific variables become member variables of the class.

Restrictions Concerning Interface-Specific Variables

If you encounter strange syntax errors when applying changes in the
Declaration Editor, it is most likely that you are having problems
resulting from a macro expansion. Note that the existence of the
context structure macros in the generated code makes it impossible
to declare a local variable in your callback code having the same
name as one of the swidgets, instance-specific variables, or
arguments passed to the Interface Function. If you attempt to do so,
the macro expansion would result in a syntax error.

Similarly, do not define a structure in the Globals section of the
Declaration Editor having the same name as any of the interface
specific variables. This also could result in an unwanted macro
expansion.

Auxiliary functions in C++ are generated as stand-alone functions,
while interface-specific variables are generated as part of the
interface class. The result is that auxiliary functions cannot use any
of the interface-specific variables. See Appendix for more
information.

Renaming the Interface Function

The Interface Function creates and potentially displays the interface.
The default name for this function is obtained by prefixing popup_ or
create_ to the name of the top-level object.

For example, if you create an interface whose top-level object is
named bulletinBoard1, the generated file will contain a function
popup_bulletinBoard1() or create_bulletinBoard1(). You can
rename this function, using the Declaration Editor, to any legal
function name.

EDITING INTERFACE CODE
Changing the Return Value of the Interface Function

UIM/X User’s Guide 73

6

Changing the Return Value of the Interface Function

The Interface Function, by default, returns the top-level object
pointer (of type swidget). However, you can modify the function to
return anything you want. This is done in the Declaration Editor.

For example, you might change the return type of the following
Interface Function from:

to:

provided you also changed the return statement in the Final Code
area from:

to:

Adding Parameters to the Interface Function

You can also specify parameters which are to be passed to the
Interface Function by means of the Declaration Editor.

A typical example is to pass a character string which is to appear on
the interface. For example, if the Interface Function is:

You could change it to:

Since this is a standard function declaration, all rules about declaring
arguments apply.

swidget create_bulletinBoard1(swidget UxParent)

Widget create_bulletinBoard1(swidget UxParent)

return(rtrn);

return(UxGetWidget(rtrn));

swidget create_bulletinBoard1(swidget UxParent)

swidget create_bulletinBoard1(swidget UxParent,char *s)

EDITING INTERFACE CODE
General Code Guidelines

74 UIM/X User’s Guide

6

Note that the name of the parameter must differ from the following
names:

• Any objects in the same interface.

• Any variables declared in the Interface Specific section.

Otherwise, the generated code will not compile.

Adding Initial and Final Code to an Interface

In the Declaration Editor, you can specify initial and final code.
Initial code is executed before the interface is created; final code after
the interface is created.

Note: Initial and final code is only executed when an explicit call to the
constructor of the interface is made. This means that it is not automatically
executed when you click Apply in the Declaration Editor or when you switch
to Test mode.

To test your initial and final code, you can switch to Run mode, or
you can evaluate the Interface Function in the Interpreter window.

In initial code, you would initialize the values of interface-specific
and global variables and make use of any parameters passed to the
Interface Function.

A typical use of the Initial Code Field is to initialize interface-specific
variables referenced when creating objects. For example, you might
want to pass in the dimensions of the top-level object of the interface.
These would be assigned to interface-specific variables in the Initial
Code section. The Property Editor for the top-level object would
reference the variables for the width and height properties.

When the resource InterfaceFunctionType is set to create_ the
default for the Final Code section is:

When the resource InterfaceFunctionType is set to popup_ the
default for the Final Code section is:

The rtrn value is the swidget of the top-level object of the interface.

return(rtrn);

VisualInterface_Manage(rtrn, &UxEnv);return(rtrn);

EDITING INTERFACE CODE
Specifying Auxiliary Functions

UIM/X User’s Guide 75

6

Specifying Auxiliary Functions

Following the Interface Function are any auxiliary functions which
you have specified in the Auxiliary Functions section of the
Declaration Editor. This is a convenient spot to put any small
routines that handle some aspect of the interface and are to appear in
the same source file as the interface code. For example, when
running an application as a subprocess, you may need a function to
handle the data sent back from the application; this function can be
defined as an Auxiliary Function in the Declaration Editor.

Note: Auxiliary functions in C++ are generated as stand-alone functions, while
interface-specific variables are generated as part of the interface class. The
result is that auxiliary functions cannot use any of the interface-specific
variables. See “Restrictions Concerning Interface-Specific Variables” on
page 72 for more information.

Note: Local variables defined in auxiliary functions must not have the same
name as any parameters added to the Interface Function. This could result in an
unwanted macro expansion in the auxiliary function. See “Restrictions
Concerning Interface-Specific Variables” on page 72 for more information.

Linking Interfaces Together
Once you have created and added behavior to your interfaces, you
will frequently want to link them together by having a callback in
one interface create and display another interface.

When UIM/X generates code for an interface, it provides a function
which is used to create the interface and, optionally, display it. This
function is called the Interface Function and can be customized using
the Declaration Editor.

UIM/X offers you a choice of two kinds of Interface Functions, a
create function and a popup function. Both functions create the
interface, but the popup function displays the interface as well. By
default the name of the Interface Function is obtained by prepending
create_ or popup_ to the name of the top-level object. This name can
be modified using the Declaration Editor. For an interface whose
top-level object is form1, the default names for the create and popup
functions are create_form1() and popup_form1().

EDITING INTERFACE CODE
Linking Interfaces Together Using Instances

76 UIM/X User’s Guide

6

In its simplest form, the Interface Function calls a utility function to
create and initialize the interface and then, in the case of popup_,
calls VisualInterface_Manage() to display the interface.

Note: You can specify whether the Interface Function is to be a create_
function or a popup_ function by choosing the default Interface Function Type
from the Project Window’s Options menu. Alternately, set the
interfaceFunctionType resource in your Application Defaults. This resource
can have the value create or popup. Changing this option will not affect
previously created interfaces.

Linking Interfaces Together Using Instances
Another way to link interfaces together is to use instances. The
advantage of using instances is that they will be created when the
application is initialized. The disadvantage is that the programmer
does not control when the interfaces are created or destroyed, and
thus has less control over the amount of memory being consumed by
the application.

Passing the Parent to the Interface Function
All generated interface functions declare the parameter UxParent of
type swidget. The actual value passed to the interface function
specifies the parent of the interface. You can pass the constant value
NO_PARENT to the interface function if you want to create a top-level
object.

EDITING INTERFACE CODE
Specifying Auxiliary Functions

UIM/X User’s Guide 77

6

Styles of Handling Interfaces
The create and popup functions allow a range of different styles for
handling interfaces. The one to use will depend upon the type of
application that you are creating and individual preference. The
following styles can be implemented:

• Pop-up all interfaces as they are needed, and never pop them down. This is
the simplest form of the connection of interfaces. It is not used frequently
in applications but is included here as an example of the minimum
required to accomplish the task.

• Create all interfaces at initialization time and pop them up and down as
needed.

• Pop-up an interface every time it is needed and destroy it after use.

• Pop-up an interface when it is first needed and pop it down and up
multiple times afterwards.

Each of these styles is explained in the sections that follow.

Regardless of the style chosen, in order for an Interface Function to
be called it must be known to the calling interface. This is achieved
with the following declaration in the calling interface.

Consider an application that has a Bulletin Board (bulletinBoard1)
containing a Push Button that will pop-up interface form1 when
activated. In interface bulletinBoard1 use the Declaration Editor
and enter the following line in the Includes, Defines, and Global
Variables section:

or

depending on the style chosen.

extern swidget popup_form1
UXPROTO((swidget UxParent, other parameters));

extern swidget create_form1
UXPROTO((swidget UxParent, other parameters));

EDITING INTERFACE CODE
Styles of Handling Interfaces

78 UIM/X User’s Guide

6

Note: UXPROTO() is a macro defined by UIM/X that allows the declaration
of a function to be compatible with K&R compilers as well as ANSI C and
C++ compilers.

Create and Popup Interfaces as Needed

If, for example, you would like to pop up an interface (form1) when
the user clicks on a button (pushButton1) in your application, and
keep that interface on the screen, use the popup_ function for form1.
Then add the following lines of code to the activate callback for
pushButton1.

Note that this is this simplest style of connection in that no attempt is
made to remove the interface when it is no longer necessary nor to
redisplay it when it is needed again.

Creating All Interfaces at Initialization Time

The second style is to create all interfaces at the beginning of the
program, and then to pop them up and down as they are needed. In
this style, the create function is most useful. In the section of the
main program that begins with the comment Initialization Code you
would add a line (using the Program Layout Editor) such as the
following:

for each interface. The create function creates and initializes the
interface, but does not display it. The swidget variable sw1 is used as
a handle to the interface. Later, when you want to display the
interface, the following function call is used:

The method VisualInterface_Manage() works on all interfaces,
including interfaces that are subclasses and instances of other
interfaces. Whenever you first pop up a subclass or instance of
another interface, you must use VisualInterface_Manage().

/* Create and display the interface */
popup_form1(NO_PARENT);

sw1 = create_form1(NO_PARENT);

VisualInterface_Manage(sw1, &UxEnv);

EDITING INTERFACE CODE
Create an Interface When It Is Needed then Destroy it

UIM/X User’s Guide 79

6

Otherwise, if an interface is not a subclass or an instance, you can
pop it up by calling the function UxPopupInterface():

Note that after calling VisualInterface_Manage(), you can use
UxPopdownInterface() and UxPopupInterface() to pop the
interface down and up (even if the interface is a subclass or
instance).

Similarly, use the following call to pop down the interface:

Note: If you choose to create all interfaces at initialization time, you should
consider using instances as an alternative. See “Linking Interfaces Together
Using Instances” on page 76 for more information.

Create an Interface When It Is Needed then Destroy it

The third style is to create an interface only when it is popped up for
the first time. Here the popup function is more useful since it
includes a call to UxPopupInterface() internally. To create, initialize,
and display an interface, you would call:

The function call:

can be used to pop down and destroy an interface after it has served
its purpose.

UxPopupInterface(sw1, no_grab);

UxPopdownInterface(sw1);

sw2 = popup_form2(NO_PARENT);

UxDestroyInterface(sw2);

EDITING INTERFACE CODE
Styles of Handling Interfaces

80 UIM/X User’s Guide

6

Popping an Interface Up and Down Multiple Times

The fourth style is to create the interface when it is first needed, and
pop it down and back up whenever it is subsequently needed. There
are two ways of doing this. First, the popup function can be used to
create and pop it up the first time

To pop it down, use:

The next time the interface is to be displayed, it is not necessary to
recreate it, so the following call can be used:

Another approach for this style is to modify the popup function so
that it checks whether the interface has been created already. In this
case, the popup function can be used every time the interface is to be
displayed. This can be achieved using the UIM/X Declaration Editor.
By default, the popup function has the following structure:

sw3 = popup_form3(NO_PARENT);

UxPopdownInterface(sw3);

UxPopupInterface(sw3, no_grab);

swidget popup_form4(swidget UxParent)
{

swidget rtrn;
/* Initial code */

rtrn = build_form4();
/* Final code */

VisualInterface_Manage(rtrn, &UxEnv);
return (rtrn);

}

EDITING INTERFACE CODE
Popping an Interface Up and Down Multiple Times

UIM/X User’s Guide 81

6

To modify this function, declare a static swidget variable and use it
to save the result of the build_form4() function, which creates and
initializes the interface:

It is clear that the build_form4() function will only be called the
first time popup_form4() is called, so the following pairs of calls can
be used to pop up and pop down the interface:

swidget popup_form4(swidget UxParent)
{

swidget rtrn;

/* Initial code */
static swidget save_form = NULL;

if (save_form == NULL) {
rtrn = build_form4();

/* Final code */
save_form = rtrn;

}
else

rtrn = save_form;

VisualInterface_Manage(rtrn, &UxEnv);
return (rtrn);

}

sw4 = popup_form4(NO_PARENT);

UxPopdownInterface(sw4);

EDITING INTERFACE CODE
Styles of Handling Interfaces

82 UIM/X User’s Guide

6

UIM/X User’s Guide 83

Building Parametric
Interfaces 7

Overview
The initial values of a property often depend on the state of the application.
Considerations include what files have been loaded, what the user has
previously done, other data sources, and the state of other interfaces.
Furthermore, an interface might need to get its resource value from another
object’s resource (like getting text from the Text widget). In such cases, the
initial state of the interface is said to be dynamic—it changes each time a
dialog box or an interface is popped up.

When building interfaces with a dynamic initial state, it is often convenient
to design an interface whose initial state depends upon arguments passed to
its Interface Function. This is particularly true when you want to have
multiple instances of an interface with each one slightly different. Such an
interface is called a parametric interface.

There are two steps to building a parametric interface. The first is to add
arguments to the Interface Function. For a complete discussion of adding
arguments see Chapter 6, "Editing Interface Code". The second, discussed
here, is to use those arguments as expressions in the interface object
properties.

BUILDING PARAMETRIC INTERFACES
Adding Arguments

84 UIM/X User’s Guide

7

Adding Arguments
The following code sample declares an Interface Function with an
additional parameter, label. The parameter is used to write to the label of a
Push Button in a drawing area each time the interface is created.

Putting Code in Properties
UIM/X allows you to enter an expression for the value of any property in
the Property Editor. The only requirement of the expression is that it be of
the correct type.

For example, many property resources, such as a Push Button’s
LabelString property resource, require a string value. In the Property
Editor, you could enter a global variable declared char*, a function that
takes arguments and returns a char*, or an argument to the popup function
which is a char*.

The expressions are evaluated by the Interpreter when the object is created
(or recreated) in UIM/X. As a result, by modifying the application state and
creating or recreating the interface, the interface may be quite different. (Of
course, the expression is kept as is in the generated code.)

Expressions That Don’t Have a Legal Value
When an expression is entered in the Property Editor and the Apply button
is clicked, the object is recreated. Often, however, the expression may not
yet have a legal value because the application may not be built, running, or
initialized. In such cases, a dialog box appears, similar to the one shown in
Figure 7-1:

Figure 7-1 Question Dialog

swidget popup_drawingArea1(swidget UxParent, char *label)

BUILDING PARAMETRIC INTERFACES

UIM/X User’s Guide 85

7
This message only appears when an expression is used and does not appear
for constants. The message alerts you to the fact that there is an illegal
value, or that the expression may have been incorrectly typed, although it
would parse legally in the Interpreter. If an expression is correct and simply
does not yet have a legal value, click on OK. Choosing Cancel will cancel
the Apply. When OK is chosen, the object’s default value for the property
will be used instead. If an expression defined in the Declaration Editor is
used as a resource, applying the Property Editor is not enough. Any
modification to the expression definition will require applying the
Declaration Editor.

Note that every time the object is created or recreated, the expression is
evaluated. If it is recreated because of a Property Editor Apply and the
value is still illegal, the dialog box will reappear. If it is recreated because
the popup function was called or because the Recreate menu option was
chosen, a message will simply appear in the Messages Area of the Project
Window.

Note: You can avoid the illegal value message in the Property Editor by
entering an expression that will always evaluate to a legal value, even if the
variable is not yet initialized. For a property expecting a character string, the
following would be legal:

(label ? label : "No Label")

For a property expecting a positive integer the same type of expression would
also work:

(value ? value : 100)

Putting Arguments in Properties
Once you have declared an argument to the Interface Function in the
Declaration Editor and clicked on Apply, you may use it to parametrically
define properties. An argument to the Interface Function may be used in any
property of any object in the interface. For instance, suppose that instead of

BUILDING PARAMETRIC INTERFACES
Multiple Copies of Interfaces

86 UIM/X User’s Guide

7

a label string in quotation marks, the LabelString property of the Push
Button contains the following variable name (note the absence of a
semicolon):

Figure 7-2 Putting an Argument in the LabelString Property

By calling the Interface Function with a string as an argument, for example:

the interface will be parametrically created—the label on the Push Button
will be the one provided by the Interface Function.

Multiple Copies of Interfaces
In compiled code or code loaded into the Interpreter, (although not for an
interactively created interface), you may call an Interface Function several
times and create many copies of an interface, all of which may be visible
simultaneously. An example of this is the Property Editor, many of which
may be visible at a time. Each is parametrically created with a different
object as the argument to the Interface Function. When you create multiple
copies of an interface in this manner, each copy keeps some context-specific
information. For example, if there were a Push Button and a Frame object
in the interface and the activate callback for the Push Button contained the
code:

the callback code for each copy of the interface created would be identical,
yet each one would set a different object’s background to red (i.e., it would
only set the background color of the frame in its own interface). This is
accomplished through the context structure.

popup_drawingArea1(NO_PARENT, "This will appear
 on the pushbutton.");

{
UxPutBackground(frame1, "red");

}

BUILDING PARAMETRIC INTERFACES
The Contents of the Context Structure

UIM/X User’s Guide 87

7

The Contents of the Context Structure

The context structure tells UIM/X which interface to act upon when a
callback function or action function is called.

Each interface has a context structure, allocated when the interface is
created. The context structure stores the objects of local scope,
context-specific variables, and the arguments passed to the Interface
Function.

The type of the context structure is _UxCinterfaceName, where
interfaceName is the name of the top-level swidget of the interface. Each
time the Interface Function is called, a new copy of the context structure is
allocated to hold the variables for the new occurrence of the interface. The
name of this context structure is UxInterfaceNameContext, where
InterfaceName is the (capitalized) name of the top-level swidget of the
interface.

As an example, consider an interface with three swidgets (all of local
scope):

that has the following Interface Function declared:

and has two variables declared in the Interface Specific section of the
Declaration Editor:

drawingArea1 frame1 pushButton1

swidget popup_drawingArea1(swidget UxParent, char *label)

int IV1;
float IV2;

BUILDING PARAMETRIC INTERFACES
Multiple Copies of Interfaces

88 UIM/X User’s Guide

7

The context structure for this interface would be declared as:

The generated C code would contain a variable declared as:

This variable is used to store a pointer to the context structure that is
currently in use.

A series of macro definitions makes it possible to refer to the elements of
the context structure by using the simple variable names:

Note: In generated C++ code, such macro definitions are not needed since all
interface-specific variables and swidgets are within the scope of the C++ class
representing the interface (i.e. C++ automatically handles the context by
means of the implicit this pointer.

typedef struct
{
swidget UxdrawingArea1;
swidget Uxframe1;
swidget UxpushButton1;
int UxIV1;
float UxIV2;
swidget UxUxParent;
char *Uxlabel;
} _UxCdrawingArea1;

static _UxCdrawingArea1 *UxDrawingArea1Context;

#define
drawingArea1

UxDrawingArea1Context->UxdrawingArea1
;

#define frame1 UxDrawingArea1Context->Uxframe1;

#define pushButton1 UxDrawingArea1Context->UxpushButton1;

#define IV1 UxDrawingArea1Context->UxIV1;

#define IV2 UxDrawingArea1Context->UxIV2;

#define label UxDrawingArea1Context->Uxlabel;

#define UxParent UxDrawingArea1Context->UxUxParent;

BUILDING PARAMETRIC INTERFACES
The Contents of the Context Structure

UIM/X User’s Guide 89

7
Note that the existence of these macros in the generated C code makes it
impossible to declare a local variable, label, or any other identifier in your
callback, initial, final, or auxiliary code having the same name as one of the
swidgets, context-specific variables, or arguments passed to the Interface
Function. If you do this, the macro expansion results in a syntax error.

Furthermore, you must watch out for any hidden uses of these identifiers,
such as in library macros which might expand into expressions containing
them.

For example, if you use the X11 function DefaultColormap in your
interface, you will not be able to have a context-specific variable named
“cmap”, because DefaultColormap is actually a macro which expands to
reference a member called “cmap” of an X11 data structure.

Upon entering a callback or action function, the current context is saved in
a local variable and then the relevant context is determined from the
UxWidget parameter and made the current context. At the end of the
callback or action function, the current context is restored from the local
variable where it was saved.

For example, here is the C code generated for the activate callback for
pushButton1:

static void activateCB_pushButton1(Widget UxWidget,
XtPointer UxClientData,
XtPointer

UxCallbackArg)
{

_UxCdrawingArea1 *UxSaveCtx, *UxContext;
swidget UxThisWidget;

UxThisWidget = UxWidgetToSwidget(UxWidget);
UxSaveCtx = UxDrawingArea1Context;
UxDrawingArea1Context = UxContext =

(_UxCdrawingArea1 *) UxGetContext
(UxThisWidget);

{
/* YOUR CODE GOES HERE */

}
UxDrawingArea1Context = UxSaveCtx;

}

BUILDING PARAMETRIC INTERFACES
Building Reusable Components

90 UIM/X User’s Guide

7

Note: Note that if you set the scope of a swidget to be global, then it will not be
a part of the context structure. Instead, the swidget value is stored in a global
variable. The use of swidgets of global scope is not recommended if there will
be multiple copies of the interface.

Building Reusable Components
UIM/X provides the ability to create reusable components that deliver all
the functions necessary for most applications, while remaining easy to
build. Reusable components follow from multiple parametric instances of
top-level objects. They add the capability of creating multiple parametric
instances of components (object hierarchies) that can be children of other
objects. Components are described in Chapter 9, "Working with
Components, Subclasses, and Instances".

Parametric Instances

Using the Parent as an Argument to the Interface
Function

The Parent field of top-level objects is an expression. When an implicit
shell is created programmatically through a call to its Interface Function
with an object as a parent rather than the constant NO_PARENT, UIM/X
strips off the implicit shell and creates the interface as a child of the object
in its Parent field. The parent is normally passed as an argument to the
Interface Function, allowing dynamic control over the parent of each
instance.

For example, a bulletin board could become a parametric component child
of a Form object. In the Declaration Editor’s Interface Function, you would
enter:

In the Property Editor of the bulletin board, you would enter the variable
UxParent in the Parent field in the Declaration properties.

swidget create_bulletinBoard1(swidget UxParent)

BUILDING PARAMETRIC INTERFACES
What Is a Dynamically Created Object?

UIM/X User’s Guide 91

7
You would select the Form interface icon in the Interfaces area of the
Project Window, open the Interpreter and switch to Test Mode. In the
Interpreter, you would choose Module⇒Selected Interface and enter the
following:

Finally, you would highlight create_bulletinBoard1(form1) and
choose Interpret⇒Evaluate.

bulletinBoard1 becomes a child of form1, rather than being a
top-level object.

Alternatively, you might create a Push Button in the Form object and enter
the same functions placed in the Interpreter as a callback of the Push
Button.

What Is a Dynamically Created Object?

A dynamically created object is an object that has been created in code
through calls to the Ux Convenience Library. A dynamically created object
is analogous to dynamically allocated memory (as opposed to statically
allocated memory). If you return to the initial state of the program, the
dynamically allocated memory no longer exists. Because dynamically
created objects are not part of the initial state of the interface (for example,
they were created from a callback), they will be lost when you re-create the
interface.

Therefore, when you attempt an interactive operation on an object hierarchy
that contains a reusable component, a dialog informs you that the operation
will destroy all dynamically created objects in the interface. The dialog
prompts you to confirm that you wish to continue.

extern swidget create_bulletinBoard1();
create_bulletinBoard1(form1);

BUILDING PARAMETRIC INTERFACES
Parametric Instances

92 UIM/X User’s Guide

7

UIM/X User’s Guide 93

Building Reusable
Interface Components 8

Overview
Every graphical user interface (GUI) contains groups of related objects that
work together. Often the same groups of objects appear over and over again
in a GUI. A text entry area that combines a Label and a Text Field is a
familiar example of a frequently used group of objects.

When a specific group of objects is so useful, it’s convenient to treat it as a
higher-level user interface component, rather than as a collection of
primitives. This makes it easier to reuse the group of objects. Instead of
having to create and properly assemble a collection of objects, you just have
to create a single component.

Consistency is another advantage of packaging a collection of objects as a
single component. Each time you create the component, it looks and
behaves the same way. Such components can be used to establish and
promote user interface standards.

The Motif user interface toolkit provides a number of such components.
Menus, menu bars, dialogs, and main windows are examples of
pre-configured groups of objects that can be created as single user interface
components.

UIM/X provides a set of object-oriented features to help you build your
own reusable components, whether you program in C or in C++. Taken
together, these features form the UIM/X Component model. This model
provides a visual metaphor for building and reusing classes of user interface
components.

Note: From the C++ perspective, a component is a C++ class. So why not call
a class a class? Because in UIM/X, you can choose to implement a class in
either C or C++. For this reason, this document uses the more general term
component.

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the UIM/X Component Model

94 UIM/X User’s Guide

8

The first part of this chapter describes the UIM/X Component model and its
different elements. It uses an example project to explain how to use these
elements to build reusable components. You can find this project in
uimx_directory/contrib/LabelTextField. The second half of the
chapter explains the UIM/X Component Model from the perspective of the
generated code.

Understanding the UIM/X Component Model
The UIM/X Component model supports object-oriented programming in
either C or C++. It provides a mechanism for building class hierarchies with
inheritance, encapsulation, and polymorphism.

The key to understanding the UIM/X Component model is the observation
that UIM/X interfaces are really classes. In UIM/X, anything you see on the
desktop is a class. Therefore, in the LabelTextField project, the Form
object and its children, the Label and the Text Field, combine to form a
class.

These interface classes are called Components. Components follow the
Common Object Broker Request Architecture (CORBA) standard for C and
C++ classes. The CORBA standard specifies how to build classes in
different languages, such as C, C++, or Smalltalk, so they can all interact.

To build a class hierarchy, you derive new classes from a Component. These
derived classes are called Subclasses. Methods are the operations that you
can perform on the objects of these classes. (In the UIM/X Component
model, objects are called Instances.)

Building Components

In UIM/X, you are always building Components, because anything you put
on the desktop is really a Component. From a shell to a Push Button to a
full-blown interface, anything you see with window manager decorations is
a Component. The only question is whether or not you intend to reuse the
Component.

For example, suppose that after building a sophisticated interface, you look
at it and realize that one of its elements can be reused. UIM/X provides a
simple way to convert such an interface element into a Component.

BUILDING REUSABLE INTERFACE COMPONENTS
Creating Instances

UIM/X User’s Guide 95

8
All you have to do is drag the element out of the interface and onto the
desktop. This converts the element into a Component. When you do this,
UIM/X also gives you the option of replacing the element (in the original
parent) with an Instance of the new Component.

Creating Instances

You reuse a Component by creating an Instance. You create Instances just
as you create swidgets, by drawing them. Figure shows several Instances
of a simple LabelText Component drawn on another interface. The
LabelText Component combines a Label and a Text Field on a Form to
make up a reusable text entry area.

Figure 8-1 Instances of a Component

The standard interface in creating an instance of a Component is the
Component’s Interface Function. This function creates an Instance of the
Component and returns a swidget that represents the top-level object of that
Instance. When code is generated for an interface, each Instance you draw
in UIM/X inserts a call to the Component’s Interface Function in the
generated code:

In this example, the function create_LabelText() is the Interface
Function for the LabelText Component. It creates an Instance as a child of
the swidget InputForm.

Instances of a Component
are self-contained objects.

Each Instance is created
by calling the Interface
Function of its Component.

Any interface can
be used as a
Component.

// Creation of LabelTextInstance1
LabelTextInstance1 = create_LabelText(InputForm, 0);

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the UIM/X Component Model

96 UIM/X User’s Guide

8

In C++, there are alternatives for creating an Instance of a Component. The
C++ class generated for a Component includes the following:

• a default (parameterless) constructor

• a parametered constructor

• a CreateSwidget() member function

Both the parametered constructor and the CreateSwidget() member
function accept the same arguments as the Component’s Interface Function,
and both achieve the same effect. That is, they build the swidget tree of the
Instance, set all initial properties, and register all callbacks. And as with the
Interface Function, they initiate execution of the Initial Code and Final
Code entered in the Declaration Editor.

As a result, the following are all valid ways of creating an Instance of a
Component in C++:

• Using the Component’s Interface Function and dealing with the Instance
as a swidget:

• Using the Component’s default constructor and calling the
CreateSwidget() member function:

or:

• Using the Component’s parametered constructor:

swidget LabelTextInstance1;
LabelTextInstance1 = create_LabelText(InputForm, 0);

_UxCLabelText LabelTextInstance1;
LabelTextInstance1.CreateSwidget(InputForm, 0);

_UxCLabelText *LabelTextInstance1;
LabelTextInstance1 = new _UxCLabelText;
LabelTextInstance1->CreateSwidget(InputForm, 0);

_UxCLabelText LabelTextInstance1(InputForm, 0);

BUILDING REUSABLE INTERFACE COMPONENTS
Creating Instances

UIM/X User’s Guide 97

8
or:

When C++ code is generated for an interface, each Instance you draw in
UIM/X is represented by an object of the Component’s class, and a call to
the Component’s CreateSwidget() member function is used to create the
Instance:

Note: These C++ mechanisms for creating Instances are not available at
design time. Thus, if any of the mechanisms are used in code that is subject to
being interpreted during design time, they must be protected by an #ifndef
DESIGN_TIME block. Furthermore, these mechanisms are unavailable if Ux
Convenience Library C++ Bindings are disabled. See “Generating C++ Code
without C++ Bindings” on page 117 for more information.

Because the Interface Function of a Component contains calls to the
Interface Functions of the Instances within the Component, you cannot
create an Instance as a child of its Component. This would result in an
infinite series of calls to the Component Interface Function, because the
Interface Function would have to call itself to create the child Instance.
Creating an Instance as a child of its Component is analogous to declaring a
class C that contains an object of class C, which is something you cannot do
in C++.

Note: You can use Instances to build a new Component. One Component can
contain Instances of another Component, in the same way that a C++ class can
include objects of other classes as members.

_UxCLabelText *LabelTextInstance1;
LabelTextInstance1 = new _UxCLabelText(InputForm, 0);

// Creation of LabelTextInstance1
LabelTextInstance1.CreateSwidget(InputForm, 0);

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the UIM/X Component Model

98 UIM/X User’s Guide

8

Creating Instances with Explicit Shells

When you create a Component, UIM/X automatically adds a shell swidget.
This shell swidget is called an implicit shell, because it allows you to create
objects on the desktop without explicitly creating a shell swidget. (By
default, this implicit shell is a TopLevelShell.) When you create an
Instance, the implicit shell is removed. It is not part of the Component.

If you want a shell to be part of a Component, you have to create an explicit
shell. To do this, you create a shell swidget as you would any other swidget.
There’s nothing special about an explicit shell, other than the fact that you
have to explicitly create it.

However, when a Component includes an explicit shell, its Instances are
always top-level. If you create an Instance with an explicit shell as a child
on another interface, the instance can be seen in the Browser but is not
visible on the interface, nor does it have an icon in the Interfaces area of the
Project Window.

Defining Methods

A Component has a public interface that consists of an Interface Function
and a set of methods. The Interface Function is the function that creates an
Instance of the Component. Methods are the operations that can be applied
to Instances of the Component.

In generated C++ code, methods are implemented as member functions. In
UIM/X and in generated C code, methods are implemented by a method
dispatcher that stores and retrieves function pointers in a lookup table.

Methods are an important part of the UIM/X Component model. They are
part of the encapsulation provided by a Component, because they separate
code that uses a Component from the code that implements the Component.
Interface code that uses a Component does so by invoking its methods. The
internal state of a Component is never directly accessed, except by its
methods.

In addition, methods allow you to define polymorphic
operations—operations that behave differently on different classes of a
Component. (And they let you do this in either C or C++.)

BUILDING REUSABLE INTERFACE COMPONENTS
Invoking Methods

UIM/X User’s Guide 99

8

Invoking Methods

You invoke a method on an Instance using a method macro:

The macro name is formed by combining the name of the Component and
the name of the Method. The naming and calling conventions of the method
macros follow the CORBA specifications. UIM/X gives you a choice
between Corba 1.1, Corba 2.0, or no Corba.

The method macros are defined both in UIM/X and in the generated code.
For example, you can use method macros as initial value expressions in the
Property Editor. The method macros map the method call to the appropriate
code. In C++, the method macros expand to calls to member functions of
the interface class. See “Methods and Method Macros” on page 113 for
more information.

The first argument is the top-level swidget of the Instance. If you choose
Corba 1.1 or Corba 2.0 compliancy, the argument list also contains a pointer
to an Environment structure (as the second argument if you choose Corba
1.1, and as the last argument if you choose Corba 2.0). This Environment
pointer is required by CORBA. Its intended use is the return of exception
information. While UIM/X does not raise request broker exceptions, this
argument allows you to handle exceptions if you integrate your applications
with a CORBA-compliant object request broker.

In the past, you invoked a method by passing any swidget in an Instance as
the first argument to the method macro. While UIM/X still supports this
way of doing things, it now provides a stricter mode of method invocation.

The UIM/X resource UxStrictMethodInvocation.set controls whether
or not UIM/X enforces the strict mode of method invocation. By default,
strict mode is turned off. To run UIM/X in strict mode, set
UxStrictMethodInvocation.set to True.

In strict mode, you can invoke methods only on the top-level swidget of an
Instance. Since an Instance encapsulates a swidget tree, it doesn’t make
sense to invoke methods on any swidget in the tree. Methods apply to the
Instance itself, not to the individual swidgets it encapsulates. In strict mode,
UIM/X considers the top-level swidget as the only swidget that can
represent the Instance.

LabelText_Validate(LabelText, other_args, &UxEnv)

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the UIM/X Component Model

100 UIM/X User’s Guide

8

To understand how the top-level swidget can represent an Instance, consider
that the function that creates an Instance (the Interface Function) returns the
top-level swidget. And when you destroy the top-level swidget, you destroy
the entire swidget tree. So in the UIM/X model, where methods have to
work in C or C++, the top-level swidget really does represent the Instance.

When UIM/X is in strict mode, method invocations that do not use the
top-level swidget have no effect. UIM/X will not be able to find the
function that implements the method, and will call a function that does
nothing.

Note: Do not run UIM/X in strict mode if you have integrated C++
Components that do not follow the strict mode rules. When UIM/X is in strict
mode, method invocations that do not follow the strict mode rules can cause
UIM/X to exit during testing.

Understanding Methods and Polymorphism

The method macros provide a CORBA-compliant mechanism for invoking
operations that depend on the type of object. For example, if class D is a
subclass of class B, calling:

on an object of class D ultimately calls the version of the method defined by
class D. The class of the object passed to the method determines the version
of the method invoked. If a subclass does not override the method, the
superclass version is invoked.

This is conceptually similar to C++, where the object would be declared as
class B. Think of it as object–>mymethod(…), where you are stating
(within the call, since C doesn’t have strong typing) that it is an object of
class D.

This calling convention works regardless of whether you are working in C
or in C++. As a result, you can do object-oriented programming in C now.
To switch to C++, you simply change a code generation option and all your
code still works.

For an example of how to use polymorphism, see “Overriding Callbacks in
Subclasses” on page 105.

B_mymethod(object, args, pEnv);

BUILDING REUSABLE INTERFACE COMPONENTS
Adding Instance Properties

UIM/X User’s Guide 101

8

Adding Instance Properties

A Component encapsulates a collection of swidgets and Instances. By
default, the properties of the swidgets and Instances in a Component are
private details that cannot be edited. But they can be made public by
defining a pair of methods on the Component—one to set the property value
and one to retrieve the property value.

These methods are known as property accessors. This modeling of
properties as a pair of methods follows the CORBA specifications. Figure
shows an example of a property accessor method. See “Defining Property
Accessors” on page 126 for details on defining a property accessor.

Figure 8-2 Property Accessor Method

These properties appear in the Specific category when you load an Instance
into the Property Editor. You can even install option menus and specialized
resource editors for these properties.

Note: Property accessors let you add properties of any type, not just Motif
properties. The internal representation of an accessor property is private to the
Component, and may be a swidget property, an interface-specific variable, or
some other application-level attribute.

A set
accessor
method
takes one
argument:
the property
value.

The body of
the method
contains the
code
necessary to
set the
property.

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the UIM/X Component Model

102 UIM/X User’s Guide

8

For example, suppose Component A contained an Instance of Component
B. How would you expose the properties of this Instance?

The answer is, of course, by defining property accessors on Component A.
But in these property accessors you would not call UxPutProperty() or
UxGetProperty(), but rather the property accessors defined by
Component B.

You can also add properties by adding arguments to the Component’s
Interface Function. These arguments become Core properties of an Instance.

Interface Function argument properties are like Motif properties whose
access is C (you can set them only at Creation). Accessor properties are like
Motif properties whose access is SG (you can Set or Get them after the
Instance is created).

If a property must be set before an Instance is created, add an argument to
the Interface Function. Otherwise use property accessors to define the
property. Property accessors offer a number of advantages over Interface
Function arguments:

• The property is inherited by Subclasses of the Component.

In contrast, when you add a property by adding an argument to the
Interface Function, the property is not inherited. Instances of a Subclass
do not have the same property unless you explicitly add the same
argument to the Subclass Interface Function.

• You can use the property accessors to set and retrieve the property value
after an Instance is created.

• You don’t have to supply a default value when an Instance is created.

Subclassing Components

You can derive a new class from a Component. The derived class, called a
Subclass, inherits the structure and behavior of the Component. To create a
Subclass, you create a top-level Instance. When you create an Instance of a
Component on the desktop, UIM/X understands that you want to subclass
the Component. Note that you can also derive new classes from a Subclass.

BUILDING REUSABLE INTERFACE COMPONENTS
Subclassing Components

UIM/X User’s Guide 103

8
Figure shows an example of a Subclass created in UIM/X. Note that a
Subclass can add its own swidgets to the swidget tree represented by the
Component. See “Building Manager Components” on page 106 for more
information.

Figure 8-3 Subclassing a Component

Subclasses inherit the methods of the Component and can override them by
defining a method with the same name, return type, and arguments. Because
a Subclass inherits the Component methods, the Subclass inherits the
Component properties (since properties are implemented as accessor
methods).

By combining methods and Subclasses, you can build specialized versions
of a Component. A Subclass can override an inherited method to provide
behavior specific to itself. For example, suppose the LabelText Component
defined a Validate method. A Subclass of the LabelText component could
define its own version of the Validate method and restrict input to numerical
values.

A Subclass of the LabelText
Component.

This Subclass adds an Edit
button that pops up a
specialized editor (such as a
text or color editor).

An Instance of the Subclass.

An Instance of the Component.

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the UIM/X Component Model

104 UIM/X User’s Guide

8

Adding Behavior Properties to Instances

If you want Instances to have Behavior properties that appear in the
Property Editor, you can expose callbacks as Instance properties. To do this,
you define a special method (called a callback accessor) on the Component.
Figure shows an example of a callback accessor. See “Adding Callbacks to
Instances” on page 129 for details on defining a callback accessor.

Figure 8-4 Callback Accessor Method

Using callback accessors, you can expose a callback as a function-pointer
valued property that can be set in each Instance. These properties appear in
the Behavior category of the Property Editor and are set using the Callback
Editor.

Callback accessors are not restricted to Motif callbacks. You can use them
to add Behavior properties for events and messages generated by other
systems. In a database application, for example, you could add a
databaseChanged callback. The only restriction is that the procedure must
have the signature of a standard Xt callback function.

BUILDING REUSABLE INTERFACE COMPONENTS
Overriding Callbacks in Subclasses

UIM/X User’s Guide 105

8

Overriding Callbacks in Subclasses

Sometimes you want all Instances of a Component to have the same
behavior, but you also want to be able to override this behavior in
Subclasses. To do this, you exploit the fact that UIM/X methods are
polymorphic.

First, you define a method that implements the callback behavior. Then you
invoke this method from the callback. Subclasses can then override the
callback behavior by overriding the method.

For example, the LabelText Component contains a TextField swidget.
Suppose you wanted the valueChangedCallback of the TextField swidget to
invoke a Validate method defined by the Component. To do this, you would
write a callback like the one shown in Figure 8-5.

Figure 8-5 Invoking a Method in a Callback

In a Subclass of LabelText, the same callback function is called, but the
Subclass version of the Validate method is invoked, not the LabelText
version. This is because it is not the name of the macro that is important,
but the class of the object (the first argument) passed to the macro.

Note that the first argument to the method macro is LabelText, the
top-level swidget of the Instance, not UxThisWidget. This follows the
strict mode rules for method invocation—see “Invoking Methods” on
page 99 for more information.

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the Generated C++ Code

106 UIM/X User’s Guide

8

If you examine the generated method macro for the Validate method, you
will see that the first argument serves as an implicit self-reference to the
Instance for which the method was invoked:

The function UxGetContext() will return the this pointer for the object
that contains the swidget LabelText. (See the discussion of
UxGetContext() in “Methods and Method Macros” on page 113.)

Building Manager Components

The UIM/X Component model provides a way to build manager
Components, whose Instances can accept swidgets and other Instances as
children.

You build a manager Component by defining a special childSite method
that returns a swidget (or Instance) that can be used as a parent. For
example, if a Component consisted of a Label and TextField on a
RowColumn, the childSite method would return the RowColumn
swidget. Note that when a Component has a childSite method,
Subclasses can add new swidgets as children.

For more information about the childSite method, see “The Base
Interface Class” on page 107.

Understanding the Generated C++ Code
When you generate C++ code for a Component, you get a header file that
contains the class definition and a source file that contains the class
implementation. Anywhere an Instance of the Component is used, a call to
the Component Interface Function appears.

You can take two views of the UIM/X Component model. One view is from
the perspective of the visual development environment provided by UIM/X.
The other is from the perspective of the generated code. Considering these
two different but complementary views will help you to understand and use
the features of the UIM/X Component model.

#ifndef LabelText_Validate
#define LabelText_Validate(UxThis, pEnv) \
(((_UxCLabelText *)UxGetContext(UxThis))->Validate(pEnv

))
#endif

BUILDING REUSABLE INTERFACE COMPONENTS
The Base Interface Class

UIM/X User’s Guide 107

8

The Base Interface Class

A good place to start is with a brief look at the class from which all
generated Component classes are derived. This class, called UxBase,
provides functionality common to all Components, and is defined in
uimx_directory/include/UxBase.h:

class UxBase
{

protected:
swidget UxThis;

public:
UXINLINE UxBase();
UXINLINE ~UxBase();

/* type conversion to swidget */
UXINLINE operator swidget();

.

.

.

};

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the Generated C++ Code

108 UIM/X User’s Guide

8

The UxInterface and UxVisualInterface classes are derived from UxBase,
and are defined in uimx_directory/include/UxInterf.h:

class UxInterface : public UxBase
{

 public:
 UXINLINE UxInterface();
 virtual ~UxInterface();
 UXINLINE Boolean auto_destroy() const;

 static void UxDestroyContextCB(Widget,
XtPointer, XtPointer);

 protected:
 UXINLINE void auto_destroy(Boolean value);
 Boolean auto_destroy_flag;

};

class UxVisualInterface : public UxInterface
{

 public:
 virtual swidget childSite (Environment *pEnv);
 virtual swidget UxChildSite (swidget sw);
 virtual void _set_x (Environment*, int);
 virtual int _get_x (Environment*);
 virtual void _set_y (Environment*, int);
 virtual int _get_y (Environment*);
 virtual void _set_width (Environment*, int);
 virtual int _get_width (Environment*);
 virtual void _set_height (Environment*, int);
 virtual int _get_height (Environment*);
 virtual void Manage (Environment *pEnv =

NULL);
 virtual void Unmanage (Environment *pEnv =

NULL);
 virtual swidget get_UxThis();

};

BUILDING REUSABLE INTERFACE COMPONENTS
The Base Interface Class

UIM/X User’s Guide 109

8
The UxVisualInterface base class, helped by the classes from which it is
derived, captures features common to all visual generated classes,
including:

• A protected UxThis data member that holds the top-level swidget of the
swidget tree encapsulated by the generated class. The UxThis member is
set by the _build() member function, which creates the swidget tree.

• A get_UxThis() member function for retrieving the top-level swidget.

• A type-conversion operator allowing an implicit conversion to the
top-level swidget.

• A virtual destructor.

• Member functions for setting and retrieving the x, y, width, and height
properties of Instances. These member functions are defined in
UxInterf.cc:

• Manage() and Unmanage() member function for managing and
unmanaging Instances.

• A childSite() member function that returns a swidget that can be used
as a parent. The Interface version returns 0, which means that Instances of
the class cannot accept children. A manager Component would override
this member function with a version that returned a valid parent.

• The Interface class also defines a UxChildSite() member function that
handles the case where one Instance contains another Instance, and the
nested Instance is the intended parent. This member function is a recursive
function that steps through a hierarchy of Instances, calling the
childSite() method of each Instance.

You use UxChildSite() when you want to create an object on an
Instance:

void UxVisualInterface::_set_x(Environment*, int x)
{

XtVaSetValues(UxRealWidget(UxThis), XmNx, x, NULL);
}

editButton = UxCreatePushButton("editButton",

UxChildSite(_UxCLabelText::childSite(&Ux
Env)));

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the Generated C++ Code

110 UIM/X User’s Guide

8

Method macros for invoking these member functions are defined in
UxLib.h. The actual implementation of the Interface class is contained in
uimx_directory/config/UxInterf.cc. When you generate C++ code, the
file UxInterf.cc is copied into the directory containing the generated
files.

Generated Component Classes

Note: The discussion that follows assumes that Ux Convenience Library C++
Bindings are being used. If these bindings are disabled, Component classes are
generated differently. For a description of how Component classes are
generated when Ux Convenience Library C++ Bindings are not being used, see
“Generating C++ Code without C++ Bindings” on page 117.

When you generate C++ code for a Component, the class representing the
Component derives from UxVisualInterface (although if the Component is a
Subclass of another Component this derivation will be indirect). The
following is the class declaration for the Labeltext Component show in
Figure 8-1.

BUILDING REUSABLE INTERFACE COMPONENTS
Generated Component Classes

UIM/X User’s Guide 111

8

class _UxCLabelText: public UxVisualInterface
{

// Generated Class Members

public:

// Constructor and Destructor Functions

_UxCLabelText(swidget UxParent, int anArg);
inline _UxCLabelText() {}
~_UxCLabelText();

// Interface Function

swidget CreateSwidget(swidget UxParent, int anArg);

//For backwards compatibility

inline swidget _create_LabelText() { return UxThis; }

// User Defined Methods

virtual int Validate(swidget textWidget,
CORBA::Environment * pEnv);

virtual char * _get_LabelString(CORBA::Environment *
pEnv);

virtual int _set_LabelString(char * value,
CORBA::Environment * pEnv);

virtual swidget childSite(CORBA::Environment * pEnv);

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the Generated C++ Code

112 UIM/X User’s Guide

8

Data Members

The representation of a class consists of the swidgets in the interface,
interface-specific variables, and Interface Function arguments. These data
members are declared in the protected portion of the class so only derived
classes can access them.

Wherever possible, Ux Convenience Library C++ Bindings are used to
declare the types of swidgets in the interface. The actual type swidget is
used only where needed to maintain backwards compatibility with projects
developed with earlier versions of UIM/X.

protected:

// Widgets in the interface

UxForm LabelText;
UxLabel label1;
UxTextField textField1;

// Arg List of creation function

swidget UxParent;
int anArg;

// Callbacks and their wrappers

virtual void valueChangedCB_textField1(Widget,
XtPointer,
XtPointer);

static void Wrap_valueChangedCB_textField1(Widget,
XtPointer, XtPointer);

// User Defined Methods

private:

_UxCLabelText &build();
CPLUS_ADAPT_CONTEXT(_UxCLabelText)
friend swidget create_LabelText(swidget UxParent, int

anArg);
} ;

BUILDING REUSABLE INTERFACE COMPONENTS
Methods and Method Macros

UIM/X User’s Guide 113

8
Because the Ux Convenience Library C++ Binding classes used to represent
the swidgets of the interface also derive from the UxBase class, they inherit
the type conversion operator that allows an implicit conversion to type
swidget. This allows the objects of an interface to be used in all situations
where historically only objects of type swidget were accepted (such as the
first argument to all Ux Convenience Library functions).

The first argument to the Interface Function must be the parent swidget for
the swidget tree represented by the Component. In the generated code, this
first argument is always UxParent, so a generated class always has a
UxParent data member.

Methods and Method Macros

Methods defined in the Method Editor become public member functions of
the class. The class header file defines macros for invoking these methods.
These method macros translate a method call on an Instance to a member
function call:

The method macros follow the Common Object Request Broker
Architecture (CORBA) calling conventions.

A method macro is shorthand for this->method(). The call to
UxGetContext() retrieves the this pointer for the C++ object on which
the method is being invoked.

In the UIM/X model, the this pointer is stored in the swidget’s X context
(in the context manager database provided by Xlib). The functions
UxPutContext() and UxGetContext() store and retrieve the this
pointer in the context manager database.

The this pointer is stored when the swidgets are created by the _build()
member function:

#ifndef LabelText__get_LabelString
#define LabelText__get_LabelString(UxThis, pEnv) \

(((_UxCLabelText *) UxGetContext(UxThis))
->_get_LabelString(pEnv))

#endif

// Creation of LabelText
LabelText = UxCreateForm("LabelText", UxParent);
UxPutContext(LabelText, this);
UxThis = LabelText;

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the Generated C++ Code

114 UIM/X User’s Guide

8

Callbacks

In C++, the this pointer is passed as a hidden argument to all non-static
member functions. This means that a non-static member function cannot be
registered as a callback, because callbacks are C functions that do not
accept the this pointer.

To handle this problem, UIM/X uses two member functions for each
callback:

The static member function is registered as the callback. It calls the virtual
member function to do the actual work. However, the static member
function needs the this pointer so it can call the member function on the
appropriate object.

In the Douglas Young model, the this pointer is passed as client data to the
static member function. However, this use of the client data argument is
restrictive. The purpose of the client data is to hold information specific to
a callback (so you can share callbacks). For example, on a numeric keypad,
all buttons might share the same callback, with the actual digit being stored
in the client data.

// Callbacks and their wrappers
virtual void valueChangedCB_textField1(Widget, XtPointer,

XtPointer);
static void Wrap_valueChangedCB_textField1(Widget,

XtPointer, XtPointer);

BUILDING REUSABLE INTERFACE COMPONENTS
Callbacks

UIM/X User’s Guide 115

8
In the UIM/X model, the this pointer is stored in the Xlib context manager
database. The static member function retrieves the this pointer (by calling
UxGetContext()) and uses it to call the appropriate member function:

void _UxCLabelText :: Wrap_valueChangedCB_textField1(
Widget wgt,
XtPointer cd,
XtPointer cb)

{
_UxCLabelText *UxContext;
Widget UxWidget = wgt;
XtPointer UxClientData = cd;
XtPointer UxCallbackArg = cb;
swidget UxThisWidget;

UxThisWidget = UxWidgetToSwidget(UxWidget);

// Retrieve the this pointer from the X context
UxContext = (_UxCLabelText *)

UxGetContext(UxThisWidget);

// Call the member function that contains the callback code
UxContext->valueChangedCB_textField1(UxWidget,

UxClientData, UxCallbackArg);
}

BUILDING REUSABLE INTERFACE COMPONENTS
Understanding the Generated C++ Code

116 UIM/X User’s Guide

8

Instance Creation

In generated C++ code, the standard way of defining an Instance of a
Component is to define an object of the class representing the Component.
Such objects are defined as protected data members of the class that
contains them.

Defining an Instance of a Component in this way causes the default
(parameterless) constructor of the Component’s class to be called. Only
later, in the _build() member functions of the Component class that
contains the Instance, is the swidget tree of the Instance built. This is
achieved by calling the Instance’s CreateSwidget() member function.

Instance Destructor

UIM/X generates a virtual destructor for every Component. The destructor
is virtual because a Component is derived from a class with a Virtual
destructor (UxInterface).

class _UxCInputForm : public UxVisualInterface
{

.

.

.

protected:
// Widgets in the interface
UxForm InputForm;
_UxCLabelText LabelTextInstance1;
_UxCLabeltext LabelTextInstance2;
_UxCLabelText LabelTextInstance3;
_UxCLabelTextSubclass1 LabelTextSubclassInstance1

.

.

.

};

// Creation of LabelTextInstance1
LabeltextInstance1.CreateSwidget(InputForm, 0);

BUILDING REUSABLE INTERFACE COMPONENTS
Instance Creation

UIM/X User’s Guide 117

8
Because the Instances within a Component are defined as data members of
the Component’s class, the destructors of these Instances will automatically
be called when the Component itself is destroyed. The destructor of each
Instance will in turn destroy the swidget tree of the Instance.

By default, UIM/X does not generate destructors for Subclasses. Destroying
an Instance of a Subclass ultimately calls the generated Component
destructor. If you want a Subclass destructor, you can define it in the
Declaration Editor. You can also add your own code to the generated
Component destructor. See “Adding Destructor Code” on page 184 for
more information.

Destroying the objects in an Instance is something of a problem for C++
destructors. Because destroying the top-level object destroys the entire
object tree, it is possible for an Instance’s objects to be destroyed before its
destructor is called.

For example, suppose Instance A contains Instance B. When you call
delete on Instance A, the destructor for Instance A is called first, then the
destructor for Instance B. When the Instance A destructor destroys the
objects in Instance A, it also destroys the objects in Instance B. If the
Instance B destructor then tries to destroy its objects, it will be trying to
destroy the objects a second time.

To handle this problem, the generated destructor checks the value of
UxThis. If UxThis is NULL, the destructor knows that the objects have been
destroyed.

Generating C++ Code without C++ Bindings

Instance Creation

When Ux Convenience Library C++ Bindings are disabled, generated C++
code, like generated C code uses swidgets to represent Instances rather than
using actual objects of the Component’s class. Thus, the Interface Function
of a Component is used to create Instances of that Component.

BUILDING REUSABLE INTERFACE COMPONENTS
Generating C++ Code without C++ Bindings

118 UIM/X User’s Guide

8

You can still create Instances directly, bypassing the Component’s Interface
Function. However, the mechanisms for doing so are slightly different:

• There is only one constructor, that takes the same parameters as the
Interface Function. However, unlike the parametered constructor available
when Ux Convenience Library C++ Bindings are used, this constructor
does not do any real work.

• There is no CreateSwidget() member function. Instead, an equivalent
member function exists that has the same name as the Interface Function,
except that it is prefixed with an underscore character.

It is important to note that even when Instances are created via their
Component’s Interface Functions and thereafter manipulated as swidgets,
objects of the Component’s class still come into play. The Interface
Function of a Component dynamically creates an object of the Component’s
class, then calls the CreateSwidget() member function to build its
swidget tree, set all initial properties, and register all callbacks.

The swidget returned by the Interface Function represents the top-level
object of the Instance and has as its context a pointer to the dynamic
interface itself. That is, the this pointer of the Instance is attached to the
swidget via the Xlib context manager database. It is through this mechanism
that Instances can be manipulated via their swidgets.

Instance Creation within the Constructor

It is possible to instruct UIM/X to generate the parametered constructor so
that it automatically creates the swidgets. This allows Instances to be
created in one step, in much the same way as is possible when using Ux
Convenience Library C++ Bindings.

swidget create_LabelText(swidget UxParent, int anArg)
{

_UxCLabelText *theInterface =
new _UxCLabelText(UxParent, anArg);

return (theInterface->_create_LabelText());
}

BUILDING REUSABLE INTERFACE COMPONENTS
To add -z to the UIM/X code generation options:

UIM/X User’s Guide 119

8
To generate a constructor that creates the swidgets, you have to add the -z
option to the uimx_directory/bin/uxcgen command-line. The -z option
forces uxcgen to put the call to the _create_Component() function in the
constructor, not the Interface Function:

Code that already uses the Interface Function will still work, because even
if you use the -z option, the Interface Function still returns the top-level
swidget of the Instance. The difference is that instead of calling the
_create_Component() function itself, the Interface Function relies on the
constructor to make the call.

To use the -z option every time you generate code, you can modify the
shell script uimx_directory/bin/uxcgen.sh. UIM/X calls this script
whenever it has to generate code.

To add -z to the UIM/X code generation options:
1. In the file uimx_directory/bin/uxcgen.sh, add the -z option to the uxc-

gen command-line: You can find these lines at the end of the script file.

Note: Modifying the copy of uxcgen.sh in uimx_directory/bin affects all
UIM/X users on the system.

To add -z to your personal code generation options:
1. Copy the contents of uimx_directory/bin to a local directory. You may want

to copy only uxcgen.sh, and create symbolic links to the other files in
uimx_directory/bin.

2. Modify uxcgen.sh.

_UxCLabelText::_UxCLabelText(swidget UxParent, int anArg)
{

this->UxParent = UxParent;
this->anArg = anArg;

this->_create_LabelText();
}

if ["$cfile" != ""]; then
uxcgen $options -z -o $cfile $ifile;

else
uxcgen $options -z $ifile;

fi

BUILDING REUSABLE INTERFACE COMPONENTS
Passing Arguments to Base Class Constructors

120 UIM/X User’s Guide

8

3. Set the UIM/X resource bindir to point to the local directory:

The resource bindir tells UIM/X where to find its executable and utilities.
See UIM/X Installation Guide for more information on the UIM/X resource
file and how to set application defaults for a single user.

Passing Arguments to Base Class Constructors
Passing a Subclass constructor argument to its base class constructor is
accomplished through the Property Editor. In a Subclass, the base class
constructor arguments appear as Core properties.

The values you enter in the Property Editor for these properties are the
values passed to the base class constructor in the generated code. All you
have to do is use the Subclass constructor arguments as the property values.

Note: In UIM/X, Interface Function arguments are also constructor arguments.
In the generated code, the Interface Function passes its arguments to the
constructor, so the two functions always have the same argument list.

For example, suppose you add the argument anArg to the Interface
Function of the LabelText Component. This argument becomes a Core
property in a Subclass of LabelText such as LabelTextSubclass1. In the
generated code, the Initial Value entered in the Property Editor for the
anArg property is passed to the LabelText constructor:

Uimx3_0.bindir: /bean/usr/douglas/bin

_UxCLabelTextSubclass1::_UxCLabelTextSubclass1(swidget
UxParent)

 :_UxCLabelText(UxParent,
InitialValue)

BUILDING REUSABLE INTERFACE COMPONENTS
Summary

UIM/X User’s Guide 121

8
When you add an argument to the Interface Function of
LabelTextSubclass1, you can use this argument to set properties in the
Property Editor. So if you add an argument named anArg to the Subclass
Interface Function, you can use it to set the anArg Core property:

Figure 8-6 Constructor Arguments in the Property Editor

In the generated C++ code, the LabelTextSubclass constructor passes the
anArg value to the LabelText constructor:

Summary

The UIM/X Component Model allows you to build reusable components.
From the creation of a top-level Component through the creation of
Instances and Subclasses, the UIM/X Component Model provides a
mechanism for building class hierarchies with inheritance, encapsulation,
and polymorphism.

This is the value
passed to the
LabelText constructor
by the Subclass
constructor.

_UxCLabelTextSubclass1::_UxCLabelTextSubclass1(swidget
UxParent, int anArg

)
:_UxCLabelText(UxParent, anArg)

BUILDING REUSABLE INTERFACE COMPONENTS
Passing Arguments to Base Class Constructors

122 UIM/X User’s Guide

8

UIM/X User’s Guide 123

Working with Components,
Subclasses, and Instances 9

Overview
Often one wants to reuse an interface element in several places.
Simply duplicating the element to be reused would mean that
subsequent changes would have to be repeated in many places.

A better approach is to build a Component as a separate interface
and create an Instance of the Component in the other interfaces. In
object-oriented terminology, the Component is a class, and an
Instance an object of that class. It is also possible to create Subclasses
of a Component, and hence create a class hierarchy using inheritance
and method overloading.

In UIM/X, a Component is a top-level interface. You can create
Instances of Components that are present either as interfaces in the
project or as generated code. In the latter case, the code can be either
compiled and linked to UIM/X or loaded into the Interpreter.

For example, consider a Bulletin Board interface that contains a Label
and a TextField object. When an Instance of this Bulletin Board is
used in another interface, the Instance looks and behaves as defined
in the Component. Changes made to the Component are
immediately reflected in all its Instances.

If you generate C++ code for the Component, it is a real C++ class. In
C, the same behavior is achieved using the interface context
mechanism.

Like classes in typical object-oriented languages, Components have a
constructor, properties, and methods. The constructor is the function
that builds Instances.

By default, an Instance has no editable properties—it inherits its
properties from the Component. Properties that are editable in the
Instance are made available by adding arguments to the Interface
Function of the Component, or specifying property accessor
methods. Any editable property of an Instance appears in the
Property Editor in the Specific category.

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Creating a Component

124 UIM/X User’s Guide

9

Methods can be defined for Components, as they can be for any
interface.

An Instance of any Component can be saved in the Palette for future
use and shared among other users.

A Subclass of a Component is a top-level Instance of that
Component. Like all top-level interfaces, a Subclass has its own
constructor and properties.

Creating Instances of Components produces considerably less code
than mere duplication. Instances work by calling the Interface
Function of the Component they reference.

Note: Initial and final code written in the Declarations of a Component is
executed when the Interface Function is called. UIM/X calls the Interface
Function when you create, move, resize, or change the properties of an
Instance of the Component. In general, the constructor is called every time you
cause the Instance to be recreated.

By designating one object from the Component as a child site, you
can make any Instance of the Component accept children.

Creating a Component

Figure 9-1 Components and Instances

Component

An Instance of
the Component

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES

UIM/X User’s Guide 125

9

Any top-level interface is a potential Component (see Figure 9-1).
The following rules govern the use of interfaces as Components:

• A Component must take a swidget as the first argument of its Interface
Function.

• The first argument to the Interface Function must be used as the
Parent specified in the Declaration category of the Property
Editor.

• The CreateManaged property of the Component should be set to
false.

If set to true, the placement of the Instance in its parent can become
unpredictable. Interfaces other than Components generally need this
property set to true, so UIM/X automatically sets this property to
true when an interface is created.

When you create an Instance, UIM/X automatically sets the
CreateManaged property to false for the Component. This ensures
that instances of the Component are placed properly.

Managing Instances

If you use an Instance or a Subclass as the start-up interface or as a
top-level interface, you must use the method
VisualInterface_Manage() to manage the interface.

The following example shows how to call the method:

After you call VisualInterface_Manage(), you can use
UxPopdownInterface() to hide the interface, and
UxPopupInterface() to show it again. But you must call
VisualInterface_Manage() to manage and display the interface for
the first time.

swidget f1;
f1 = create_form1(NO_PARENT);
Interface_UxManage(f1, &UxEnv);

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Promoting an Object to Top-Level

126 UIM/X User’s Guide

9

Promoting an Object to Top-Level

If the object to serve as a Component already resides in an interface,
you must first make it a top-level interface. Any object except a
gadget or a menu can be promoted to a top-level interface.

To promote an object to a top-level interface, drag the object onto the
desktop. A dialog will ask you if you want to replace the original
object with an Instance of the Component.

Adding Editable Properties to an Instance

You add editable properties to an Instance by defining a pair of
methods on the Component—one to set the property value and one
to retrieve the property value.

These methods are known as property accessors. They comply with the
Common Object Request Broker Architecture (CORBA), which
specifies that properties be modeled as a pair of methods.

When you define a pair of property accessors, the property appears
in the Specific category when you load an Instance into the Property
Editor.

You can also add editable properties to an Instance by adding
arguments to a Component’s Interface Function (constructor). These
arguments are listed as the Core properties of the Instance in the
Property Editor. If a property must be set before an Instance is
created, add an argument to the Interface Function. Otherwise, use
property accessors to add a property.

Note: Constructor arguments take precedence over accessor methods, so do
not use the same name for a constructor argument as for an accessor method.

Defining Property Accessors

When you add an accessor property, you can store its value in an
interface-specific variable, or use the accessor methods to
encapsulate calls to UxPutProperty() and UxGetProperty() (or
XtVaSetValues() and XtVaGetValues()).

For example, suppose you wanted to add an editable property called
LabelString to the instances of a LabelText Component.

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Adding Interface Function Arguments

UIM/X User’s Guide 127

9

To Add a Property
by Defining
Accessor Methods

1. Open the Method Editor for the Component.

a. Create the get accessor method:

b. Choose Edit⇒Add Get Property.

The Method Editor fills the Return Type, Name, and Code fields with
appropriate default values.

c. The default return type is int. Change this to char *.

d. Enter the name of the property (in this case, LabelString) in
the Name field.

e. Enter the code required to retrieve the property value:

f. Click the Create Method button.

The accessor method _get_LabelString is added to the Interface
Methods list.

2. Create the set accessor method.

a. Choose Edit⇒Add Set Property.

Note that a default argument is declared for you in the Arguments
section. (A property accessor always accepts a third argument, which
is the property value.) Change the type of this argument to char *.

b. Change the return type to void.

c. Enter the code required to set the property value:

d. Click the Create Method button.

The accessor method _set_LabelString is added to the Interface
Methods list.

Adding Interface Function Arguments

Suppose you have a Bulletin Board Component, and you want its
AutoUnmanage property to be an Instance property. Because this
property can be set only when the Bulletin Board is created, you add
the property by adding an argument to the Interface Function.

return UxGetLabelString(label);

UxPutLabelString(label, value);

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Adding Editable Properties to an Instance

128 UIM/X User’s Guide

9

Add a Property by
Adding an
Interface Function
Argument

1. Select the Component and open its Declaration Editor.

2. Add an argument named autoUnmanage to the argument list in the
Interface Function:

3. Load the Bulletin Board object into the Property Editor.

4. Enter:

as the value of the Core property AutoUnmanage and click OK.

Note: In the example above, a default value (true) for the AutoUnmanage
property is specified. This ensures that if the value of autoUnManage is NULL,
the value of the property is set to a valid value.

This technique avoids validation errors caused by setting properties
to NULL. This kind of validation error occurs if you simply set the
AutoUnmanage property to autoUnmanage since NULL is the default
initial value for all Core properties of an Instance.

Note: Instances property values are matched to Component arguments by
name. If you change an argument name, the values entered under the previous
name are discarded.

Adding Pointer-to-Void Properties

Suppose you add a pointer-to-void property to a Component, either
by adding an Interface Function argument or by defining property
accessors.

When you enter a value for this void * property in the Property
Editor, UIM/X passes the pointer directly to you (that is, to the
Component’s Interface Function or accessor method). It does not
make a copy of the data. If you don’t know whether or not the data
pointed to will still be valid later, you should make your own copy
of the data.

swidget create_bulletinBoard1(swidget UxParent, char
*autoUnmanage)

autoUnmanage ? autoUnmanage : "true"

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Adding Pointer-to-Void Properties

UIM/X User’s Guide 129

9

For example, if you enter a string in the Property Editor, you should
use UxCopyString() in your Interface Function or accessor method
to make a copy of this string.

Adding Callbacks to Instances

Callback accessors give you a way to install callbacks on the
individual swidgets in an Instance. When you define a method
named AddEventNameProc() on a Component, its Instances (and
Subclasses) are given a Behavior property named EventName. Like a
swidget callback, this property is set using the Callback Editor.

The job of a callback accessor is to install the callback defined in the
Callback Editor. UIM/X passes the callback function and the client
data to the method, so a callback accessor must accept two
arguments:

• The callback function (an XtCallbackProc pointer).

• The callback client data (an XtPointer). UIM/X uses it to give
the user access to the interface-specific variables and swidgets in
the interface.

When you define a callback accessor, you must use the types
XtCallbackProc and XtPointer for the arguments:

In the body of the method, you use UxAddCallback() (or
XtAddCallback()) to register the callback:

If you intend to change the callback function while the application is
running, you may also want to add a call to XtRemoveCallback(). To
do this, you will need to store the callback function and its client
data in interface-specific variables. Each time the callback accessor is
invoked, you can retrieve the previous values, pass them to
XtRemoveCallback(), and then store the new values.

XtCallbackProc cb;
XtPointer client_data;

UxAddCallback(editButton, XmNactivateCallback, cb,
client_data);

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Setting Instance Geometry

130 UIM/X User’s Guide

9

Setting Instance Geometry

In UIM/X, every Component is a Subclass of the
UxVisualInterface class. The UxVisualInterface class is an
abstract class defined by UIM/X. (See “The Base Interface Class” on
page 107 for more information on the UxVisualInterface class.)

The purpose of the UxVisualInterface class is to give UIM/X and
generated code a simple way to handle Instance geometry. It
provides property accessors for the X, Y, Height, and Width
properties. It also provides an interface method
(VisualInterface_Manage()) for managing Instances.

If you need to change the size and position of an Instance (for
example, in a callback), you must use these accessor methods. To
invoke these inherited accessors, you use the method invocation
macros defined for the UxVisualInterface class. For example, you
set the x property of an Instance using the macro
VisualInterface__set_x():

The method macros for the UxVisualInterface class methods are
defined in uimx_directory/include/UxInterf.h.

Note: In generated C++ code, the UxVisualInterface class is a real C++
class. All C++ interface classes are derived from the UxVisualInterface
class:

class _UxCbulletinBoard1: public UxVisualInterface

{

 // Class definition.

}

In UIM/X and in generated C code, the UxVisualInterface class is not
represented by any data structure, but rather by a set of methods.

VisualInterface__set_x(bulletinBoard1Instance1,
&UxEnv,920);

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
To Create a Child Instance

UIM/X User’s Guide 131

9

Creating an Instance

The following rules govern the creation of Instances as children of
other objects:

• An Instance must never be placed in an object hierarchy where
one of its ancestors is the Component. This circular nesting can
send the Interpreter into an infinite loop.

• An Instance, like any other object, cannot be placed in an object
that does not accept children. For example, Push Button objects
do not accept children.

To Create a Child Instance
1. Select a Component.

2. Choose Selected Objects⇒Instance.

OR

3. Choose Create⇒Instance from the Browser.

The pointer becomes a left corner.

4. Drag the pointer over the parent to create the Instance.

An Instance called instance1 is created.

Instances of top-level Components can also be made, allowing for
example a primary interface to “own” its own dialog box. See
“Calling Methods in Other Interfaces” on page 144.

Creating a Subclass

A Subclass is a stand-alone interface that inherits all the content and
methods of its base Component. Subclasses are used to build a class
hierarchy where each Subclass can add its own children, properties,
and methods, as well as inherit or override the methods it inherits
from its base class.

To Create a Subclass
1. Select a Component.

2. Choose Create⇒Subclass of interfaceName.

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Creating Children of an Instance

132 UIM/X User’s Guide

9

The pointer becomes a left corner.

Note: When an interface that is usable as a component is selected, UIM/X
offers to create an instance of that component. For example, if drawingArea1
is selected, the Project Window Create menu displays Subclass of
drawingArea1 rather than Subclass.

3. Drag and draw the Subclass on the desktop.

An icon labelled interfaceNameSubclass1 appears in the Interfaces Area.

Creating Children of an Instance

You can add children to an Instance if its Component defines a child
site. Within a Component (or Subclass), one object can be designated
as a child site for other objects. To do this, you create a method called
childSite which returns the designated child site object.

For example, consider bb1, a Component that consists of the
hierarchy shown in Figure 9-2.

Figure 9-2 Adding Children to an Instance

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
To Create a Subclass

UIM/X User’s Guide 133

9

If you want bb2 to be the child site, open the Method Editor for bb1,
and create a method called childSite as shown in Figure 9-3:

Figure 9-3 ChildSite Method

If you create an Instance or Subclass of bb1, you can add children to
this Instance.

Generating Code for Components

When you generate code for Components, Subclasses, and Instances,
you must also generate an include file (that is, you must select the
Generate Include File option on the Code Generation Options dialog
box).

The include file is required because (in generated C code) the context
structure of the Component is a part of the context structure of a
Subclass. In generated C++, the context structure of the Component
becomes the C++ base class for the Subclass.

For Instances, the Component’s include file provides access to the
Component’s methods.

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
When the Component Exists Only as Code

134 UIM/X User’s Guide

9

When the Component Exists Only as Code

A Component need not be directly available as a top-level interface
loaded in the project. Components can exist as generated C or C++
code compiled and linked to UIM/X, or loaded into the Interpreter.

The following steps create a Subclass or an Instance whose
Component interface exists only as code.

To Create an Instance of a Component that Exists as
Code
1. Ensure that no interfaces are selected. Create an Instance by selecting

Instance from the Selected Objects popup menu.

Alternatively, create a Subclass by selecting Subclass from the Project
Window’s Create menu.

Note that, contrary to the previous examples, there is no interface name
appended to the Subclass and Instance menu entries. When using C code
components you must first create a placeholder for the Instance or
Subclass. Then, using the Property Editor, fill in the information required
for the Instance or Subclass to compose a call to its Component’s create
function.

2. Place the Instance or the Subclass in the Property Editor.

3. Select Declaration from the Category menu.

4. Enter the name of the Component in the Component property.

5. Enter the Component’s interface arguments in the ArgDefinition
property.

6. If the Instance or Subclass is to have children, and the Component has a
childSite method, enter the class name of the object designated as a
child site in the ChildSiteClass property.

7. Enter the name of the Component’s header file in the HeaderFile property.

8. Enter the Component’s Interface Function in the Constructor property.

Note: In order for the Interpreter to locate the Interface Function it must be
aware of the function’s linkage. If the function’s linkage differs from the
Interpreter’s mode, it must first be declared manually. See “Registering
Functions” on page 171.

9. Press Apply.

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
To Create an Instance of a Component that Exists as Code

UIM/X User’s Guide 135

9

Note: The ArgDefinition property must specify exactly the arguments to
the Component’s Interface Function, in their proper order.

Declaration Properties

The Declaration properties of an Instance or Subclass supply the
information needed to compose a call to the constructor function of
the component.

ArgDefinition The ArgDefinition property specifies exactly the arguments
specified in the Interface Function of the Component. These
arguments are passed to the function that creates the Instance or
Subclass of the Component. UIM/X keeps this property
synchronized with a Component that is loaded in the project. If the
Component exists only as C code, the arguments must be entered in
the ArgDefinition property. The syntax of the ArgDefinition
property is a sequence of standard variable declarations, entered as a
string.

ChildSiteClass The ChildSiteClass property specifies the class of the object
designated as the Component’s child site. See “Creating Children of an
Instance” on page 132. For example, if the child site is a Form object,
the ChildSiteClass property is set to “form”.

Component The Component property specifies the name of the Component. If the
Component interface exists, entering its name will automatically
generate the ArgDefinition and Constructor property values
appropriate for the Component.

Constructor The Constructor property specifies the name of the function that
creates instances of the Component (the Interface Function). The
name is supplied automatically when the Component interface exists
and its name is entered in the Component property of the Instance. If
the Component exists only as code, the function must be entered—as
a string—in the Constructor property.

CreateManaged As for other objects.

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Storing an Instance in a Palette

136 UIM/X User’s Guide

9

HeaderFile The HeaderFile property specifies the name of the Component’s
generated header file. Generated code for the Instance or Subclass
contains a reference to this header file. If no header file is specified
the Component name is used.

Name The Instance or Subclass name.

Parent As for other objects.

PropDefinition The PropDefinition property is a list of declarations for the
properties and callbacks of the Instance. It includes the X, Y, Width,
and Height properties, as well as any properties and callbacks added
by defining accessor methods on the Component.

Storing an Instance in a Palette

Instances can be stored in a Palette, and later created from the
Palette, like any other object. To store an Instance in the Palette, you
can either drag the Instance to a Palette or cut and paste from the
clipboard.

You can also store Components and Subclasses in a Palette. However,
saving a Component or Subclass (rather than an Instance) in the
Palette merely duplicates the original, defeating the purpose of
Components.

Note: If you want to use the Instances or Subclasses stored in a Palette, the
Components used by the Instances and Subclasses must be available in
UIM/X. The Component can be compiled into UIM/X, loaded as an interface
file, or loaded as source code into the Interpreter.

Sharing Components Among Projects and
Developers

Components (including Instances and Subclasses) can be shared
among developers working on the same or related projects. They are
three ways developers can share these building blocks:

• Distributing interface files.

• Distributing source files.

• Distributing object code and a Palette file.

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Distributing Interface Files

UIM/X User’s Guide 137

9

Note: When you distribute Instances and Subclasses, you must also distribute
the Components used by the distributed Instances and Subclasses.

Each method has advantages and drawbacks, discussed below.

Distributing Interface Files

The most direct method is to distribute the interface files containing
Components. This method offers the following advantages:

• No effort is required of the Component creator.

• Each user can choose to load only the interface files required for
his or her project.

The drawbacks of distributing interface files are the following:

• The interface files must be loaded each time a new UIM/X
session is started.

• Interfaces from interface files require more memory than code.

• Users can edit the Components.

Distributing Source Files and a Palette File

Distributing the generated source files is a convenient way of sharing
Components when there are many interfaces to be shared. The
generated code is read into the Interpreter. Sharing source files has
the following advantages:

• Source code is more flexible than compiled code; you can re-load
modified source code during the same UIM/X session.

• The interpreted files do not require as much memory as interface
files, and Instances perform better.

A drawback of source files is:

• Users must load the files into the Interpreter each time a new
session is started.

To incorporate source files with their project, developers receiving
the files must add the source file names to their project Makefile.
This ensures that these source files are compiled when building the
application. (This is done through the Program Layout Editor.)

WORKING WITH COMPONENTS, SUBCLASSES, AND INSTANCES
Sharing Components Among Projects and Developers

138 UIM/X User’s Guide

9

The Palette file can contain one or more Instances that use the
Component. Several Instances might be included if Specific
properties differ.

Distributing Object Code and a Palette File

The surest method of distributing Components and Instances is to
provide users with object (.o) files containing the Components and a
Palette file of the Instances. The advantages of this method are:

• The difference between Motif widgets and Components will be
transparent. Component creation parallels widget creation.

• Users will not be able to alter the Components.

The drawbacks are:

• Users must make an augmented UIM/X.

• Users must add the run-time object file to the project Makefile.

These two drawbacks can be overcome by making available a
common augmented UIM/X executable and archive the run-time
object file in libux.a for project linking.

Note: Two object (.o) files are required. The augmented UIM/X executable
must be linked with an object file that is compiled with the -DDESIGN_TIME
flag. (Do not compile the Components with the -DUIMX_INTERNAL flag.)

The object file that is archived in libux.a must not be compiled with
the -DDESIGN_TIME flag. See Chapter 12, “Mixing Compiled and
Interpreted Code.”

The Palette file can contain one or more Instances that use the
Component. Several Instances might be included if Specific
properties differ.

UIM/X User’s Guide 139

Methods 10
Overview

Methods provide the means by which application software can
submit requests to an interface. To the C++ developer, the concept of
methods is familiar.

Methods are different from regular functions in several ways. You
can think of the interface as a C++ class where the methods are
virtual member functions of the class. In fact, when you generate
C++ code for your application, this is exactly what you get. Methods
are polymorphic. This means that if you create a class hierarchy in
UIM/X, a base class can define a method that can be either used or
overwritten by subclasses of the base class. See Chapter 9, “Working
with Components, Subclasses, and Instances.” This is an important
aspect of methods.

For example, suppose you wish to implement a Quit method for
your application. If there are any unsaved changes in other interfaces
belonging to the same application, the application is to prompt the
user to save or discard them. To do this, create a base class for all
your interfaces and define a Quit method in this base class.
Subclasses of this base class requiring special handling when quitting
can override the Quit method.

Methods can be called by actions, callbacks, other methods, in the
Final Code section in the Declaration Editor, and from the Property
Editor. You can mix methods from compiled and interpreted code.
Methods can be defined for Components.

Methods can and should be used in place of auxiliary functions
specified in the Declaration Editor in previous versions of UIM/X.
Context pointer manipulation is handled automatically.

For developers familiar with object-oriented terminology: UIM/X
provides support for dynamically dispatched methods, where each
interface you build is a class that can include method definitions.

METHODS
Understanding the Method Editor

140 UIM/X User’s Guide

10

Keep the following language considerations in mind:

• If you use C, the generated code contains all the necessary support for
invoking methods, just as it supports callbacks, translations, and actions.

• If you use C++, your methods are generated as virtual member functions
of interface classes.

• If you use C but plan to migrate to C++, you can use methods now and
simply switch to C++ code generation in the future.

Understanding the Method Editor

The Method Editor allows you to define and edit the methods of an
interface. Figure 10-1 shows the main areas of the Method Editor.

Figure 10-1 Method Editor

Area Description

Menu Bar Provides File, Edit, View, Options, and Help menus.

Icon Bar Provides quick access to some of the most frequently used
menu choices.

Interface
Methods

Lists the methods defined for the selected interface.
Selecting a method from the list displays the method’s
definition in the Method Editor’s text fields.

Menu Bar

Interface
Methods

Method Name

Arguments

Code

Implicit Arguments

Method and
Corba Type

Icon Bar

Return
Type

METHODS

UIM/X User’s Guide 141

10

Return Type Shows the data type returned by the method. The signature
of a method is formed from the Return Type, the Method
Name, and the Arguments, if any arguments are specified.
The Return Type is mandatory.

Method Name Shows the method’s name. Method names are of the form:
interface_name, where interface is the name of the interface
and name is supplied by the user.
When you type a name into this field and press Return, the
Method Editor verifies whether the method already exists.
If the method exists, the Return Type and the Arguments
fields are updated to show the signature of the method.
You compose a new method by specifying a new name—the
name does not appear in the Interface Methods list.

Implicit
Arguments

Shows the arguments that all methods must accept.

Arguments Shows a field in which arguments can be specified. The
signature of a method is formed by the Return Type, the
Method Name, and the Arguments, if any arguments are
specified. Comments entered in this field are stripped when
the method is parsed by the Interpreter. Enter your
comments in the Code field instead.

Code Shows a field in which the code for the method is specified.
Within the method code, you can use all the swidget- and
interface-specific variables defined in the interface.When
you apply the method, this code is submitted to the
Interpreter. UIM/X does not accept the method if syntax
errors are detected.

Method Type Specifies the type of method. The Property Set and Property
Get types are property accessors. Property accessors are
methods that set and retrieve the values of Instance
properties. See “Adding Editable Properties to an
Instance” on page 126 for more information on property
accessors.
All other methods use the Method type.

Corba Type Specifies the type of Corba. The choices are Corba 1.1,
Corba 2.0, and No Corba.

Area Description

METHODS
Creating, Changing, and Reverting Methods

142 UIM/X User’s Guide

10

Creating, Changing, and Reverting Methods

The Create Method button creates a new method.

The Change Method button changes the current method (the method
selected in the Interface Methods list). It applies all changes entered
in the Method Editor to the current method.

Click the Revert Method button to cancel any changes that have not
yet been applied. The Method Editor responds by displaying the
method definition before any changes were initiated.

Reserved Words

You should not use the words parent or name anywhere in code
specified in the Method Editor.

Overriding Methods in Subclasses

The methods you define in the Method Editor are polymorphic. In a
class hierarchy, each Subclass can have a different version of the
same method. When you redefine an inherited method and give it
the same signature (the same arguments and return type), you
override the inherited method.

To Override an Inherited Method
1. Load the Subclass into the Method Editor.

2. Type the name of the method you want to override in the Name field.

3. Press Return.

The Method Editor fills in the Return Type and Arguments fields to
match the signature of the inherited method.

The Code area is blank—the method body is not copied.

4. Enter the code that defines this version of the method.

5. Click Create Method. The method is added to the list of methods for the
Subclass.

METHODS
To Override an Inherited Method

UIM/X User’s Guide 143

10

When you override an inherited method, you can use the
Implementors item on the Method Editor’s View menu to display a
list of classes that also implement the method. The popup menu on
the Method List also displays the implementors. Note that these
menus list only classes in the same class hierarchy.

Calling Methods

A method is called by its method macro, which when Corba 2.0
support (the default) is chosen, takes the form:

where:

The Environment parameter is prescribed by the Common Object
Request Broker Architecture (CORBA) bindings for C and C++. It can
be used by a request broker to raise an exception when a method
request fails. In UIM/X this parameter is present for source
compatibility only; UIM/X never raises request broker exceptions.
For convenience, a global Environment called UxEnv is defined in the
header files UxLib.h and UxDesign.h. You can pass &UxEnv as the
Environment parameter in all method calls.

Note: If you call a method not defined for an interface during design time, an
appropriate error message is displayed. During run time, the call is ignored.

InterfaceName_MethodName(swidget, other_args, Environment *)

InterfaceName_MethodName The name of the method as assigned in the
Method Editor

swidget The first argument, always the top-level swidget
of the interface to which the method is applied.

other_args The user-defined arguments.

Environment * A pointer to an Environment structure
(requirement for CORBA compliance). The type
and location of the Environment structure depends
on the CORBA support.

METHODS
Calling Methods in Other Interfaces

144 UIM/X User’s Guide

10

Calling Methods in Other Interfaces

In many applications, one interface needs to call methods defined by
another interface. To do this, the interface that calls the methods
needs access to both the method definitions and the top-level
swidget of the interface that defines the methods.

Approach #1: Using Parented Top-Level Instances

The cleanest and most object-oriented way of allowing one interface
to manipulate another is by adding an instance of the second
interface to the first. This can be done in the same way that any
instance is added to an interface; by selecting the interface to
instantiate, choosing Selected Objects⇒Instance, and dragging the
mouse pointer over the parent interface (see “Creating Instances” on
page 95 for more information). If the interface being instantiated has
an explicit shell or is a dialog, the instance will not be visible in the
parent interface, but it will still be accessible through the Browser.

For example, suppose you have a main window that pops up an
editor. Using the parented top-level instance approach, you would
provide the editor with an explicit shell if it does not already have
one, then you would add an instance of the editor to the main
window. The ActivateCallback of the Push Button or menu item
that pops up the editor can then do so with a single statement:

or with a connection:

You can then invoke any method on the editor instance using the
name of the instance as the first argument:

or by making a connection to the method:

VisualInterface_Manage(editorInstance1, &UxEnv);

ActivateCallback--->editorInstance1::Manage(&UxEnv)

editor_Open(editorInstance1, other arguments, &UxEnv);

ActivateCallback--->editorInstance1::Open(other arguments,
&UxEnv)

METHODS
Approach #2: Using Manually-Created Instances

UIM/X User’s Guide 145

10

Approach #2: Using Manually-Created Instances

Alternatively, you can handle instance creation manually. This
involves the following steps:
1. Insert code into the Includes, Defines, Global Variables area of the main

window’s Declaration Editor to declare the Interface Function and meth-
ods of the instance as appropriate. For example:

In UIM/X, the methods defined by one interface are available to all other
interfaces because the Interpreter stores all method definitions in the
same translation unit. However, this is not true for the Interface Function,
which must be declared as extern. In generated code, both an interface’s
methods and its Interface Function are declared in the interface’s header
file, and thus the file must be included in order to access these functions
in generated code.

2. In the Interface Specific Variables area of the main window’s Declaration
Editor, declare a variable to hold the top-level swidget of the instance:

3. In the Final Code section of the Main Window’s Declaration Editor, make
a call to the Interface Function of the instance, and store the result in the
variable declared in the previous step:

See “Styles of Handling Interfaces” on page 77 for a discussion of
alternate placements of the call to the Interface Function.

4. The ActivateCallback of the Push Button or menu item that pops up
the editor can then do so with the single statement:

#ifndef DESIGN_TIME
#include "editor.h"
#else
extern swidget create_editor UXPROTO((swidget));
#endif

swidget myEditor;

myEditor = create_editor(NO_PARENT);

VisualInterface_Manage(myEditor, &UxEnv);

METHODS
Calling Methods in Other Interfaces

146 UIM/X User’s Guide

10

5. You can invoke any method on the editor instance using the name of the
instance as the first argument:

Note that connections cannot be used with this technique, as UIM/X does
not recognize the instance.

Note: If the instance is created within the Interface Function of the main
window as described here, the line

myEditor = create_editor(NO_PARENT);

must be interpreted in the Interpreter (with the selected interface set to the
main window) to allow you to test the application in Test Mode. This is
because UIM/X does not automatically call the Interface Function of the
start-up interface in Test Mode, and so an instance of the editor must be
manually created.

Approach #3: Creation During initialization

The approaches discussed above deal with the case where one
interface creates a second interface and then invokes methods on the
second interface. But suppose your application creates its interfaces
during initialization (in the main program file). In this case, where
do you store the top-level swidgets of the interfaces?

editor_Open(myEditor, other arguments, &UxEnv);

METHODS
Approach #3: Creation During initialization

UIM/X User’s Guide 147

10

One solution is to store the top-level swidgets in variables declared
in the main program. For example, if your application consisted of
two interfaces, you could enter the following declarations in the
Program Layout Editor:

When you create the two interfaces further down in the main
program, you store the top-level swidgets of the two interfaces in the
variables Interface1 and Interface2:

This works at run time, but what about during design time? How
can you invoke methods? The variables Interface1 and Interface2
won’t be available, and without these variables, you cannot invoke
methods.

/*--
 * Insert application global declarations here
 ---/

#ifndef DESIGN_TIME

swidget Interface1;
swidget Interface2;

#include "interface1.h"
#include "interface2.h"

#else

swidget create_bulletinBoard1 UXPROTO((swidget));
swidget create_bulletinBoard2 UXPROTO((swidget));

#endif /* DESIGN_TIME */

Interface1 = create_interface1(NO_PARENT);
VisualInterface_Manage(Interface1, &UxEnv);

Interface2 = create_interface2(NO_PARENT);
VisualInterface_Manage(Interface2, &UxEnv);

METHODS
Using Methods

148 UIM/X User’s Guide

10

To make the variables Interface1 and Interface2 available in
UIM/X, you need to load the following declarations into the
reference translation unit of the Interpreter:

Declarations loaded into the reference translation unit are available
to all interfaces. To learn how to load declarations into the reference
translation unit, see “Loading Files into the Reference Translation Unit”
on page 162.

Using Methods

The following example illustrates the use of methods.

A main interface, named MainPanel, opens two other interfaces by
means of Push Buttons. These other interfaces are a command editor
and a text editor. The main interface also has a Push Button labelled
Quit to end execution. However, the main interface must first verify
that the command editor and the text editor can be closed before the
quit can be executed.

A method, called Quit, is defined for the main interface.

swidget Interface1;
swidget Interface2;

/* If either editor is open and refuses to */
/* close, do not close the MainPanel window. */

if (CommandEditor && !CommandEditor_Quit(CommandEditor,
&UxEnv))

{
return 0;

}

if (TextEditor && !TextEditor_Quit(TextEditor, &UxEnv))
{

return 0;
}
UxDestroyInterface(MainPanel);
return 1;

METHODS
Approach #3: Creation During initialization

UIM/X User’s Guide 149

10

The Quit method is called from the ActivateCallback property of
the Quit Push Button in the main interface.

The Quit method calls the Quit methods specified for the command
editor and the text editor. The command editor, named
CommandTool, has a Quit method that simply informs the main
interface that it is quitting.

The text editor, named EditorTool, has a Quit method that first
verifies whether text has been modified. If it has, a message is sent to
inform the user that the changes must first be accepted. Then the text
editor’s Quit method informs the main interface that it is quitting.

The variable Modified is declared in the Declaration Editor of the
Text Editor and a callback in the Property Editor sets that variable
when a change to the text occurs.

MainPanel_Quit(MainPanel, &UxEnv);

MainPanel_ChildHasQuit(mainParent, &UxEnv, CommandTool);
UxDestroyInterface(CommandTool);
return 1;

/* Refuse to quit if the text was changed. */

if (Modified)
{

printf ("OK the text changes first.\n");
return 0;

}

/* Tell main interface and then quit. */

MainPanel_ChildHasQuit(mainParent, &UxEnv, EditorTool);
UxDestroyInterface(EditorTool);
return 1;

METHODS
Method Dispatch in Generated C Code

150 UIM/X User’s Guide

10

Both the command editor and the text editor call the ChildHasQuit
method specified for the main interface. That method uses the
argument child to reset both editors to NULL.

Method Dispatch in Generated C Code

The C language does not directly support polymorphic method
dispatch.

UIM/X provides this feature using several library functions used
during interface construction to register the method
implementations, and during method dispatch to invoke the
appropriate implementation.

The generated C code for your interface registers the methods and
defines the method macros that you use to call your methods.

This section outlines:

• Features inserted in the generated C code to support methods.

• The library functions that support methods.

• How to replace method dispatch software.

Features Inserted in Generated C Code

The following code fragments provide an overview of the method
support that UIM/X inserts into the generated C files for interfaces
that define methods.

In the header (.h) file:

Method identifier variables are declared, for example:

/* Message from child saying it is quitting. */
/* Note that the child is no longer up. */

if (child == CommandEditor) CommandEditor = NULL;
else if (child == TextEditor) TextEditor = NULL;

extern int UxMyIface_MyMeth_Id;

METHODS
Features Inserted in Generated C Code

UIM/X User’s Guide 151

10

Method macros are defined if they are not already defined, for
example:

In the source (.c) file:

Each method is generated as two static functions. One function
contains the code entered by the user in the Code area; the other one
handles context swapping and calls the first. For example:

Each Instance of this class—that is, the class generated by this
interface function—is assigned a class identifier:

The following statement is executed once:

#ifndef MyIface_MyMeth
#define MyIface_MyMeth(UxThis, Arg1, Arg2, pEnv) \
 ((Type(*)()) UxMethodLookup(UxThis,

UxMyIface_MyMeth_Id,
MyIface_MyMeth_Name))(UxThis, Arg1, Arg2, pEnv)

#endif

static Type Ux_MyMeth(swidget UxThis, Arg1Type Arg1,
Arg2Type Arg2, Environment *pEnv)

{
/* method body including code from Method Editor */
}

static Type _MyIface_MyMeth(swidget UxThis, Arg1Type Arg1,
Arg2Type Arg2, Environment *pEnv)

{
_UxCmyIface *UxSaveCtx = UxMyIfaceContext;

 UxMyIfaceContext = (_UxCmyIface *) UxGetContext(UxThis);
 if (pEnv)

 pEnv->_major = NO_EXCEPTION;
 Ux_MyMeth(UxThis, Arg1, Arg2, pEnv);
 UxMyIfaceContext = UxSaveCtx;
}

static int _UxIfClassId;

_UxIfClassId = UxNewInterfaceClassId();

METHODS
Method Dispatch in Generated C Code

152 UIM/X User’s Guide

10

Note: For interfaces that are actually Subclasses, the class id registration is
based on the baseClass class id. The code looks like:

_UxIfClassId = UxNewSubclassId(UxGetClassCode

(MyIfaceSubclass1));

The following statement is executed once for each top-level swidget
built. ClassCode is merely a field in the swidget object:

The method identifier is initialized by registering the method body
as the implementation of the named method for this class. This
initialization occurs only once.

Library Functions Used to Support Methods

The library functions maintain three sets of data:

• A mapping of method names to unique integer identifiers
(MethodIds).

• A two-dimensional method lookup table in which the function
pointer for a given class’ implementation of a given method is
stored at the coordinates [ClassId, MethodId].

• A table which maintains the class hierarchy.

The library functions are UxNewInterfaceClassId(),
UxNewSubclassId(), UxMethodRegister(), and UxMethodLookup().
They are described below.

UxNewInterface
ClassId

which returns a new class identifier for a subclass of VisualInterface.

UxPutClassCode(MyIface, _UxIfClassId);

UxMyIface_MyMeth_Id = UxMethodRegister(_UxIfClassId,
UxMyIface_MyMeth_Name, (void (*)()) _MyIface_MyMeth);

int UxNewInterfaceClassId()

METHODS
Library Functions Used to Support Methods

UIM/X User’s Guide 153

10

UxNewSubclassId

which returns a unique integer each time it is called and creates the
association between the base class and the new subclass id returned.

UxMethodRegister

which:

• Maintains the mapping of MethodNames to MethodIds either
finding the name in the registry or adding a name and assigning
it a new MethodId.

• Enters FunctionPtr in the method lookup matrix at the
coordinates [ClassId, MethodId].

• Returns the MethodId.

UxMethodLookup

which:

• Extracts the ClassCode from the given swidget.

• Returns the function pointer at the coordinates [ClassCode,
MethodId] in the method lookup table.

For each method, UIM/X generates a macro of the form
Interface_Method that uses UxMethodLookup to call the method.
For example:

int UxNewSubclassId(int baseClassId)

int UxMethodRegister(int ClassId, char* MethodName,
void (FunctionPtr*)())

UxMethodLookup(swidget sw, int MethodId, char
*MethodName)

#define MyIface_MyMeth(UxThis, pEnv) \
((int(*)())UxMethodLookup(UxThis,

UxMyIface_MyMeth_Id, \
UxMyIface_MyMeth_Name)) (UxThis, pEnv)

METHODS
Methods in C++ Code

154 UIM/X User’s Guide

10

Replacing Method Dispatch Software

You can install your own method dispatching scheme by replacing
the functions listed above. Your substitute functions must satisfy the
following requirement.

The result of executing

should be such that a subsequent call to

returns the same func function pointer passed to
UxMethodRegister().

Methods in C++ Code

When C++ code is generated, methods are generated as virtual
methods of the interface class. (You can change how UIM/X
generates member functions. See “Generating Member Functions for
Methods” on page 184.)

For example, if you define the following method

the generated code has in its class definition a virtual method as
follows:

int baseClassId = UxNewClassId();
int cid = UxNewSubclassId(baseClassId);
int mid = UxMethodRegister(baseClassId, "name", func);
UxPutClasscode(sw, cid);

UxMethodLookup(sw, mid, "name");

int MyIface_Quit (swidget UxThis, char *msg, Environment
*pEnv);

class _UxCMyIface : public UxVisualInterface
{
public

// User Defined Methods
virtual int Quit (char * msg, CORBA::Environment * pEnv);

// Rest of class definition
};

METHODS
Replacing Method Dispatch Software

UIM/X User’s Guide 155

10

Note: Note that the first argument to the method is no longer present in the
generated C++ code. UIM/X calls methods by passing the swidget of the
top-level interface as the first argument to the method. This is how we support
method dispatching in the C language. Because this is a built-in behavior in
C++, a macro is generated to translate a method call on an interface swidget
into a member function call on the interface object.

For example:

#ifndef MyIface_Quit

#define MyIface_Quit(UxThis, pEnv, msg) \

(((_UxCmyIface *) UxGetContext(UxThis))->Quit(pEnv, msg))

#endif

METHODS
Methods in C++ Code

156 UIM/X User’s Guide

10

UIM/X User’s Guide 157

Using the Interpreter 11
Overview

The built-in Interpreter allows you to test the behavior of an interface
without having to suffer through a tedious compile and relink stage.
By switching to Test mode, code entered anywhere can be tested
immediately.

The Interpreter can be used directly. However, it is more common for
the Interpreter to be used implicitly to evaluate code when testing an
interface in Test mode. Typically the Interpreter Work Area is used to
declare temporary variables, to change values for test purposes, and
so on.

USING THE INTERPRETER
Translation Units

158 UIM/X User’s Guide

11

Translation Units

The Interpreter supports multiple, independent translation units for
a project. A translation unit is analogous to a source file together with
any included files. You can use conditional compilation to control the
contents of a translation unit.

The Interpreter supports three types of translation units:

• An interface translation unit is associated with each interface.

• The reference translation unit is shared by all interfaces and editors in
UIM/X.

• The general translation unit is a general work area used by the Interpreter.

 .

Figure 11-1 Interpreter

Interface Translation Unit

Each interface in a project has all its source code (object variable
declarations, callbacks, and so on) gathered into an interface
translation unit. Static functions and variables are not shared across
interfaces. When a new interface is created, it is given its own
translation unit.

Interpreter
Work Area

Messages
Area

Menu Bar
Icon Bar

USING THE INTERPRETER
Reference Translation Unit

UIM/X User’s Guide 159

11

To Work with a
Translation Unit
for a Specific
Interface

1. Select the interface by clicking on it, or by clicking on its icon in the
Interfaces area of the Project Window.

2. Click on the Selected Interface icon in the Interpreter’s icon bar, or
choose Module⇒Selected Interface from the Interpreter.

Reference Translation Unit

The reference translation unit contains the declarations and
definitions common to all translation units. The reference translation
unit is shared by all interfaces and editors in UIM/X.

UIM/X uses the reference translation unit to include the standard
UIM/X, Motif, Xt, X, and system header files for use in all translation
units.

You cannot use the Interpreter work area to declare and evaluate
code in the reference translation unit. However, you can load
definitions and declarations into the reference translation unit. See
“Loading Files into the Reference Translation Unit” on page 162 for more
information.

General Translation Unit

The general translation unit contains the declarations and definitions
entered via the Interpreter Window when the General Module is
selected. The general translation unit also includes all code entered
in the Action Table Editor.

To Work with the
General
Translation Unit

1. Click on the General icon in the Interpreter’s icon bar, or
choose Module⇒General from the Interpreter.

Evaluating Code with the Interpreter

Whether you are making declarations or evaluating expressions,
operations in the Interpreter are quite similar.

The Interpreter only evaluates or declares code that is highlighted in
its work area. Code can be typed directly into the Interpreter Work
Area or loaded from a file.

USING THE INTERPRETER
Evaluating Code with the Interpreter

160 UIM/X User’s Guide

11

Declaring Code

Declaring code makes variables, typedefs, and function definitions
known to the Interpreter.

To Declare Code 1. Enter the code in the Interpreter Work Area.
2. Highlight the code you have entered using the Select mouse button.

3. Click on the Declare icon in the Interpreter’s icon bar, or choose
Interpret⇒Declare from the Interpreter, or choose Interpreter
Text⇒Declare.

Evaluating Expressions

To Evaluate an
Expression

1. If the expression you want to evaluate contains variables local to a
specific interface, select that interface and choose Mod-
ule⇒Selected Interface in the Interpreter.

2. Enter the expression in the Interpreter Work Area.

3. Highlight the expression using the Select mouse button.

4. Click on the Evaluate icon in the Interpreter’s icon bar, or choose
Interpret⇒Evaluate from the Interpreter, or choose Interpreter
Text⇒Evaluate.

The result displays in the Messages Area.

Note: Because the Interpreter can evaluate only one expression at a time,
enclose multiple statements in curly brackets ({ and }).

The symbol UX_INTERPRETER is automatically defined at UIM/X
start-up. You can use it to conditionally execute code by the
Interpreter. See “Protecting Code from the Interpreter” on page 166 for
more information.

Viewing Interpreter Results

The results of selecting Declare or Evaluate from the Interpreter are
displayed in the Interpreter Messages Area. For example, the value
returned by a function is displayed in the Interpreter Messages Area.
Any output to stderr or stdout is displayed in the Project Window
Messages Area.

USING THE INTERPRETER
Clearing the Interpreter Work Area or the Messages Area

UIM/X User’s Guide 161

11

Clearing the Interpreter Work Area or the Messages
Area

To clear the Interpreter Work Area, choose Edit⇒Clear Interpreter
Text from the Interpreter, or choose Interpreter Text⇒Clear.

To clear the Interpreter Messages Area, choose Edit⇒Clear Messages
from the Interpreter, or choose Messages⇒Clear.

Opening Files and Loading Source Code

The Interpreter allows you to:

• Open a file into the Interpreter Work Area without evaluating or declaring
the code.

• Load files into the general translation unit.

• Load files into the reference translation unit.

Opening Files in the Interpreter Work Area

When you load a file using Open, you can edit the file, highlight
portions of it, and declare or evaluate those portions.

To Open a File in
the Interpreter

1. Click on the Open icon in the Interpreter’s icon bar, or choose
File⇒Open from the Interpreter.

A File Selection box appears.

2. Select a directory and a file name and click on OK.

Loading Source Code into the General Translation Unit

When you load source code into the general translation unit, the
source code is declared automatically. The contents of the file are not
displayed in the Interpreter Work Area.

To Load a File into
the Interpreter

1. Choose General from the Interpreter Module menu.
2. Choose File⇒Load Source Code from the Interpreter.

A File Selection box appears.

3. Select a directory and a file name and click on OK.

USING THE INTERPRETER
Opening Files and Loading Source Code

162 UIM/X User’s Guide

11

Loading Files into the Reference Translation Unit

Loading header files into the reference translation unit makes
definitions and declarations available to all interfaces and editors.

To Load Header
Files Using a
UIM/X Resource

The UIM/X resource GlobalIncludes specifies the header files
loaded into the reference module at start up. This resource
specification is already in the UIM/X resource file. You just have to
uncomment it by removing the exclamation point (!).

The resource GlobalIncludes specifies a comma-separated list of
header files:

It will accept full or relative path names. If no path name is specified,
UIM/X uses the Interpreter include paths to search for the files. (The
Interpreter include paths can be specified using the -I flag in the
UIM/X cflags resource.)

To Load a Header
File Manually

1. Set the UIM/X resource UxInterpSharedDefinitions.set to
false:

This resource setting adds the Load Shared Definitions menu item to
the Interpreter’s File menu.

Note: See the UIM/X Installation Guide for more information on application
defaults and the UIM/X resource file.

2. Start UIM/X and open the Interpreter window. Do not load your project,
interfaces, or palettes first.

3. Select File⇒Load Shared Definitions from the Interpreter.

A file selection box appears.

4. Use the file selection box to select the header file and click OK.

The Interpreter loads the header file into the reference module.

The disadvantage of this approach is that you have to load the
header files every time you start or reset UIM/X.

Uimx3_0.GlobalIncludes: mydefs1.h,mydefs2.h

Uimx3_0*UxInterpSharedDefinitions.set: false

USING THE INTERPRETER
The Interpreter and Run-time Errors

UIM/X User’s Guide 163

11

Calling Functions with the Interpreter

During Test Mode, action and callback code in your interfaces can be
executed by the Interpreter. This interpreted code can call compiled
functions, provided those functions are found in the UIM/X
executable. Many of the standard X, Xt, Xm and system functions are
used by UIM/X and are a part of the executable.

However, you may want to call a standard function or a function in
the compiled application that is not already included. To make this
possible, you can make an augmented UIM/X executable as
described in Chapter 12, “Mixing Compiled and Interpreted Code.”

When the Interpreter encounters a function that is unknown to it, it
searches for the function in the executable. This search may take
several seconds the first time that function is encountered.
Subsequent calls will be at normal speed.

To avoid the search of the executable, make external functions
known to the Interpreter using UxRegisterFunction() in your
uimx_directory/config/uimx_main.cc file. Similarly,
UxRegisterGlobal() makes external variables known to the
Interpreter. The commented examples at the end of uimx_main.cc
illustrate their use.

Another useful Ux Convenience Library function is
UxAddIncludePath(), which adds a new path to those searched by
the Interpreter for include files.

The Interpreter and Run-time Errors

The built-in Interpreter automatically recovers from run-time error
conditions in interpreted code such as segmentation violation, bus
errors, and floating point errors. It does this by catching the signal,
freeing up the Interpreter stack, and returning to the point where the
Interpreter was first called. This recovery mechanism also works
when an error occurs in a compiled function that was called from the
interpreted code.

You can, however, generate conditions from which it is not possible
to recover. When this happens, UIM/X attempts to save your
interfaces in a file written to the /tmp directory and then exits.

USING THE INTERPRETER
The Interpreter Mode and Code Generation

164 UIM/X User’s Guide

11

The following are some of the conditions where UIM/X may fail to
recover.

• UIM/X’s own data structures, as well as those of a linked-in application,
may be corrupted by assignment through invalid pointers (whether from
compiled or interpreted code). This may eventually cause UIM/X to exit.

• Calling X or UIM/X functions with incorrect arguments can lead to the
creation of invalid data structures that will cause error conditions later in
code not called through the Interpreter. Such errors cannot be handled by
the Interpreter’s recovery mechanism.

• Errors in program code called from compiled interface components are
not recoverable.

• When an interpreted function is called (through a pointer) from compiled
code, error conditions in the interpreted code—or in subsequently called
compiled code—are not recoverable, unless the compiled caller was in
turn called from the interpreted code. This condition can occur in an
interpreted input handler for subprocess control.

Note: If a call is made that would cause an ordinary program to crash, UIM/X
will also crash because the Interpreter doesn’t have control over code that is
compiled into UIM/X.

The Interpreter Mode and Code Generation

The Interpreter mode (ANSI, K&R, or C++) must be compatible with
the language selected on the Code Generation Options dialog box.
For example, if you intend to generate ANSI C code, you should set
the Interpreter to ANSI C mode before you begin developing your
interfaces. For best results, choose the Interpreter mode that matches
the code generation option.

If you create and save interfaces in ANSI mode, and then switch the
Interpreter to K&R mode, you will have to update all Interface
Function declarations. This is because generated Interface Functions
will have an ANSI-style parameter list:

swidget create_drawingArea1(swidget UxParent);

USING THE INTERPRETER
The Interpreter and Run-time Errors

UIM/X User’s Guide 165

11

When you develop interfaces in ANSI or C++ mode, the generated
create (or popup) interface functions have ANSI-style declarations.
If you switch the Interpreter mode to K&R and load the interfaces,
UIM/X reports an error each time it encounters an ANSI-style
declaration.

Notes about the Interpreter

The following should be noted about the Interpreter:

• The Interpreter Work Area is like an infinite length file—a file that the
compiler never stops reading. As a result, the Interpreter Work Area
doesn’t allow operations which would not be allowed by a compiler in a
single file—except evaluating expressions, of course.

• After you declare a symbol in the Interpreter Work Area, you cannot
change the declaration. So, for example, after you declare an array with a
fixed size, you cannot change the size of the array.

• After you introduce a symbol into the Work Area, you cannot remove the
symbol. The only way to clear the translation units is to reset UIM/X.

• When you create a new interface, you can test its Interface Function by
typing it into the Interpreter Work Area and evaluating it. The interface
must be selected in the Interfaces area of the Project Window and by
choosing Module⇒Selected Interface from the Interpreter. This is useful
for testing, especially when arguments are being passed to the Interface
Function, or when you have entered initial or final code. Calling an
interface function in a callback is another way to evaluate the initial and
final code. The code is also executed each time you create an instance of a
Component.

• The object name is used as a variable name by the Interpreter to refer to
the object. Each object name must therefore be a valid variable name.

• To reference objects in another interface, first make them global.

• Changes made with the Interpreter do not affect the values established in
the Property Editor, which are initial values.

USING THE INTERPRETER
Notes about the Interpreter

166 UIM/X User’s Guide

11

• You can hang UIM/X by putting the Interpreter into an infinite loop. The
following is a simple example:

If you kill the process to exit this loop, you lose any unsaved changes. To
avoid losing any of your changes, you can send a segmentation violation
signal (signal 11). You do this by executing the following UNIX
command:

In some cases, the Interpreter will get the signal and break from the
infinite loop. When this happens, UIM/X attempts to save your interfaces
in a file written to the /tmp directory and then exits.

Using CFLAGS

Flags for the Interpreter can contain environment variables. The -D
flag can be specified to define a symbol. The -D_NO_PROTO flag
suppresses prototypes in the standard library. The -I flag can be
specified to tell the Interpreter where to search for include files.

Protecting Code from the Interpreter

At times you may wish to conditionally evaluate code with the
Interpreter. For example, suppose you wish to include a header file
that is not yet complete. To allow you to use the Interpreter to
conditionally evaluate code, UIM/X automatically defines the
symbol UX_INTERPRETER. This symbol is useful, but you must be
careful when using it.

To insert an #ifndef UX_INTERPRETER protection block in your code:
1. In any UIM/X Text Editor, place the text cursor at the spot where

you want to insert the protection block.
2. Press Control-Z.

while (1)
{

printf("Why?\n");
}

kill -11 process_number

USING THE INTERPRETER
Protecting Code from the Interpreter

UIM/X User’s Guide 167

11

UIM/X inserts the following lines:

To surround an existing block of text with #ifndef UX_INTERPRETER
protection:
1. Select the block of text you want to surround.
2. Press Control-W.

UIM/X surrounds the selected text with #ifndef UX_INTERPRETER
protection.

The UX_INTERPRETER protection block is automatically stripped by
UIM/X during code generation. In order for it to be found and
stripped, the block must be inserted properly every time. Therefore,
to effectively use the UX_INTERPRETER protection block, you must
abide by the following rules:

• Use the Control-Z and Control-W accelerators. Do not type in the
UX_INTERPRETER protection block manually.

• Do not edit the #ifndef or #endif lines of an #ifndef
UX_INTERPRETER protection block.

• Do not add an else clause to an #ifndef UX_INTERPRETER protection
block.

#ifndef UX_INTERPRETER
#endif /* UX_INTERPRETER */

USING THE INTERPRETER
Notes about the Interpreter

168 UIM/X User’s Guide

11

UIM/X User’s Guide 169

Mixing Compiled and
 Interpreted Code 12

Overview
The UIM/X executable can be augmented with the object code of other
applications. In particular, you can compile code generated by UIM/X and
link it into the UIM/X executable.

Linking object code with UIM/X gives the Interpreter access to the
functions in the object code. The Interpreter can execute any compiled
function (or method) contained within the UIM/X executable.

MIXING COMPILED AND INTERPRETED CODE
Augmenting UIM/X

170 UIM/X User’s Guide

12

Augmenting UIM/X
Augmenting UIM/X allows you to:

• Simplify the development of an interface for an application program.
You can design the application’s interface, insert calls to the compiled
application functions, and test the interface, all without having to exit
UIM/X.

• Link in Components distributed in object form.

• Link interfaces into the development environment.

Large projects have many interfaces. As individual interfaces are
finished, you can remove them from the project and make them part of
the UIM/X development environment. As the project progresses, there
will be fewer interfaces to load, edit, and test.

To do this, you generate the code for the interface, compile it, link it
with UIM/X, and remove the interface from the project (keep a backup
copy of the interface’s .i file).

Note – If you generate C++ code, you need to generate Ux Integration
code. See UIM/X Advanced Topics for more information.

UIM/X allows you to mix compiled and interpreted code, so you can
still test the entire project—the interfaces you load and create
interactively can call the create functions of the interfaces that exist
only as object code.

• Use a compiled interface as an editor within UIM/X. Suppose you use
UIM/X to create a specialized widget editor. You can make this editor a
part of UIM/X by compiling its generated code and linking it with
UIM/X.

The makefile template /usr/$UIMXDIR/config/Makefile.uimx
allows you to augment UIM/X with C and C++ object files and libraries.

Note – $UIMXDIR refers to the folder where UIM/X is installed.

Note – The object code should not contain a main() function. Any
initialization required by the application can be done from within the
main() function in /usr/$UIMXDIR/config/uimx_main.cc.

MIXING COMPILED AND INTERPRETED CODE
Registering Functions

UIM/X User’s Guide 171

12
If you need to access the internal data structures of the swidget classes in an
augmented UIM/X, you must make sure that the symbol
PRIVATE_SWIDGET is defined when you compile a UIM/X executable.
You can do this by adding the flag -DPRIVATE_SWIDGET to the cflags
resource or to one of the makefile macros in Makefile.uimx.

Registering Functions
The file /usr/$UIMXDIR/config/uimx_main.cc contains the
function UxRegisterFunctions(). You register a function with the
Interpreter by inserting a call to UxRegisterFunction() in
UxRegisterFunctions().

Registering a function has two advantages:

• It makes the address of the function known to the Interpreter,
eliminating the delay associated with looking up the function the first
time it is encountered.

• It ensures that functions from other libraries are included in the
executable, and are thus accessible from the Interpreter. This is
important when you link another library with UIM/X. If you do not
reference the symbols in the library, some modules may not get linked
into the UIM/X executable.

UxRegisterFunction() is declared as follows:

The parameter name is the name of the function, and fptr is a pointer to
the function.

void UxRegisterFunction(char *name, void
(*fptr)());

MIXING COMPILED AND INTERPRETED CODE
Augmenting UIM/X

172 UIM/X User’s Guide

12

When you register a function, you must also declare it. You can do this by
including the appropriate header file in uimx_main.cc, or adding an
extern declaration after the declaration of UxRegisterFunction().
The following example illustrates both approaches:

To use a registered function in UIM/X, you must declare the function before
calling it. You can either explicitly declare the function, or include a header
file that contains the required declaration.

Note – Ensure that the function you are preregistering has been
declared with its proper linkage. A C function must be declared as
extern "C".

Registering Globals
The file /usr/$UIMXDIR/config/uimx_main.cc contains the
function UxRegisterGlobals(). You register a global with the
Interpreter by inserting a call to UxRegisterGlobal() in
UxRegisterGlobals()).

Registering globals has the same advantages as registering functions.

UxRegisterGlobal() is declared as follows:

#include <math.h>

void UxRegisterFunction();
extern char *MarksVryXcllntFn(void);

void UxRegisterFunctions()
{

UxRegisterFunction("sin", sin);
UxRegisterFunction("MarksVryXcllntFn",

MarksVryXcllntFn);
}

void UxRegisterGlobal(char *name, char *gptr);

MIXING COMPILED AND INTERPRETED CODE
Conditional Compilation in Generated Code

UIM/X User’s Guide 173

12
The parameter name is the name of the variable, and gptr is a pointer to
the variable.

When you register a global, you must also declare it. You can do this by
including the appropriate header file in uimx_main.c, or adding an
extern declaration after the declaration of UxRegisterGlobal(). The
following example illustrates the second approach:

Note – Ensure that the global you are preregistering has been declared
with its proper linkage. A C global must be declared as extern "C".

Conditional Compilation in Generated Code
When you compile generated code and link it with UIM/X, you may want
to avoid certain function calls. A good example is XtCloseDisplay().
Calling this function during testing will terminate the UIM/X session. You
can use the DESIGN_TIME symbol to control compilation:

When you use Makefile.uimx to augment UIM/X (see below), this
symbol is defined.

Using Makefile.uimx
If you examine /usr/$UIMXDIR/config/Makefile.uimx, you will
see that the makefile contains a limited number of macro variables. The
rules and additional macro variables required to build an augmented UIM/X

void UxRegisterGlobal();
extern int MarksGlobal;

void UxRegisterGlobals()
{
UxRegisterGlobal("MarksGlobal", &MarksGlobal);
}

#ifndef DESIGN_TIME
XtCloseDisplay();
#endif

MIXING COMPILED AND INTERPRETED CODE
Augmenting UIM/X

174 UIM/X User’s Guide

12

are contained in the makefile
/usr/$UIMXDIR/mkinclude/central.mk, which is included at the
end of Makefile.uimx.

The macros in /usr/$UIMXDIR/config/Makefile.uimx define the
target and dependent files for augmenting the UIM/X executable. The
following table describes these macros.

Macro Name Definition

AUGEXEC The name of the augmented UIM/X executable. In
/usr/$UIMXDIR/mkinclude/central.mk,
$(AUGEXEC) is the target that builds an augmented
UIM/X.

AUGMAIN The object file for the main program file of the
augmented executable.

APPL_OBJS A list of C object files to be linked with UIM/X.

APPL_CPLUSOBJS A list of C++ object files to be linked with UIM/X.

EXTRA_CFLAGS Use this macro to define extra C compiler options
required for compiling the files $(APPL_OBJS). By
default, this macro sets the -DDESIGN_TIME flag.
Generated code must be compiled with the
-DUIMX_INTERNAL flag to make an interface into
an editor in UIM/X.
You can also use this macro to add the
-DPRIVATE_SWIDGET flag.

EXTRA_CPLUSFLA
GS

Use this macro to add C++ compiler flags.

EXTRA_LDFLAGS Use this macro to define any extra link editor options
required for linking object code with UIM/X.

EXTRA_UXLIBS Use this macro to list the libraries you want linked into
the UIM/X executable.

MIXING COMPILED AND INTERPRETED CODE
General Procedure for Using Makefile.uimx

UIM/X User’s Guide 175

12

General Procedure for Using Makefile.uimx
The general procedure for using the makefile
/usr/$UIMXDIR/config/Makefile.uimx is as follows:

1. Create a working directory.
2. Copy /usr/$UIMXDIR/config/Makefile.uimx to the file

Makefile in your working directory. Renaming the makefile
allows you to invoke make without specifying the name of the
makefile.

3. Copy the file /usr/$UIMXDIR/config/uimx_main.cc to your
working directory. Insert any required initialization code in the file.
The comments in the file indicate where such code should be
inserted.

4. Copy the source (or object) files you want to compile and link with
UIM/X to your working directory.

5. Modify the makefile macros described in the above table. Use the
macros to name the executable and to list the object file for each
source file in your working directory.

6. Use touch to ensure that all dependent files are more recent than
the target.

7. Invoke make. Use the value of the macro AUGEXEC to specify the
target.

Using central.mk
The makefile /usr/$UIMXDIR/mkinclude/central.mk contains the
rules and additional macro definitions required to augment UIM/X. This
makefile is included by Makefile.uimx.

MIXING COMPILED AND INTERPRETED CODE
Augmenting UIM/X

176 UIM/X User’s Guide

12

The target and rule lines in central.mk that build an augmented
executable are shown below for C++:

and for C:

The macros AUGEXEC, AUGMAIN, and APPL_OBJS are defined in
/usr/$UIMXDIR/config/Makefile.uimx.

The other macros in the above lines are defined in central.mk. You can
edit some of the macros to tailor the compilation and linkage of an
augmented executable.

AUGMAINOBJ = $(AUGMAIN:.cc=.o)

$(AUGMAINOBJ): $(AUGMAIN)
$(CPLUS) -c $(CPLUSFLAGS) $(AUGMAIN)

$(AUGEXEC): $(APPL_OBJS) $(APPL_CPLUSOBJS)
$(UIMXOBJ)

$(CPLUS) $(LDFLAGS) $(EXTRA_LDFLAGS) -o $@ \
$(APPL_OBJS) $(APPL_CPLUSOBJS) $(UIMXOBJ)

$(LIBS1)

AUGMAINOBJ = $(AUGMAIN:.c=.o)

$(AUGMAINOBJ): $(AUGMAIN)
$(CC) -c $(CFLAGS) $(AUGMAIN)

$(AUGEXEC): $(APPL_OBJS) $(UIMXOBJ)
$(CC) $(LDFLAGS) $(EXTRA_LDFLAGS) -o $@ \

$(APPL_OBJS) $(UIMXOBJ) $(LIBS1)

UIM/X User’s Guide 177

Advanced C++
Programming in UIM/X A

Overview
This chapter describes the issues associated with using UIM/X for
C++ development. It starts by explaining how to configure UIM/X
for C++ development. It discusses the Class View in the Declaration
Editor, and how to generate member functions for methods. Lastly, it
outlines some of the restrictions of programming with C++ in
UIM/X.

Configuring UIM/X for C++ Development

178 UIM/X User’s Guide

A

Configuring UIM/X for C++ Development

UIM/X provides a set of features to make it easier to program with
C++. By default, these features are disabled. To use these features,
you must uncomment several resource specifications in the UIM/X
resource file uimx_directory/app-defaults/Uimx3_0. The following
table describes these resources.

For more information on configuring UIM/X through resources, see
the UIM/X Installation Guide.

Editing C++ Classes in the Declaration Editor
The Declaration Editor has two views: an Interface view and a Class
view. The Interface view is the familiar Declaration Editor. It allows
you to edit elements of the generated code that are common to both
C and C++. For example, you use the Interface view to edit the
Interface Function, which in generated C++ code is an external
(non-member) function that creates an Instance of the class.The Class
view gives you access to the elements of generated C++ code. You

Resource Feature
For More
Information…

UxMEMethodSpec.set Control whether
a method is
virtual or
nonvirtual.

“Generating
Member
Functions for
Methods” on
page 184UxMEAccessSpec.set Set method

access to
public,
protected, or
private.

UxDeclsEnableClassMode.set Edit the
declaration of a
C++ class.

“Editing C++
Classes in the
Declaration
Editor” on
page 178

UIM/X User’s Guide 179

A
use the Class view to edit the class declaration and the definitions of
the class constructor and destructor. Figure A-1 shows the Class view
of the Declaration Editor.

.

Figure A-1 Class View in the Declaration Editor

By default, the Class view is not available in UIM/X. To make the
Class view available, uncomment the following resource
specification in uimx_directory/app-defaults/Uimx3_0:

Add to the list of base
classes from which
the generated class
inherits.

Add your own code
to the generated
constructor.

!Uimx3_0*UxDeclsEnableClassMode.set: true

Configuring UIM/X for C++ Development

180 UIM/X User’s Guide

A

This resource setting adds a View menu to the Declaration Editor.
You use the View menu to switch between the Interface and Class
views.

The Class View and Generated Code

The text you enter in the Class view of the Declaration Editor is
ignored by the Interpreter. Everything you enter in the Class view is
inserted as is into the generated code. Mistakes in the code you enter
here will only be caught when you try to compile and link your
application.

1. Most of the text you enter in the Class view is inserted in the gener-
ated header file. The exceptions are the definitions of the construc-
tor and destructor, which go in the generated source file. The layout
of a typical header file looks something like this:

// Method macros

Method macros appear here.

// Class Includes

class _UxCLabelText: public _UxCInterface // Class Specification
{
public:

// Constructor Function

Your Constructor Function appears here.

// Destructor Function

Your Destructor Function appears here.

// CreateSwidget Function

Your CreateSwidget Function appears here.

// User Defined Methods

The methods you define appear here.

UIM/X User’s Guide 181

A

Including Class Headers

Header files for C++ classes can be included in the Class Includes
area. The Interpreter does not try to find or load these include files.
Typically, this area is used to include the headers for classes added to
the list of base classes in the class declaration.

It’s worth noting that the files you include in the Class Includes area
of the Class view come after the files you include in the Includes,
Defines, Global Variables area of the Interfaces view.

protected:

// Widgets in the interface

A list of objects appears here.

// Interface-specific variables

Interface-specific variables appear here.

// Interface Function arguments

Interface Function arguments appear here.

// Callbacks and their wrappers

Callbacks and their wrappers appear here.

// Callback function to destroy the context

Context destructor appears here.

private:

// Generated Members

Generated Members appear here.

// User Supplied Members

User-supplied members appear here.

};

Configuring UIM/X for C++ Development

182 UIM/X User’s Guide

A

The #include directives (and anything else) you enter in the Class
Includes area go into the header file, directly above the class
declaration. The header file is then included in the source file, after
whatever you entered in the Includes, Defines, Global Variables area.

For example, suppose you generate the source and header files for
the interface class LabelText. In LabelText.cc, you would see the
following:

Adding Base Classes

The Class Specification area lets you edit the list of base classes in the
class declaration. This allows you to derive a generated class from
one or more base classes.

Any base class you add must have a constructor that can be called
without any arguments. The generated code assumes that any class
you list in the Class Specification area has a default constructor (that
is, a constructor that can be called without arguments).

The definition of the constructor for a generated class does not
specify arguments for the base classes listed in the Class
Specification area:

Because the Interpreter does not parse anything in the Class view of
the Declaration Editor, it will not recognize inheritance from the base
classes listed in the Class Specification area. If any code is written
within the interfaces that relies on such inheritance (eg. using a
public or private variable or member function that is inherited from

…
/***
Includes, Defines, and Global variables from the
Declaration Editor
***/
/* Content of Includes, Defines, Global Variables area */

#include "LabelText.h"
…

_UxCLabelText::_UxCLabelText(swidget UxParent, int anArg)
{
// constructor body
}

Adding Members

UIM/X User’s Guide 183

A
one of the base classes), this code must be protected from the
Interpreter. To protect code from the Interpreter, enclose it in an
#ifndef UX_INTERPRETER block.

Adding Members

The User Supplied Members area lets you add members to the
generated class declaration. For example, you can use this area to
add pure virtual member functions, online member functions, or
overloaded constructors.

Note: The members you add in the User Supplied Members area come after
the generated members. Because of this, you should add access specifiers for
all members you enter here. Otherwise, your members will be private members
of the class.

Adding Constructor Code

The Constructor area of the Class view gives you access to the body
of a generated constructor:

Note that the code you enter in the Constructor area is inserted after
the generated body of the constructor.

If you want to edit the argument list of the constructor, use the
Interface view of the Declaration Editor to edit the Interface
Function. The argument list of the Interface Function becomes the
constructor’s argument list when you generate C++ code.

_UxCLabelText::_UxCLabelText(swidget UxParent, int anArg)
{

this->UxParent = UxParent;
this->anArg = anArg;

// User Supplied Constructor Code
myData = new data;

}

Configuring UIM/X for C++ Development

184 UIM/X User’s Guide

A

Adding Destructor Code

The Destructor area of the Class view gives you access to the body of
a generated destructor. For a Component, the code you enter in the
Destructor area is inserted after the generated body of the destructor:

A Subclass, on the other hand, only has a destructor if you enter
some code in its Destructor area.

Note: You use the Destructor area to free any memory you allocated for your
own data members. Do not try to delete the swidgets or any of the other data
members UIM/X generates.

Generating Member Functions for Methods
When you generate C++ code, methods become member functions of
the interface class on which they are defined. By default, a method is
generated as a virtual, public member function.

_UxCLabelText::~_UxCLabelText()
{

if (UxThis && auto_destroy())
{

XtRemoveCallback(GetWidget(),
XmNdestroyCallback,
(XtCallbackProc)

&UxInterface::UxDestroyContextCB,
(XtPointer) this);

}

if (UxThis)
{

DestroyInterface();
}
// User-Supplied Destructor Code
delete myData;

}

Adding Destructor Code

UIM/X User’s Guide 185

A
The Method Editor provides four option menus for controlling how
UIM/X generates the member function for a method. Figure A-2
shows the Method Editor and its option menus.

Figure A-2 Method Options

By default, the Virtual and Access option menus do not appear on
the Method Editor. To add these option menus to the Menu Editor,
uncomment the following resource specifications in
uimx_directory/app-defaults/Uimx3_0:

Controls whether or not
a method is
implemented as a
virtual member
function.

Controls whether the
member function that
implements the method is
public, protected, or private.

Specifies whether the
method is a normal
method or a property
accessor.

Allows you to
choose the
CORBA type you
desire.

!Uimx3_0*UxMEMethodSpec.set: true
!Uimx3_0*UxMEAccessSpec.set: true

Configuring UIM/X for C++ Development

186 UIM/X User’s Guide

A

Choosing between Virtual and Nonvirtual

The Virtual option menu controls whether or not a method becomes
a virtual member function when you generate C++ code. By default,
all methods are generated as virtual members.

Typically, you set Virtual to No when you don’t expect Subclasses to
override the method. You may not expect the Component to be
subclassed, or you may want Subclasses to inherit a mandatory
implementation of the method.

If you want Subclasses to either inherit a default implementation of a
method or provide their own implementation, set Virtual to Yes.

When you set Virtual to No for a method, you should not override
that method in a Subclass of the Component. If you override a
nonvirtual method in UIM/X, you end up redefining an inherited
nonvirtual function in the generated C++ code. What this means is
that the behavior of an object will depend on the declared type of the
pointer that points to that object:

Because b is declared as a pointer to an object of class B, b->f()
always calls the version defined by class B, even if b points to an
object of class D.

Note: If you set Virtual to No and then override the method in a Subclass,
everything will work fine in UIM/X, where the Virtual option is ignored. But
there is no guarantee the generated C++ application will work properly.

class B: public D {
public:

void f(); // redefines nonvirtual D::f()
…
}

D d;
B *b;

b = &d; // make b point to object of class D
b->f(); // calls B::f(), not D::f()

Controlling Member Access

UIM/X User’s Guide 187

A

Controlling Member Access

The Access option menu controls whether a method becomes a
public, protected, or private member function when you generate
C++ code. By default, all methods are generated as public members.
Property and callback accessor methods are always public.

The Interpreter does not enforce access control for methods. The
Access option controls the access attributes of member functions in
generated C++ code, not of methods in UIM/X.

In UIM/X, any interface can invoke a method defined by another
interface. It doesn’t matter if Access is set to Protected or Private for
the method. Everything will work fine in UIM/X, but the generated
C++ code will not compile.

Setting the Method Type

The Method Type option menu controls whether a method is a
property accessor method or a normal method. The Property Set and
Property Get types are property accessors, while the Method type is
either a normal method or a callback accessor.

C++ Restrictions
• Nothing in the Class view of the Declaration Editor is seen or used within

the builder.

• UIM/X does not support multiple inheritance at design-time. You can,
however, derive your generated interface classes from a user-defined
class. See “Adding Base Classes” on page 182.

• You cannot provide default arguments for the member functions that
implement methods. The Method Editor does not support default values
for method arguments.

Configuring UIM/X for C++ Development

188 UIM/X User’s Guide

A

UIM/X User’s Guide 189

Frequently Asked
Questions B

Overview
This chapter provides a list of frequently asked questions (FAQ’s). Most of
these questions come directly from UIM/X users. This list contains only
questions specifically relating to UIM/X. No attempt is made to answer
questions relating to Motif.

This information is provided in the interest of enhancing user
comprehension of UIM/X, helping the user avoid commonly made errors,
and addressing work-around solutions to specific problems.

190 UIM/X User’s Guide

B

1. Do I have to pay royalties on the programs I develop?

No, UIM/X is sold as a development tool. Applications
developed using UIM/X are exclusively the property of the
developer.

2. Can I edit an interface file to make changes to an interface?

Technically, yes, you can edit interface files. However, by doing
so, you increase the risk of introducing errors that UIM/X may
be unable to detect. Editing interface files is strongly
discouraged. If you feel compelled to edit an interface file, first
be sure to save an unedited backup copy.

3. When I start UIM/X it complains about not being able to find
include files. Why?

It’s possible that UIM/X was not properly installed. Make sure
the soft-links in /usr/lib/X11/app-defaults were properly
created by the install procedure.
/usr/lib/X11/app-defaults/Uimx3_0 must be pointing to
uimx_directory/app-defaults/Uimx3_0.

4. Why do interfaces have a different color when compiled and run
than when loaded in UIM/X?

UIM/X sets the resource *background to be the same color it
uses for its own interfaces. This is set in the UIM/X resource file,
uimx_directory/app-defaults/Uimx3_0. If you want
user-created interfaces to show the Motif default color while
loaded in UIM/X, comment out this line.

5. The pixmap validator does not accept NULL or "" values. How
do I disable a pixmap resource?

Set the value to "unspecified_pixmap”. This is useful when
using Components and you want to specify the following as a
pixmap property:

DynamicPixmap ? DynamicPixmap : "unspecified_pixmap"

UIM/X User’s Guide 191

B
6. Where can I call methods from?

Methods can be called from other methods, callbacks, actions,
and the final code section of the Declaration Editor. You can also
call methods from the Property Editor to set initial property
values.

7. If I generate code for my interfaces, for example K&R, and later
generate C++ code, the linker sometimes complains about
unresolved externals. Why?

This situation arises if code is not re-generated for all the
interfaces or if not all the files are recompiled. You then have a
mixture of different types of code generation.

When switching between code generation options you should
always delete any generated files and object files before
re-generating the code.

8. When I attempt to run UIM/X under OPEN LOOK I get error
messages of the type:

���

����	
���	���
 XKeysymDB ���
��� /usr/lib/X11�

The default place that OpenWindows looks for the XKeysymDB
file is in the directory $OPENWINHOME/lib/X11 but the XKeysymDB
file there does not contain definitions for osf keys.

This problem only arises if the environment variable
OPENWINHOME is set.

X Toolkit Warning:
translation table syntax error:
unknown keysym name:
osfActivate

X Toolkit warning:
... found while parsing ‘<Key>osfActivate:
ManagerGadgetSelect() ‘”

192 UIM/X User’s Guide

B

Make sure that LD_LIBRARY_PATH environment variable is set
properly as follows:

• In C shell:

• In Bourne shell:

This will ensure that the XKeysymDB file in /usr/lib/X11 will be
used instead of the one in $OPENWINHOME/lib/X11

9. How can I load resources in an X-compliant way?

The X-compliant way to load resources is to use the current
directory as the default and only accept explicit path names (the
absolute path). This ensures that the user knows where resources
are loaded from.

The X-compliant search path is as follows:

• Application class defaults:

If the XAPPLRESDIR environment variable is set then:

otherwise:

setenv LD_LIBRARY_PATH /usr/lib/X11:$OPENWINHOME/lib

LD_LIBRARY_PATH=/usr/lib/X11:$OPENWINHOME/lib
export LD_LIBRARY_PATH

/usr/lib/X11/app-defaults/
/usr/lib/X11/app-defaults/ClassName
/usr/lib/X11/$LANGUAGE/app-defaults/
(Motif only)
/usr/lib/X11/$LANGUAGE/app-defaults/ClassName
(Motif only)

$XAPPLRESDIR/ClassName

~/ClassName

UIM/X User’s Guide 193

B
• User and system defaults:

If the XENVIRONMENT environment variable is set then:

otherwise:

• Command-line arguments

Each resource file encountered along this path overrides any previous
setting of identical resources.

Resource loading is done automatically in the main program via a call to
XtAppInitialize().

Note that using UxLoadResources() is not an X-compliant way of
loading resources; to help maintain a semblance of compliancy, this
function uses the current directory or an explicit path.

10. Why don’t property values change in an object’s Property Editor
when I change them using the Interpreter?

Not all changes that you make in your interface result in
property values being immediately updated in the object’s
Property Editor.

For example, suppose you set an object’s Background color to red
using its Property Editor. If you then evaluate
UxPutBackground(swidget, "blue"); in the Interpreter, the
Property Editor should not change, although the object’s
background color should. To return the object to its initial
conditions, choose Selected Objects⇒Other⇒Recreate.

11. How can I get the UIM/X Interpreter to always search a specific
directory for my application’s header files?

Add -I/my/path to the Uimx3_0.cflags resource.

~/.Xdefaults

$XENVIRONMENT

~/.Xdefaults-hostname

194 UIM/X User’s Guide

B

12. To extend uxreaduil, the UIL compiler must be extended to
recognize the new class. Does the same hold true for writing
UIL?

The uxreaduil executable calls the UIL compiler internally (via
libUil.a), thus making it necessary to extend the UIL compiler
to recognize the new widget class. This is not true of
uxcgen—since it generates UIL code but does not read it, it has
no reliance on the UIL compiler. Thus, to generate UIL code for a
new widget class, it is only necessary to extend uxcgen itself.
However, the generated UIL would not be usable unless you had
extended the UIL compiler to recognize the new widget class.
Therefore, extending uxcgen is not useful unless you can also
extend the UIL compiler.

195

Index

Index

A
access

to class members 183
to methods 187

accessor methods
instance geometry 130
setting method type 187

AddEventNameProc method 129
Adjust mouse button xiii
All properties 44
All Resources 43
Alt key xii
ANSI 164, 178
-ansi flag 178
Application Defaults

C++ features 178
UxPalettePath 32
UxStartingPalettes 32

application defaults xiv
ArgDefinition property 135
arguments

default 187
Interface Function 183
Subclass constructors 120–121

augmenting UIM/X 170–176
auxiliary functions 75

and the Declaration Editor 69

B
begeometry 14
Behavior properties 43
bindings, C and C++ 130
bindir resource 119

bitmaps
search paths 46

BrMessageWindowHeight 7
BrOutlineWindowHeight 7
Browser

adding to start-up desktop 9
changing the view 28
deleting objects 27
duplicating objects 27
editing objects 26–27
Interfaces menu 10
loading and clearing interfaces 25
opening 25
reparenting objects 27
selecting objects 26
settings 9
starting UIM/X with 9
start-up geometry 14

C
C

and methods 150
and the Interpreter 159
mixing with C++ 178

C++
and methods 154
and the Declaration Editor 69
generating 191

callback accessors
defining 129
example of 104

Callback Editor 55–57
callbacks

and member functions 114
and this pointer 114
arguments to callback functions 57

196 UIM/X User’s Guide

Index

callback variables 57
external callbacks 55
Instance properties 104
overriding in Subclasses 104, 105–106
removing 129

cflags resource 162, 178
childSite method

described 106
Interface class version 109

ChildSiteClass property 135
class

adding members 183
adding to base class list in declaration 182
constructor 118, 183
constructor arguments 120–121
destructor 184
editing declaration 178–184
header files, including 181
Interface base class 107–110
registering 130
UxVisualInterface class 130

Class view, in Declaration Editor 178–184
code

and the Declaration Editor 69
code generation options 191
code, generated

include statements, order of 182
and C++ 69
constructor arguments 121
destructors 117
Interpreter mode 164
layout of header file 180
unresolved externals 191
uxcgen utility 119
variables in 70

colors 190
command-line arguments 4
compile flags

-DPRIVATE_SWIDGET 171
Component property 135
Components 123–138

and Instances 123

and Subclasses 131
creating 124–135
Declaration properties 135
defined 94
destructor

defining 184
generated 117

distributing 136–138, 170
integrating with UIM/X 100
Interface Function 125
managers 106
subclasses of 102

compound objects
definition xi

Compound properties 43
Connection Editor

closing 63
loading a source 60
loading a target 60

connections
defining 60
modifying 61

Constraint properties 43
Constructor property 135
constructors

adding arguments 183
base class arguments 120–121
default 182
editing body of 183
of base classes 182
swidget creation 118

context structure 87, 113
CORBA 143
Core properties 43
create Interface Function 72, 75
creating Components 124–135

adding child widgets 132
creating Instances 131
creating Subclasses 131
from C code 134
rules governing 125

creating objects

Index

UIM/X User’s Guide 197

dynamically 91
creating palettes 30

D
Declaration Editor 67–74

editing C++ code 178–184
View menu 179

Declaration properties 44
default arguments 187
default constructor 182
defining connections 60
DESIGN_TIME constant 173
desktop

start-up 6–16
start-up geometry 13–16

destructors
defining 184
Interface class version 109

E
editors

Callback 55–57
Declaration 67–74
Method 140–143
Property 39–54

Enter key See Return key
exiting UIM/X 17
explicit shells, in Instances 98
external symbols, unresolved 191

F
functions

registering with Interpreter 171

G
general translation unit 159
geometry

of instances 130
of start-up desktop 13–16

global variables
registering with Interpreter 172

GlobalIncludes resource 162

H
header files

C++ 181
generated, layout of 180
included in generated code 182
Interpreter include path 193
loading into Interpreter 162

HeaderFile property 136

I
Implementors, in Method Editor 143
implicit shells 98
include files 190

including 71
include paths

Interpreter 162
inheritance 182
Instances

adding child widgets 132
adding properties 101–102, 126–129
children 106, 109
constructor 118, 124
creating 95–98, 131
data members 112
geometry 130
in Property Editor 101
Interface Function arguments 102
managing 109, 125, 130
nested 102, 109
popping up 125
root swidget 99
See also Components
setting geometry 109

interface
definition xi

Interface base class 107–110
defined 130

interface files
editing manually 190

Interface Function
and Components 125

198 UIM/X User’s Guide

Index

and constructor arguments 183
and Instances 95
and parametric interfaces 83–91
arguments 102
arguments, using as property values 120
calling from other interfaces 69
create 72, 75
default names 75
initial and final code 74
interfaceFunctionType resource 76
Interpreter mode 164
parent as an argument to 76, 90
popup 72, 75
return value 73

interfaceFunctionType resource 76
interfaces

and Shell objects 20
compiling and linking with UIM/X 170–175
context structure 87
creating and popping up 77
linking together 75–81
loading into Browser 25
methods 144–155
multiple copies 86
naming conventions 23
parametric 73
translation units 158

Interfaces Area
changing height 8

Interfaces menu
defined 10

interfaces, background colors 190
Interpreter 157–166

access to compiled functions 169
and access control 187
and Test mode 163
ANSI mode 164, 178, 193
calling compiled functions 163
clearing 161
evaluating C code 159
fatal errors 164
flags 166

function prototypes 166
header files, loading

include paths 193
include paths 162
loading a file 161
loading header files 162
object property values 193
registering functions 163, 171
registering global variables 163, 172
results 160
run time errors 163
symbols, defining 166
translation units 158
UxInterpSharedDefinitions.set resource 162

L
libraries

linking with UIM/X 170–175
registering functions 171
registering global variables 172

loading
files with UIM/X 4
resources 192

M
makefiles

central.mk 175
Makefile.uimx 170–175

member functions
generated for methods 184
virtual 186

members 113
adding to class declaration 183
generated 112

Menu mouse button xiii
Messages Area

changing height 8
Method Editor 140–143, 184

View menu 143
methods

access specifiers 187
AddEventNameProc 129

Index

UIM/X User’s Guide 199

and C++ code 154
and generated code 150–155
and Ux Convenience Library functions 152
arguments, default 187
calling 143
childSite 106
defined 98
dispatch in C code 150
environment structure 143
example of usage 148
generating member functions 184
implementing as virtual functions 186
invocation macros 130
invoking 99, 104, 113
overriding 105–106, 142
overriding nonvirtual 186
polymorphism 100
replacing dispatch software 154
setting method type 187
updating 142
VisualInterface_Manage() 125, 130

methods, calling 191
modes

Interpreter and Test mode 163
modifying connections 61
Motif widget

definition xi
mouse

Adjust button xiii
Menu button xiii
Select button xiii
usage xiii

mouse buttons, naming conventions for viii

N
name reserved word 69, 142
naming conventions

menu options xii
mouse buttons viii
Return key xii
shell prompts xii

new operator 118

NO_PARENT constant 76
Novice Mode 4, 5

O
object

definition xi
object code, linking with UIM/X 170–175
object operations

changing the C scope 51
deleting 27
duplicating 27
editing in the Browser 26–27
loading into Property Editor 40
promoting to top-level 53
recreating 23
reparenting 27
selecting in Browser 26
unloading from Property Editor 42

objects
All properties 44
and parent Shell objects 20
Behavior properties 43
Compound properties 43
Constraint properties 43
Core properties 43
creating dynamically 91
Declaration properties 44
Dialog

and Shells 20
multiple parametric instances 90
names and parents 50
naming conventions 23
parent and child 22
property values and Interpreter 193
reparenting 51
Shell 51
Specific properties 43
storing in a palette 31

OPEN LOOK, running UIM/X under 191
options, command-line 4
OSF/Motif Style Guide xi
Overview 157

200 UIM/X User’s Guide

Index

P
palettes

adding to a project 34
categories 35–36
closing 34
Create and Edit modes 30
createMode property 12
creating 30
creating an object library 30
deleting 35
loading 12
loading at start-up 11–12
merging 34
opening 34
saving 33
settings 13
start-up geometry 15–16
storing Instances 136
storing objects 31
viewMode property 12
working with icons 36–37

Palettes Area
changing height 8
hiding/showing 11

parametric interfaces 73, 83–91
and the Interface Function 84
context structure 87
definition 83
multiple instances of 86
parametrically defining properties 85

parametric templates 90
parent reserved word 69, 142
path lists

bitmap files 46
UxBitmapPath 46

paths
to UIM/X executable 2, 4
to user palettes 13

pegeometry 15
pixmaps

unspecified property value 190

pixmaps, search paths 46
PjInterfaceWindowHeight 8
PjMessageWindowHeight 8
PjPaletteWindowHeight 8
polymorphism 100, 105–106
popup Interface Function 72, 75
project

definition xi
Project Window

as the start-up interface 8
heights of windows in 8
hiding/showing Palettes Area 11
start-up geometry 13

properties
adding to Instances 101–102
default values 46–47
pointers-to-void 128
putting arguments in 84
setting values 44

property accessors
advantages 102
defining 126–127
example of 101
for Instance geometry 109
inherited from Interface 130

Property Editor 39–54
All properties 44
All Resources 43
Behavior properties 43
Compound properties 43
Constraint properties 43
constructor arguments 120
Core properties 43
Declaration properties 44
editing several objects 50
Instance callbacks 104
Instance properties 101
loading objects 40
opening 40
reparenting objects 51
Specific properties 43
start-up geometry 15

Index

UIM/X User’s Guide 201

unloading objects 42
property values

and C code 84
setting in a resource file 47
sources 48–49

R
recreating objects 23
reference translation unit 159
reparenting objects

in the Browser 27
reserved words 69, 142
resetting UIM/X 16
resources

Browser settings 9
colors 190
configuring start-up desktop (Table) 7
interfaceFunctionType 76
loading, X-compliant 192
palette settings 13
setting xiv
UIM/X, for C++ development 178

Return key xii
reusable components 90

S
Select mouse button xiii
Shell objects 20–21

changing 21
default 21
explicit and implicit 51

Source 48–49
Specific properties 43
starting UIM/X 2
start-up geometry 13–16
start-up interface

defined 6
Subclasses

constructor arguments 120
creating 131
defined 102
destructor 117, 184

inherited nonvirtual functions 186
method overriding 142
overriding callback behavior 105–106
overriding inherited methods 105–106

subprocess control
and Declaration Editor 75

swidgets
definition 21, 23
static swidget variable 81

T
this pointer 113–115
translation units 158
typedefs, loading into Interpreter 162
typography in this guide xii

U
UIM/X

resources, table of 178
strict mode 99

unresolved externals 191
Ux Convenience Library

and methods 152
UxBitmapPath

default value 46
UxBrOnStartup 9
UxCallbackArg callback argument 57
uxcgen utility 119
uxcgen.sh shell script 119
UxChildSite() member function 109
UxClientData callback argument 57
UxContext callback variable 57
UxCplus.c file 110
UxDeclsEnableClassMode.set resource 179
UxDestroyInterface() 79
UxGetContext() function 113
UxInterpSharedDefinitions.set resource 162
UxManage()

member function 109
UxMEAccessSpec.set resource 185
UxMEMethodSpec.set resource 185
UxNewInterfaceClassId() 130

202 UIM/X User’s Guide

Index

UxPalettePath 12
UxPaletteVisible 11
UxParent data member 113
UxPopdownInterface() 79, 80
UxPopupInterface() 80, 125
UxPutContext() function 113
UxRegisterFunction() 163, 171
UxRegisterFunctions() 171
UxRegisterGlobal 172
UxRegisterGlobals() 172
UxStartingPalettes 11
UxStrictModeInvocation.set resource 99
UxThis data member 109
UxThisWidget callback variable 57
UxVisualInterface class 130
UxWidget callback argument 57

V
variables 70
View menu

Declaration Editor 179
Method Editor 143

virtual functions 186
VisualInterface_Manage() 78, 125, 130

X
Xlib context manager 113
XtSetValues() 47

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

