JINEN

UIM/X Tutorial Guide

ooooooooooooooooooooo

Copyright © 2005-2007 Integrated Computer Solutions, Inc.

The UIM/X Tutorial Guide™ manual is copyrighted by Integrated Computer Solutions, Inc., with all rights
reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system, or transmitted
in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the
prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060

Fax: 617.621.9555

E-mail: info@ics.com

WWW: http://www.ics.com

UIM/X Trademarks

UIM/X, GUI Builder Engine, Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software
Development Kit, BX/Win SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak,
ViewKit ObjectPak, VKit, and ICS Motif are trademarks of Integrated Computer Solutions, Inc.

Motif is a trademark of Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/
Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.
X Window System is a trademark of the Massachusetts Institute of Technology.
All other trademarks are properties of their respective owners.

i UIM/X Tutorial Guide

Contents

Preface......coo o Vii

Part |: Novice Mode Tutorials

Chapter 1—Building a Simple User Interface
The GUI YOU WIll BUITA ..ottt st st st st 3
The StEPS TN thIS TULOMIAl ...cveeeeeceecece st r e st ee s nenr e renes 4
Step #1: Starting UIM/X in NOVICE MOUEccveeeiceeirece et aenas 5
Step #2: USiNg the NOVICE PAIEEcouoiiieii et 7
Step #3: Creating the Main WINAOWcocuiiieiieieieecre et e e 8
Step #4: Moving and ReSIZING WIAGELSocivviiiiie et s 12
Step #5: Adding the Remaining WIGQELScoviiiiirnirrereeieeseee et 15
Step #6: SAVING Y OUN WOTK ...ttt e ne e sre e sne 17
Step #7: Duplicating and Arranging WIidgetSc.ooveerevie e seereeeee e e e ne e 19
Step #8: Adding ReSIZING CONSLIAINEScvrveuirieiirieirieesie s 23
Step #9: Changing Labels and NaMEScovviiiiiie i 26
Step #10: Adding Behavior to the Push BULTONSccccovevieieiennececece s 31
Step #11: TeStNG the PrOgramc.oiiieiieiece et 34
Step #12: Generating the Code and Running the Executableccocvvvvievencievencecce e 34

Chapter 2—Communicating Between | nterfaces
The GUI Y OU WIll BUITA ..ot st 38
The StEPSTN ThISTULOMAl ..oveeeccceceee e e st sre s 39
Step #1: Starting UIM/X in NOVICE MOUEccuceiviiirieieiriee e 39
Step #2: Laying Out the INTEITACESoci i 41
Step #3: SAVING Y OUN WOTK ...ttt et se s sresnnsne 49
Step #4: Changing Titles, Labels, and Other Propertiescocveoreoereeneeneneneee s 51
Step #5: Adding Callbacks to the File SElection BOXEScceoveeeeeenenenenene e 57
Step #6: Adding Instances of the Dialogsto the Application Windowcccceevvivveiieneenens 61
Step #7: Adding ITEMS IO the MENUSouiiiiiiicie e 65
Step #8: Adding Behavior t0 the MENUScociiiieriiieeseeese e 67
Step #9: TESHING the PrOgramcvccececeeesece et st e s s sre e sne 71
Step #10: Generating the Code and Running the Executable ..., 72

Part |1: Standard Mode Tutorials

Chapter 3—Creating a Drawing Editor
The GUI YOU WIll BUIT ..ottt 77
The Sectionsin ThIS TULOM@loouieieeee e 78

UIM/X Tutorial Guide iii

Section I: Getting Started and Drawing the INterfaceccoovevvevevcceevsce s 78

Step #1: Starting UIM/X in Standard MOceieiiiniennereeeeceeeseesree e 79
Step #2: Loading the Start-Up PrOJECE ... ettt snens 80
Step #3: Laying Out the WOrKing AT€acecvieieiiseie ettt e enens 81
Step #4: Changing Labels and Other Propertiescoveieiieinese e 87
Step #5: Adding Behavior to the PUSh BULEONSc..cceiieieieceeecececc e enens 92
Step #6: Testing the Color-Changing PUSh BULEONSccoveiviveiescsee e 93
Section 11: WOorking With MENUS ..ot 9
Step #7: Adding @aPUllAOWN MENUcoiiiiiiee et enens 95
Step #8: Adding aCasCading MENU ..ot e 97
Step #9: Adding Behavior to the Color MENUc.cvveiiiiieene e 100
Step #10: TESING thE IMENUSveeeecie et 104
Section I11: Adding Line-Drawing FUNCLIONALILYcccoreireiieiineieseseeese e 105
Step #11: Creating the Line-Drawing Push BULIONSccooeiiiininnneeeeeee 107
Step #12: Creating the Application Window BEhaViorccccccvevviereninie v 110
Step #13: Applying the Behavior to the Line-Drawing Push BULONSccccooceeieiinenennen. 116
Step #14: Testing the Line-Drawing PUsh BULLONScoeoeieirieneneieeeseesreeseeneeieseenens 117
Section IV: Working with Message BoX DIalOgSccvveereverieneiesesneeeeese e seeseseeseeneens 118
Step #15: Adding the WIAGELSc..ceieieieeere e e s 120
Step #16: Creating Property Accessor Methods for the Message BoXcccceeeeeevccrcnieenne 122
Step #17: Adding Behavior to the Popup Push BULtONccccvveieveevececece e 124
Step #18: Testing the Message Box and Text BOXcceoevrerninniinncnscsee e 127
Section V: Generating the Application COUEccooerrerrerneriee e 127
Step #19: Customizing the Main Program and MaKefileccocvvvvvvivvicicceceenceve s 128
Step #20: Generating the Code and Running the Executable ..., 130
Chapter 4—Building a GUI for a Command-Line Application
The GUI YOU WIlI BUII ... 134
The StEPS TN ThiS TULOMTEL ...c.ceiieeeceeee bbb e ene 135
Step #1: Starting UIM/X in Standard MOGEccovvvievinesieeceeese e e 135
Step #2: Laying Out the INEEITACEccccvveeeie et s 136
Step #3: Changing Labels and Other Propertiescceeveeneinensenese s 141
Step #4: Adding Declarations and Final Codeccvevvveeerenene e 143
Step #5: Adding Behavior to the INterfaceccoeveeecce e 145
Step #6: Testing the Prograim ... e e 149
Step #7: Generating the Code and Running the Executablecccoceveieicceccecvvvce s 150

Part I11: Advanced Tutorials

iv UIM/X Tutorial Guide

Chapter 5—Creating an RGB Color Editor in C++

The GUI YOU WIll BUII ..ottt st sttt 155
Step #1: Starting UIM/X in Standard MOGEcoieireiineineeeeeesee e 157
Step #2: Laying OUL the INEEITACEocvevcececece e 157
Step #3: Changing Label Strings and Other Propertiesccocoeeveevennsiesesese s 160
Step #4: Adding Declarations and Global Codeccoeireereenieneeseese e 163
Step #5: Defining a Method to Update the Displaycccceeevevereveieccesece e 167
Step #6: Creating @ SCAlE ClaSSccivviiiirieieieieeise s se e e et sresre e seens 168
Step #7: Exposing Propertiesin the SCAle Class ... 168
Step #8: Exposing Behavior inthe SCale Classccccvvveivecinecse e 173
Step #9: Setting Properties in the INStANCE ..o 175
Step #10: Adding Behavior t0 the INSANCEc.covceiiiiiiiee e 177
Reordering the CONNECLIONSccceiiiiiiere ettt e e enens 181
Step #11: Completing the INLEITACEceiiiiiirerrerr e 182
Step #12: TeStiNG the PrOgramoocveiieieiereie bbb s eb e seeresrene e 185
Step #13: Generating the C++ Code and Running the Executableccccoeveveveviececnene 187
Chapter 6—Integrating a Non-Visual Object
ADBOUL TRIS TULOTTEI ..ottt et sttt et reneas 190
The GUI YOU WIll BUIIooveviiieiiiieiesiesesiere et sttt st st 190
The SectionsiN ThIS TULOMT@l ...c..oiieeee e e 191
Section I: Creating a Non-Visual File ObJECtccvveireeieie e 192
Step #1: Starting UIM/X in Standard MOdEccoveviveniereseeereee s 192
Step #2: Creating the Non-Visual File ODJECEccoeiiriiiriinceeceeeeees e 193
Step #3: Adding Functionality to the File OBJECtc.ccveeecviecice e 198
Section I1: Using the File Object iNthe TODO LiStcovvveieeeiececrecese e 203
Step #4: Loading the Start-Up ProJECE ..ot 204
Step #5: Adding an Instance of the File Object to the Interfaceccocoovvevvvccccecccieee 206
Step #6: Modifying the TO DO LiSt MENUSccovvieiirieiire e s 208
Step #7: TeStNG the TO DO LISt .cveviiiieieeeeieete e e 211
Step #8: Generating the Code and Running the Executableccccooeievevcicccceniceces 211
Section I11: Integrating the File Object into UIM/Xoovieeiceereeecece e 212
Step #9: Restarting UIM/X with Builder ENging RESOUICEScocevrveerieenenesienesiesesie e 214
Step #10: Creating the New Class COOEcovvvvrireiiresee e s 217
Step #11: Compiling the New UIM/X Class COUEccovreeerereeiresiesiese e seesese e 219
Step #12: AugmMENting UIM/X ..ottt e 222
Step #13: Creating aNew UIM/X PalEttecccccceveeeieicce e 223
Step #14: Polishing the Augmented UIM/Xcooiiiiiniiiesesee e e 228
Section 1V: Using the Integrated File ODJECtcooveiieiiiinreee e 231

UIM/X Tutorial Guide v

Step #15: Starting the New Augmented UIM/X ..o 231

Step #16: Adding aFile Object to the To DO List Projectocccvveviennennenneneseeeen 232
Step #17: Modifying the TO DO LiSt MENUSceeveeeieirece et 233
Step #18: Testing the Integrated ProjECEcceveieeeeisece et 237
Step #19: Generating the Code and Running the Executable ..., 237
T [SRRSO 241

vi UIM/X Tutorial Guide

Preface

Overview

Welcome to the UIM/X Tutorial Guide, the guide to learning how to use
UIM/X, the world's most powerful user interface management system. This
guide introduces the basics of UIM/X in a series of step-by-step tutorials
teaching the tools and techniques that will greatly assist you in developing
your own applications. Whether you are new to GUI design and UIM/X, or
are an experienced Motif programmer, this guide will be of service.

This guide contains all the information you need to begin using UIM/X to
interactively create, modify, test, and generate code for applications with
Graphical User Interfaces (GUIS). It acts as a continuing introduction to
UIM/X, for those who have completed the tutorial in the UIM/X Beginner’s
Guide. It is also designed for experienced developers who want hands-on
experience with advanced topics.

Tutorials are provided at three levels of experience. The first two chapters
contain tutorials performed in Novice Mode, UIM/X’s simplified mode for
new users. The next two chapters contain more challenging tutorials in
Standard Mode. The final two chapters provide instruction in advanced
techniques for the experienced developer. Whatever your level of
experience, you will find a tutorial in this guide to suit your needs.

UIM/X Tutorial Guide vii

viii

Who Should Usethis Guide

The UIM/X Tutorial Guide is intended for the user who wants to learn how
to use UIM/X through hands-on experience. Though no programming skills
are required to perform any of the tutorials in this guide, for a more
complete understanding you should have some knowledge of C or C++, and
a general understanding of the X Window System. You should also know
how to use common items such as menus, Push Buttons, and Scroll Bars. If
you are not familiar with these items, you might find it useful to review the
UIM/X Beginner’s Guide.

The UIM/X Document Set and Related Books

This section lists the UIM/X document set, and provides a suggested list for
further reading. The following list is the complete UIM/X document set:

UIM/X Tutorial Guide

UIM/X Installation Guide. Explains how to install and run UIM/X.
Includesinformation on the files provided with UIM/X, backwards
compatibility issues, and compiler considerations.

UIM/X Beginner’s Guide. Introduces UIM/X by presenting Novice Mode,
the simplified Palette that enables new usersto be productive immediately.
Includes information on a number of important features for creating,
testing and running applications.

UIM/X Tutorial Guide. A series of step-by-step tutorials, teaching tools
and techniques that will greatly assist you in developing your own
applications. Features tutorials in Novice Mode, Standard Mode, and on
advanced topics.

UIM/X User’s Guide. Explores the UIM/X features essential to GUI
development. Includes discussions of how to use UIM/X’s editors to set
properties, add behavior, etc.

UIM/X Motif Developer’s Guide. An in-depth guide to the widgets,
features and capabilities of UIM/X as they relate specifically to Motif
development.

UIM/X Advanced Topics. Describes how to customize UIM/X, including
integrating new widget and component classesinto the executable.
Includes reference information of an advanced technical nature.

UIM/X Reference Manual. A comprehensive list of properties, methods,
and events, plus more, for Motif development. Designed for the
experienced devel oper.

Suggested Reading

For more information on designing GUIs, see any of the following books:

e OSF/Matif Syle Guide release 1.2 (Prentice Hall, 1993, ISBN
0-13-643123-2)

e Visual Design with OSF/Moatif (by Shiz Kobara, Addison-Wesley, 1991,
ISBN 0-201-56320-7)

* New Windows Interface: An Application Guide (Microsoft Corporation,
1994, ISBN 1-55615-679-0)

e Human Interface Guidelines: The Apple Desktop Interface
(Addison-Wesley, 1987, ISBN 0-201-17753-6)

How This Guide Is Organized

Before continuing, take a moment to read the short overview that follows.
After reading it you will know where to turn for the information you need.

Part I: Novice Mode Tutorials

Chapter 1, “ Building a Smple User Interface”, provides an introduction to
application development using UIM/X in Novice Mode. If you have never
used a GUI builder such as UIM/X before, or would like an introduction to
some new features, start here.

Chapter 2, “ Communicating Between Interfaces” , introduces an easy-to-use
technique for displaying popup dialogs such as Message Boxes and File
Selection Boxes. It also explains how to use the Menu Editor to add
behavior to pulldown menus.

Part 11: Sandard Mode Tutorials

Chapter 3, “ Creating a Drawing Editor” , demonstrates how to respond to
mouse action in an Application Window, and how manipulate popup dialogs
using methods. As a Standard Mode tutorial, it takes advantage of the full
power of UIM/X while skipping the point-and-click details of the earlier
chapters. If you have previous experience with UIM/X, start here.

Chapter 4, “ Building a GUI for a Command-Line Application” ,
demonstrates how to create an interface for a previously existing
command-line application. You might want to try this tutorial, even if you
will use UIM/X to build your application from start to finish, since it
illustrates how to control UNIX sub-processes from within a user interface.

UIM/X Tutorial Guide ix

X

Part 111: Advanced Tutorials

Chapter 5, “ Creating an RGB Color Editor in C++”, demonstrates how to
build an application using C++ and object-oriented programming techniques
such as subclassing.

Chapter 6, “ Integrating a Non-Visual Object” , shows how to create
interface objects such as files, servers, linked lists, that by their very nature
have no visual representation. It also demonstrates how to augment UIM/X,
adding a new object to the executable and the Palette.

Index, a comprehensive index.

Some Terms You Should Know

Certain basic terms recur throughout this guide, and it helps to understand
them from the outset.

An object is a building block you can use to build an interface with UIM/X.

A Motif widget is an object whose appearance and behavior precisely
follows the OSF/Motif Syle Guide. The novice mode of UIM/X supports a
number of popular Motif widgets, including Push Button, Label, Text Field,
and more.

A compound object consists of several Motif widgets combined into one
object for your convenience. The novice mode of UIM/X supports a number
of compound objects, including Application Window and Group Box, that
save you the time you might otherwise spend creating them.

An interface is a window or dialog box that you build up from objects with
UIM/X. The novice mode of UIM/X supports four different types of
interfaces: Application Window, Secondary Window, Message dialog box,
and File Selection dialog box. Certain menu options refer to an interface,
such as Save Interface; these act only on your selected interface.

A project contains al the interfaces (i.e., windows and dial og boxes) and their
associated files for a certain GUI you are building with UIM/X. The program
can automatically save and generate code for an entire project in one step.
Certain menu options refer to a project, such as Save Project; these act on all
the windows and dialog boxes in your project.

UIM/X Tutorial Guide

Typographic
Conventions

Installation
Directories

Using the M ouse

Conventions Used in this Guide

The following table describes the typographic conventions used in this

guide.

Typeface or .

Ssymbol M eaning Example

AaBbCcl2 [The namesof commands, files, and [Edit your . login file.
directories; %You have mail. Usels
or onscreen output; -atolist al thefiles.
or user input.

AaBbCc12 |A placeholder you replace with your [To delete afile, type rm
lactual value; filename.
lor words to be emphasized, IY ou must be root to do this.
jor book titles. ISee Chapter 6 in the User’s

Guide.

FileOpen IThe Open option in the Filemenu. |Choose the FileOpen command.

Alt+F4 Press both Alt and F4 at once. Press Alt+F4 to exit.

Return The key on your keyboard marked ~ [Press Return.
Enter, Return, or .

Product installation directories can depend on the platform or the user’s
preferences. To keep things simple, this guide uses general names for
product installation directories. The following table lists the name and the
corresponding product installation directory:

Name

Description

uimx_directory

The UIM/X installation directory

Before starting the tutorial, take a moment to review the location and usage
of your mouse buttons, asillustrated in the Figure P-1and the following

table:

UIM/X Tutorial Guide xi

1: Select 2° Adjust 3 Menu

Button: alled: | s used for:

1 Sel ect Sel ecting objects, menus, toggles, and options.
2 Adjust Resizing and moving objects.

B Menu Displaying popup menus.

Throughout this book, you will use the mouse buttons along with the mouse
pointer to make selections, move the input pointer, or position the text
insertion point. Y ou can perform any of the following mouse operations.

Operation Description

Point to M ove the mouse to make the pointer go as directed.
Press Hold down a mouse button.
Release Release a mouse button after pressing it.
Click IQuickly press and rel ease a mouse button without moving the mouse.
Drag M ove the mouse while pressing a mouse button.
. IClick a mouse button twice in rapid succession without moving the
Double-click)
mouse pointer.

. . IClick a mouse button three times in rapid succession without moving

Triple-click

the mouse pointer.

In general, instructions for mouse operations include the name of the mouse
button. The exceptions are Click, Double-click, and Drag. These common
operations may be described without specifying a mouse button. For
example:

e ClickontheapplWindowl iconin the Interfaces Areaof the Project
Window.

» Drag the Push Button icon from the Pal ette.

xii UIM/X Tutorial Guide

In these cases, use the Select button to click and double-click, and the
Adjust button to drag.

Setting Application Defaults

Application Defaults configure the way UIM/X looks and set the default
preferences for many of its operations. You can set the Application Defaults
for all UIM/X users or for a single user. For more details on setting your
Application Defaults see UIM/X User’s Guide.

For optimum performance, set the following resources in your Application
Defaults.

Mwm*autoKeyFocus: false
Mwm*clientAutoPlace: false
Mwm* focusAutoRaise: false
Mwm* focusFollowsPointer: true

Mwm*keyboardFocusPolicy: pointer

Note: The resources above prefixed with Mwm are specific to the Motif
Window Manager. If you are using a different window manager consult your
Systems Administrator for the equivalent settings.

UIM/X Tutorial Guide xiii

xiv UIM/X Tutorial Guide

Part I: Novice Mode
Tutorials

Overview

This section of the Tutorial Guide consists of novice-level tutorials:
Building a Simple User Interface and Communicating Between | nterfaces.

UIM/X Tutorial Guide 1

Building a Simple User
|nterface

Overview

Whether you are building a complex application or a simple user interface,
UIM/X dove-tails with the traditional patterns of software development:
you lay out the interface, add behavior, test, and generate the code. UIM/X
features powerful editors that streamline this development process for
maximum efficiency. Further, with Novice Mode, UIM/X makes it easier to
get started building interfaces right away, even if you have no programming
experience.

All the GUI building blocks you need—Push Buttons, Scrolled Windows,
and so on—are stored in a Palette displayed when you start UIM/X. To lay
out the interface you select the widgets you require. You simply click on the
widget in the Palette, and draw (or drop) it onto the work space.

Once the widgets are in place, you are ready to change their titles, labels
and other properties to customize the interface’s look. In UIM/X you
change properties at design time using the Property Editor. For properties
such as captions that vary from widget to widget you can load widgets into
the Property Editor individually. For others such as background colors, you
can load multiple widgets and change properties for several widgets at once.

UIM/X features a number of other editors that facilitate interface
development. The Constraint Editor, for example, allows you to add
resizing constraints to your interface graphically. You can anchor elements
in afixed position, or specify their positions relative to other widgets. The
result is that at runtime elements remain in proportion when the interface is
resized, whether stretched by user action, or by system font changes.

In UIM/X widgets contain a great deal of built-in behavior. Menus drop
down, Push Buttons push in, and so on. You can easily add advanced
behavior by specifying callbacks. The callback code you write is
automatically executed when the user triggers its corresponding event. For

UIM/X Tutorial Guide 2

BUILDING A SIMPLE USER INTERFACE

example, a Push Button's Act ivateCallback isactivated when the user
clicks on it. Other widgets have callbacks specific to their uses. Like other
properties, you specify callback code using the Property Editor.

By switching to Test Mode you can verify your application’s behavior
without the need to generate code or leave the development environment.
Once satisfied with the look and behavior of your interface, you can
generate the application code for your project, in just a few clicks of the
mouse.

In addition, UIM/X eases learning and lets you get started building
interfaces immediately with the introduction of Novice Mode. This mode
presents simplified menus and essential commands only, for a seamless
growth path from first prototype to production-quality interface. Once you
are familiar with the development environment you can tap into the full
power of UIM/X by starting in Standard Mode.

The GUI You Will Build

This chapter demonstrates how to use UIM/X in Novice Mode to create an
interface that changes colors when you click on its Push Buttons. You will
create widgets using the Pal ette, set resizing constraints using the Constraint
Editor, use the Property Editor to change properties, and add behavior using
the Connection Editor. Once tested you will generate the code, then
compile, link, and run the resulting application in one step.

The ColorBox interface, shown in Figure 1-1, consists of the following
elements:

e Secondary Window: A Secondary Window widget with constraints set to
allow it and its children (the other widgetsin the interface) to resize
gracefully.

e Text Field: A widget that accepts text.

« Push Buttons: Push Buttons that change the background color of the Text
Field.

UIM/X Tutorial Guide 3

4

Building a Smple User Interface
1 The Sepsin this Tutorial

RED GREEN

BLUE YELLOW

Figure 1-1 The Completed ColorBox Interface

You don’t have to complete the whole tutorial in one sitting. You can stop at
any point, save your work, and continue later. You do not need to be a
programmer to understand and complete this tutorial.

The Sepsin thisTutorial

This tutorial takes about 60 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Novice Mode
Step #2: Using the Novice Palette

Step #3: Creating the Main Window

Step #4: Moving and Resizing Widgets

Step #5: Adding the Remaining Widgets
Step #6: Saving Your Work

Step #7: Duplicating and Arranging Widgets

UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE

Step #8: Adding Resizing Constraints

Step #9: Changing Labels and Names

Step #10: Adding Behavior to the Push Buttons

Step #11: Testing the Program

Step #12: Generating the Code and Running the Executable

Sep #1: Sarting UIM/X in Novice Mode

Before you begin this tutorial, set up a new directory called chap1, then
change to that directory, as follows:

1. Start the X Window System.

2. Open atermina window.

3. Make adirectory to store the files you will create in this tutorial:
mkdir chapl

4. Changeto the directory you just created:
cd chapl

5. Start UIM/X from your new directory:

uimx -novice -language ansic &

Note: UIMX will attempt to save interfaces and project code in whatever
current working directory in which the toal is started, unless the user specifies
otherwise. It is easiest to begin the UIM/X session from within an existing
project directory.

Note: The - 1language optionsinstructs UIM/X to use ANSI C mode. While
C++ mode accepts code written in C, for the purposes of the tutorial C modeis
sufficient. By default, UIM/X startsin ANSI C mode.

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx directory/bin/uimx -novice -language ansic &

uimx_directory is the base directory where you installed UIM/X.

UIM/X Tutorial Guide 5

Building a Smple User Interface
1 Sep #1: Sarting UIM/X in Novice Mode

After abrief pause, a copyright notice window appears, to show that UIM/X
is being initialized. When UIM/X is ready, the Project Window and UIM/X
Palette appear, as shown in Figure 1-2.

6. lconify the terminal window in which UIM/X was initially started.

Note: To restart this tutorial, begin again from step 4 above.

) , = UIM/X — Untitled 1
—| Palette: Novice | - |_| File Edit View Mode Tools Help
i i EEEREEEE %
File View Help %iilsﬁ%l 3| @ B & Ig) %]
- X
zl Windows
-
|
appl Messages
Window Dialog e
secondary| fileSBox i U
Window Dialogy N T

¥ Primitives

=5

label horiz option
Separator Menu

od
I éF
text vert radio

I_l ’: = Ii

= =
default vert scrolled

Button Scale L
4 -GBOX ok F
— B

ol — | ="
canvas group scrolled

- Box ext

Figure 1-2 UIM/X Novice Mode Palette

Note: The project in this chapter was created using the Motif Window
Manager (mwm) and its default resource values, except for
clientAutoPlace, whichwassetto false. If you are using a different

UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE

window manager, or have other than default values for window manager
resources, you may see slightly different object appearance and behavior from
that described in this chapter.

Sep #2: Using the Novice Palette

The Palette contains all the objects you use to build an interface. To create
a Window or any other object in UIM/X you click on the appropriate icon
in the Palette and draw it in the desired location on your screen. You can
also create objects in their default size by dragging and dropping. In Novice
Mode UIM/X presents a simplified Palette with fewer interface objects. In
this step you will learn how to use the Novice Palette. In the next step you
will use it to create a window.

1.

The default view of the Novice Palette shows names and icons for all
the elements on the Palette. Select View=By Name from the Palette
menu bar.

Notice the Pa ette’ s appearance changes to show names without any icons.
Now select View=By Icon.

The Palette’'s appearance changes to show icons without any names. If you
place the mouse cursor over an icon, bubble help appears that tells you the
icon’s name.

Finally, select View=By Name and I con to show both icons and names,
which is probably the most useful view for learning the package.

Next, notice the expand arrows to the left of the Windows and Primitives
categories, as shown in Figure 1-3. Click on the expand arrow for Win-
dows.

The category collapsesto asingle line, with the expand arrow pointing
right to signify that it is collapsed.

Click on the expand arrow for Primitives to coll apse both categories.
The Palette should now appear as shown in Figure 1-3.

UIM/X Tutorial Guide 7

8

Building a Smple User Interface
1 Sep #3: Creating the Main Window

10.

—|Palette: Novice| - | |
File View Help

p Windows 'J

p» Primitives
Figure 1-3 Novice Palette with Collapsed Categories

The Palette still takes up its original space. To save space on your desktop,

choose View=Adjust Height from the Palette.

The Palette shrinks.

Select File=Close from the Palette. Notice how the Pal ette disappears

from your screen.

Now select Tools= System Palette from the Project Window.The Novice

Pal ette reappears.

Click on the expand arrows for Primitives, then Windows, to make each

category full size again.

Select View:=Adjust Height from the Palette. The Palette returnsto its

full size.

£

Note: You can use the expand arrows to help fit the Palette on to your screen.
With afew clicks of the mouse, you can collapse some categories and expand
others to access only the elements you need for your project.

Sep #3: Creating the Main Window

The Windows category of the Novice Mode Palette contains two windows
that you use as containers for the other objects that make up your interface.
An Application Window includes a menu bar, while a Secondary Window
does not, and cannot. Otherwise these two windows are essentially the
same.

A Window object can contain other objects, such as Push Buttons,
Separators, and Scales. The Window object is referred to as the parent of
the objects it contains, while these objects are its children.

UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE

To learn more about creating objects in UIM/X Novice Mode, see the
UIM/X Beginner’s Guide.

1. Check that the Design icon in the upper-right corner of the Project

Window is selected, as shown in Figure 1-4.

B

Figure 1-4 Design Icon Selected

2. Inthe Windows category of the Palette, click on Secondary Window with
the Select mouse button (the left one) as shown in Figure 1-5.

~i Palette: Novice | - i_l

File View

Help

¥ Windows

=

appl msyBox
Window Dialog

secondary fileSBox
Window Dialoy

¥ Primitives

label horiz option

P Menu

o4

It ém

text vert radio

Field Separator| Check

@AM

o | | SR

push horiz radio

Button Scale Box
|
default
Button
canvas

A

Figure 1-5 Selecting a Secondary Window from the Palette

The mouse pointer changes to a “corner” shape, representing the widget's

upper-left corner.

UIM/X Tutorial Guide 9

Building a Smple User Interface
1 Sep #3: Creating the Main Window

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and draw operations, for example.

3. Pressand hold the Select mouse button where you want the top-left corner
of the Secondary Window to be located on your screen.

4. While holding down the Select button, drag the mouse down and to the
right to define the size of the new widget, as shown in Figure 1-6.

Press

Release

Figure 1-6 Creating a Secondary Window by Dragging and Drawing

5. Release the mouse button to compl ete the operation.
The Secondary Window, called secondWindowl, appearsasshownin
Figure 1-7.

‘i secondWindow1 B iJ

Figure 1-7 Your New Secondary Window

10 UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE

6. Noticethat the new Secondary Window is represented by an icon in the
Interfaces Area of the Project Window, as shown in Figure 1-8. Each stan-
dalone interface in aproject is displayed thisway, making it easy to select
an entire interface, and to keep track of the interfaces in your project.

Don't worry if your Secondary Window is not the size or shape you want.
You will learn how to reposition and resize it in a moment.

_ UIMIX - Untitled

[|

File Edit View Mode Tools

Help

EEEEEREEER

Interfaces

& Bl]

]

secondiindoul

Messages

R I

Figure 1-8 Secondary Window Icon
7. Also notice the selection handles appearing in the Secondary Window, as

shown in Figure 1-9.

—i secondWindow1

-]

Figure 1-9 Handles Around a Selected Icon

UIM/X Tutorial Guide 11

12

Building a Smple User Interface
Sep #4: Moving and Resizing Widgets

A widget must be selected before you can move it, resize it, or change its
properties. Newly drawn widgets are automatically selected.

Sep #4: Moving and Resizing Widgets

It's easy to move or resize the Secondary Window widget or any other
widget. When you move or resize a widget, the position of the mouse
pointer is important, because UIM/X divides each widget into nine invisible
regions, as shown in Figure 1-10.

Each widget has nine
invisible regions for
moving and resizing

Figure 1-10 Nine Regions of a Widget

To see the nine regions of a widget, point to any corner of the widget and
press the Adjust button (the middle one). The grid that appears is called the
“resize grid”. Depending on which region of the widget you point to when
you press the Adjust button, you will see a different resize pointer. Each
resize pointer enables you to perform a different function, as listed in Table
1-1.

You can use the central region (5) of the resize grid, which displays the
compass pointer, to move a selected widget to a new location. You can use
the other eight regions to stretch or shrink a selected widget to a new size.

+

Rk a1 Lk A

Tk

kA

Note: Do not move or resize an interface using its window decorations (the
box that appears around it). This communicates information to the window

manager only, and will result in the widget returning to its original size and
location at runtime.

UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE
Moving the Secondary Window 1

Table 1-1 Functions of the Resize Pointers

Pointer Shape Pur pose

T Moves the widget.

F = Ik 2 Changesthewidget'sheight and width.

™ b Changes the widget’ s height only.

|‘L'—'9{‘ Changes the widget’ s width only.

In this step you will gain some practice moving and resizing the Secondary
Window widget. First you will practice moving it. Next, you will resize it.
You can move and resize any selected widget the same way.

M oving the Secondary Window

In this step you will move the Secondary Window.
1. Point to the center of secondWwindowl.
2. Pressand hold down the Adjust mouse button.

Notice the mouse pointer changesto acompass shape. This meansyou can
now move the widget.
(If you see the resize grid, release the button and try again, closer to the
center of the widget.)

3. Drag secondWindowl to anew location and then release the button.
The widget moves, as shown in Figure 1-11.

To move a widget, grab
its center region and drag
it to a new location.

\

Figure 1-11 Moving a Widget

UIM/X Tutorial Guide 13

Building a Smple User Interface
1 Sep #5: Adding the Remaining Widgets

4. Repeat the process until you are comfortable moving objects around the
screen.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel move operations, for example.

Resizing the Secondary Window

In this step you will resize the Secondary Window.

1. Poaint to one of secondWindowl’s resize regions, such as the
lower-right corner.

2. Pressand hold down the Adjust mouse button.

Notice the mouse pointer changes to aresize pointer, and the resize grid
appears. This means you can now resize the widget.

(If you see the compass pointer, release the button and press again, further
away from the center of the object.)

3. Dragthe mouseto resize the outline of secondWindowl to alarger size,
then rel ease the button.

The widget reappears larger, as shown in Figure 1-12.

To resize a widget, grab
\ one of the edge regions
and stretch it to a new

size.

Figure 1-12 Resizing a Widget
4. Repeat the process, thistime making secondWindowl the size you
want for your interface.

Sep #5: Adding the Remaining Widgets

Now that you have created the main window, you can add the remaining
widgets to the interface. Dragging and dropping is a convenient way to
create a widget in its default size. In this step you will add a Text Field to
the interface by dragging and dropping. Next you will add a Push Button by
dragging and drawing.

14 UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE
Resizing the Secondary Window 1

1. From the Primitives category of the Palette, press and hold the Adjust
mouse button (the middie one) on Text Field.
The mouse pointer turns into the compass shape, and an outline of the
widget appears beneath it.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and drop operations, for example.

2. Place the Text Field widget in the upper half of the Secondary Window,
then release the mouse button.

The Text Field appearsin its default size, as shown in Figure 1-13.

— secondWindow1 B

Figure 1-13 Secondary Window with Default Sized Text Field Added

UIM/X Tutorial Guide 15

Building a Smple User Interface
1 Sep #5: Adding the Remaining Widgets

3. Sizeand position your Text Field widget as shown in Figure 1-14

_i secondWindow1 | - iJ

Figure 1-14 Secondary Window with Text Field Resized.

4. Inthe Primitives category of the Palette, click on the Push Button icon
with the Select mouse button (the left one).

Notice the mouse pointer changesto a corner shape. Thisindicatesyou are
ready to drag and draw the widget.

16 UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE
Resizing the Secondary Window

5. Moveit to position the Push Button below the Text Field widget on the
left, as shown in Figure 1-15.

_i secondWindow1 | - iJ

rpushButton1

Figure 1-15 First Push Button on the Secondary Window

Note: These two widgets (automatically named textField1l and
pushButtonl) do not appear as interface icons in the Project Window
because they are children of secondWwindowl.

Primitive widgets (such as Push Buttons) that display labels use the widget
name as the default label until you change the label string using the
Property Editor. You will change the label later.

Step #6: Saving Your Work

Asin any software development environment, in UIM/X it is agood ideato
save your work often. UIM/X facilitates the task of saving (and reloading)
your interface with the notion of a project.

A project is a set of text files containing general project information and
descriptions of each interface in the project. Project information is saved in
afilewith a.prj extension. UIM/X creates one project file per project.
Interface information is saved in afile with a . i extension. UIM/X creates
one interface file for each stand-alone interface in the project. The format
for both of these types of files is similar to that of an X resource file.

UIM/X Tutorial Guide 17

Building a Smple User Interface
1 Sep #6: Saving Your Work

Because this is the only format UIM/X reads, it is important to save your
interface as a project even if you build your application and generate its
code in one session. UIM/X loads projects by reading the project and
interface files, not by reading the generated code. You need the project and

interface files to make any changes to your project.

1. Select Files>Save Project As... from the Project Window, or click on
the Save Project icon in the icon bar.

Check that the project name selection box shows the compl ete path to
your work directory, chap1, and thefilenameUntitled.prj.

Click in the project file name box and replace Untitled.prj
withColorBox.prj, asshown in Figure 1-16.

Click on OK to save your project.

You can save your work at any time, in one step, by selecting File=Save
Project or by clicking on the Save Project icon.

2.

18 UIM/X Tutorial Guide

— UIM/X |
Directory
=/leif/tutorials/chapl/
Filter Files
[]
Directories

Enter the project file name.

ColorBox. prj

OK | Filter | Cancel|

Figure 1-16 File Selection Box

BUILDING A SIMPLE USER INTERFACE
Resizing the Secondary Window

Note: If you started UIM/X from the chap1 directory as recommended, the
project is saved in that directory. In the file selection box, you can also provide
acomplete or relative path to store the project in another directory.

Sep #7: Duplicating and Arranging Widgets

In this step you will add the remaining three Push Buttons to the interface.
First, you will create the Push Buttons by duplication. This ensures that all
the Push Buttons are exactly the same size. Next you will arrange the Push
Buttons using UIM/X’s Arrange feature.

UIM/X Tutorial Guide 19

Building a Smple User Interface
1 Sep #7: Duplicating and Arranging Widgets

Duplicating pushButtonl

In this step you will add three more Push Buttons to the interface by
duplication.

Click on pushButtonl to select it.

Display the Selected Objects popup menu by pressing and holding the
Menu mouse button (the right-most one) while over the Push Button.

The Selected Objects popup menu appears, as shown in Figure 1-17.

1
2.

Selected Objects

(pushButton1)
Tools -
Cut Ctrl+X

Copy Ctrl+C
Paste Cirle ¥

Duplicate

Align
Arrange
Delete
Recreate

Fig_ure 1-17 Selected Objects Popup Menu

4. Choose Selected Objects=Duplicate.

A copy of pushButtonl, hamed pushButton2, appears slightly
below and to the right of pushButtonl.

Note: You can also duplicate a selected object by choosing the
Edit=Duplicate command from the Project Window, or by clicking on the

Duplicate icon in the Project Window’s icon bar.

20 UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE
Arranging the Widgets

5. Dragand drop pushButton2 to its permanent location, as shownin Fig-
ure 1-18.

6. Repeat the processto create pushButton3 and pushButton4. Place
each of them as shown in Figure 1-18.

—i secondWindow1 | - i_l
[
pushButton1 pushButton2
pushButton3 rpushButtond

Figure 1-18 Secondary Window with all Four Push Buttons Added

7. Saveyour work by selecting File=Save Project or by clicking on the Save
Project icon .

ArrangingtheWidgets

In this step you will use the Arrange feature to distribute the widgets within
theinterface. First you will select the widgets by Control-clicking. Next you
will select them by marquee selection.

1. Select the textFieldl, pushButtonl, and pushButton3
widgets by holding down the Control key and clicking on each of the
widgets in turn.

2. Deselect pushButton4 by control-clicking it aswell.

3. Pressthe Menu mouse button and choose Selected Objects=Arrange=
(vertical arranging).

The three widgets are redrawn with equal spacing above and below each.

4, SelectthetextFieldl, pushButton2, and pushButton4 widgets,
and choose Selected Objects=Arrange=vertical arranging once more.

UIM/X Tutorial Guide 21

1

22

Building a Smple User Interface
1 Sep #7: Duplicating and Arranging Widgets

10.
11
12.

UIM/X Tutorial Guide

The widgets should now have equal vertical spacing.

To select the widgets by marquee selection, begin by pointing above and
to the left of the Push Buttons, (but not on a Push Button).

Press and hold down the Select mouse button.

Asyou drag the pointer, it changesto an “O” shape, and a marquee—a
dashed box—follows the pointer, as shown in Figure 1-19.

—i secondWindow1 | - i_l
[
pushButton1 pushButton2
pushButton3 rpushButton4

Figure 1-19 Marquee Selection

Continue dragging the pointer to surround pushButtonl and
pushBut ton2 with the marquee.

Release the mouse button. Notice that the Push Buttons inside the mar-
guee are now selected.

To arrange the selected widgets, press the Menu mouse button and choose
Selected Objects=Arrange=horizontal arranging.

Now select pushButton3 and pushButton4.
Choose Sel ected Objects=Arrange=horizontal arranging once more
Save your work.

BUILDING A SIMPLE USER INTERFACE
Arranging the Widgets

Sep #8: Adding Resizing Constraints

You can define and apply constraints to the objects in your interface using
the Constraint Editor. The Constraint Editor allows you to define constraints
without having to know the numerous Matif form constraint properties.
Using the Constraint Editor, you can create interfaces that maintain
proportion perfectly when resized, either manually or due to a font change.

1.

I

Click on an object within your interface and choose Selected
Objects=>Tools=Constraint Editor.

The Constraint Editor appears with a graphical representation of your
interface.

Click on the Dimension icon in the Constraint Editor’s icon bar.
Click on the bottom edge of the Text Field within the Constraint Editor.

This applies a Dimension constraint that makes the bottom of the Text
Field stay a proportionate distance below the upper edge of the interface.

Repeat step 3 for the top edge of all four Push Buttons.
Now click on the Bolt icon in the Constraint Editor’s icon bar.

Drag and draw aline from the top edge of the Text Field to the top edge of
the interface.

This applies a Bolt constraint that makes the Text Field stay a set length
away from the top edge of the interface. At this point all of your vertical
constraints are set. The Constraint Editor should now look as shown in
Figure 1-20.

UIM/X Tutorial Guide 23

1

24

Building a Smple User Interface
1 Sep #8: Adding Resizing Constraints

7.

UIM/X Tutorial Guide

~i Constraint Editor: secondWindow1 | - |_]|
File Edit View Tools Help
Eesl 7] 3]

AN IA AN

Proportion | Length |I

E OK l Apply | Cancel|

Figure 1-20 Constraint Editor Showing Vertical Constraints

Repeat step 6 twice more, first bolting the right edge of the Text Field to
the right edge of the interface, then bolting the |eft edge of the Text Field
to the left edge of the interface.

Now click on the Dimension icon in the Constraint Editor’s icon bar.

In the same way that you did in step 3, attach a Dimension constraint to
the left edge of al four Push Buttons. Then attach a Dimension constraint
to the right edge of all four Push Buttons.

All of your constraints are now set. The Constraint Editor should look as
shown in Figure 1-21.

BUILDING A SIMPLE USER INTERFACE
Arranging the Widgets 1

—| Constraint Editor: secondWindowl | - i_l
File Edit View Tools Help
23

i BB

AN IA a8

Proportion |§88 Offset |[L

OK | Apply | Cancel|

Figure 1-21 Constraint Editor Showing All Constraints
10. Close the Constraint Editor by clicking on OK.
11. Saveyour work.

UIM/X Tutorial Guide 25

Building a Smple User Interface
1 Sep #9: Changing Labels and Names

Sep #9: Changing Labels and Names

Now that the widgets are in place on the desktop, you are ready to change
their labels and titles. In this step you will begin by changing each Push
Button's label to match the color it will assign to the Text Field. You will
also change the Secondary Window’s title to something more user-friendly.
In UIM/X you change properties at design time using the Property Editor.

Changing the Push Buttons Labels

In this step you will open the Property Editor and load the first Push Button

into it in one step, by double-clicking on the Push Button.

1.

6. Apply the change to the Push Button by clicking the Apply button at the

26 UIM/X Tutorial Guide

Double-click on pushButtonl to open the Property Editor and load

the Push Button into it.

Notice that all properties are listed in alphabetical order.

Scroll down the list of propertiesto locate the Labe 1St ring property.
Click inthe text field beside the Labe1 St ring property and delete the

default l1abel, "pushButtonl".

Give the Push Button anew LabelString by typing the following:

n RED n

Be sure to include quotation marks around the string.

Your entry should look as shown in Figure 1-22.

B Property Editor

Fle Edit View Options
& of =
pushButton! (pushButton)
AddfSearch: |
Find Prev | Find Next | _Add | Load|
I il Vlue -
T — X
LabelinsensitivePixmap I . =
LabelPizmap I " |
LabelString | I-qm{” |_| J
LabelType sting
MarginBottom I?n [=
. b
Apply

Figure 1-22 Changing the LabelString Property

bottom of the Property Editor.

8.

BUILDING A SIMPLE USER INTERFACE
Changing the Other Labels

Note the change in appearance of the Push Button, as shown in Figure
1-23.

—| secondWindow1 [-] |
] RED pushButton2 |
pushButton3 pushButton4 |

Figure 1-23 pushBut tonl With New Label String, “RED”
Save your work.

ChangingtheOther Labels

You need to repeat the same process for the other Push Buttons to change

their LabelString properties. By dragging and dropping, you can load

widgets into the already open Property Editor. In this step you will drag and
drop the remaining Push Buttons into the Property Editor and change their
labelString properties.

1.

Move the mouse pointer to the center of the second Push Button,
pushButton2.

Press and hold the Adjust mouse button, just as if you wanted to move the
widget.
The mouse pointer changes to the compass shape, and an outline of the

Push Button appears. If the resize grid appears, press Esc and try again,
closer to the center of the Push Button.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and drop operations, for example.

UIM/X Tutorial Guide 27

1

Building a Smple User Interface
1 Sep #9: Changing Labels and Names

3. Drag the outline to the Widget List area of the Property Editor, as shown

28 UIM/X Tutorial Guide

in Figure 1-24, then release the mouse button.

v secondWindowl -0OX

lerty Bgitor = B
Wit View “@ptions

pushButtont (pushEunk

Addrsearch: I

Find Prev | Find Next | Add Load

Core =1

Initial Value

Accelerators I oo _I

AncestorSensitive true

wtamd | [Fracions e
]
]

BorderCalor |§”nnnuunn”
BorderFixmap | .

Figure 1-24 Using Drag and Drop with the Property Editor

Since the widget istoo large to “fit” in the List area, be sure to move the
compass shape within it.

Locatethe 1abelString property, changing it from "pushButton2™"
to "GREEN".

Apply the changes by clicking on Apply in the Property Editor. The inter-
face is updated to reflect the changes, as shown in Figure 1-25.

BUILDING A SIMPLE USER INTERFACE

Changing the Other Labels 1
_ secondWindow1 | - i_l
RED | | GREEN
pushButton3 | pushButton4

Figure 1-25 New labelString Property for pushButton2

6. Similarly, load pushButton3 into the Property Editor by dragging and
dropping (using the Adjust mouse button).

Notice the new widget replaces the last one. Thisisthe expected Novice
Mode behavior. In Standard Mode UIM/X you can set the Property Editor
to replace the current widget, or add the new one to the Property Editor at
the same time. You can also set the Property Editor to load widgets
automatically when you select them.

7. LocatetheLabelString property, changingit from "pushButton3"
to "BLUE".

8. Apply the changes by clicking on Apply.
9. Finadly, load the last Push Button, pushBut ton4, into the Property Edi-
tor.

10. ChangeitsLabelString property to "YELLOW".
11. Apply the changes by clicking on Apply.
12. Saveyour work.

UIM/X Tutorial Guide 29

Building a Smple User Interface
1 Sep #9: Changing Labels and Names

Changing the Secondary Window Name

Onefinal touch is to change the name of your Secondary Window. It can be

difficult to double-click on a Secondary Window, since much of it is often

covered by other objects. Your Secondary Window is not covered in this

way, but for practice you will load it into the Property Editor using another

method: by typing its name into the Add Object area.

1. Click in the Add Object area, type secondWwindowl, and press
Return.

Your Secondary Window is loaded into the Property Editor. You can load
any other widget the same way.

2. Scroll through the window’s properties, and notice that both Name and
Title default to secondWindowl.

3. Double-click inthetext field for Tit1le, andtypein "ColorBox".

4. Click Apply. Theinterface is updated to reflect the changes, as shown in
Figure 1-26.

~i ColorBox | - iJ

RED GREEN

BLUE YELLOW

Figure 1-26 Your Interface with Labels Changed
5. Closethe Property Editor.
6. Saveyour work.

30 UIM/X Tutorial Guide

BUILDING A SIMPLE USER INTERFACE
Changing the Secondary Window Name

Sep #10: Adding Behavior to the Push Buttons

To simplify connecting interface elements together, UIM/X features a
Connection Editor. By loading both the source and target widgets into the
editor, you can view the available callbacks in the source, and the methods
in the target. You can then connect the source’s callback to the target’'s
method visually.

In this step you will use the Connection Editor to add behavior to the four
Push Buttons.
1. Select the Red Push Button, pushButtonl, by clicking on it.

2. Pressthe Shift key and hold down the Select mouse button, then drag the
cursor to the Text Field.

Notice aline follows the cursor, as shown in Figure 1-27. This indicates
the Connection Editor isavailable.

—i ColorBox | - i_]

RED GREEN

BLUE YELLOW

Figure 1-27 Opening the Connection Editor

3. Release the mouse button (and the Shift key) to pop up the Connection
Editor, loaded with the Push Button in the Source area and the Text Field
in the Target area, as shown in Figure 1-28.

UIM/X Tutorial Guide 31

32

Building a Smple User Interface
1 Sep #10: Adding Behavior to the Push Buttons

4,

UIM/X Tutorial Guide

Notice the Push Button's callbacks are displayed in the Callback list, and
the Text Field’s methods are displayed in the Method list.

_i Connection Editor |- i_l
File Help
Source I‘pushguf_f_onl Target I]ftextrieldl
Callback Method

GetText
Insensitive
Manage
Sensitive

7 SetBackground

N— I~ 1

ActivateCallback [
CreateCallback |

D w— |

Create Update Deletel Edit]

Figure 1-28 Connection Editor Loaded with pushButtonl and

textFieldl

Click onActivateCallback inthelist of callbacks, and on Set -

Background in thelist of methods.

The Color argument appears in the Arguments area of the Connection

Editor, with adefault value of "black™".

Click between the quotes and replace "black" with "red™", then click

on Create to compl ete the connection.

The new connection appears in the Connection Editor, as shown in Figure

1-29.

BUILDING A SIMPLE USER INTERFACE
Changing the Secondary Window Name

—| Connection Editor [
File Help
Source |‘pusn3u1-_tonl Target [textFieldl
Callback Method
[ActivateCallback |5 GetText B
CreateCallback Insensitive
Manage
Sensitive
7 SetBackground .
S — —
=
Ky
Color I"red]" | J
7
>
Createl Update| De!ete| Edit J
ActivateCallback —--> textField1::SetBackground("red") J

Figure 1-29 Connection Editor Showing First Connection
L oad the Green Push Button, pushBut ton2, into the Source areain any
of the following ways:

¢ Click on the Green Push Button to select it, then click on the
Load Sourceicon (the left-most one).

¢ Click on the Green Push Button to select it, then choose
File=Load Source.

« Drag and drop the Green Push button into the Source area.
¢ Type the Push Button's name, pushBut ton2, in the Source
area and press Return.

Green's callbacks appear in the Callback area. Noticethat textFieldl
remainsin the target area, its Set Background method still selected.

Change the Color argument from "red" to "green", then click on Create to
compl ete the connection.

In the same way, load the remaining Push Buttonsinto the Connection
Editor to connect themto textFieldl.

Table 1-2 lists all four Push Buttons, with the appropriate values for
Color: Table 1-2 Valuesfor Color .

UIM/X Tutorial Guide 33

Building a Smple User Interface
1 Sep #11: Testing the Program

Table 1-2 VValuesfor Color

Obj ect Color Value
pushButtonl "red"
pushButton2 "green"
pushButton3 "blue"
pushButton4 "yvellow"

10. Close the Connection Editor.
11. Saveyour work.

Step #11: Testing the Program

Before generating code for the project in the next step, take a moment to
switch to Test Mode. Test Mode allows you to see how your interface
behaves, without the need to generate and compile code.

1. Click on the Test icon in the Project Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Test theinterface:

e Clicking on any of the Push Buttons changes the Text widget's
color.

« Resizetheinterface using the window decorations. Your Push
Buttons should resize and reposition elegantly.

3. When you are through, switch back to Design mode by clicking on the
Designicon

Sep #12: Generating the Code and Running the
Executable

The final step in creating your project is to generate its code, and run the
executable. UIM/X provides a convenient Run mode that allows you to run
your compiled program without leaving the devel opment environment.

In this step you will generate the code for your project, and run it, in one
step.

34 UIM/X Tutorial Guide

1.

N o g s

BUILDING A SIMPLE USER INTERFACE
Changing the Secondary Window Name

Click on the Run icon in the Project Window’s icon bar. The Generate
Code Options window appears, as shown in Figure 1-30.

—| Generate Code Options

Makefile Name | ColorBox.mk

Executable Name Ijt:olorBox

[~ Run Makefile

[~ Run Executable
i oK I Cancel |

Figure 1-30 Generate Code Options Window
Ensure that the following radio buttons and toggle buttons are selected:

. Run Makefile
. Run Executable
Click OK.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

Test the interface. Verify that it works asit did in Test Mode.
Switch back to Design mode by clicking on the Design icon
Save your work.

Exit UIM/X by choosing File=Exit.

UIM/X Tutorial Guide 35

Building a Smple User Interface
1 Sep #12: Generating the Code and Running the Executable

36 UIM/X Tutorial Guide

Communicating Between
| nterfaces

Overview

In general, an application consists of one main interface and many
interfaces that pop up as a result of application and user activity. File
Selection Boxes and Message Boxes are examples of commonly used
dialogs that appear temporarily and behave independently of the main
interface. In Novice Mode UIM/X simplifies popping up independent
interfaces using instances. In Standard Mode, the use of instances provides
even more benefits.

Instances allow you to create independent interfaces, then reuse them in
other interfaces. You create the original interface exactly as you would any
other, changing properties and adding behavior as desired. To reuse the
interface in another, you simply drag and draw an instance of it.

Instances inherit all the properties and behavior of the original. Instances
also inherit methods from the UxVisualInterface class, which are available
for use in the Connection Editor or in callback code.

Standard Mode further extends the functionality of instances. For example,
you can use the Method Editor to make properties available in the instance.
By defining property accessor methods, as they are known, you can use the
same instance in many interfaces, exposing properties as required. For
example, you can add an instance of a File Selection Box widget to the
calling interface, then use it as both the Open and Save File Selection
Boxes, simply by exposing its Title property via property accessor methods.

Similarly, in Standard Mode you can create a callback accessor method for
the original widget to make a customized callback available in the instance.
By combining property and callback accessor methods, you can create
interfaces with advanced built-in behavior. They can then be used as if they
were local to the calling interface.

UIM/X Tutorial Guide 37

Communicating Between Interfaces
2 The GUI You Will Build

The GUI You Will Build

This chapter demonstrates how to use UIM/X in Novice Mode to create an
Application Window interface that pops up dialogs. The Communication
project, shown in Figure 2-1, consists of the following elements:

« Application Window: An Application Window widget with additional
menu items added, and behavior to pop up instances of the dialogs.

» File Sdlection Boxes: Two File Selection Box widgets customized to write

“open” and “save” messages to stdout. These pop up when the user selects
File=>Open and File=Save respectively.

* Message Box Dialog: A widget especially designed for presenting a

message to the user. It pops up with a custom message when the user
selects Hel p=About Application.

T T
—| Main Interface | -]
File Help
—| About Application...
Communication Project
Version 1.0
3 o OK
= Save B
Directory
|/bean/usr/leif/tutorials/chap2[
Filter Files
I x applWindow1.i
- Communication.op
L Di i C ication.prj
fileSelBoxDialog1.i
back i [fileSelBoxDialog2.i
— 7 ~
Selection
OK | Filter | Cancel| Help

Figure 2-1 The Completed Communication
Project

38 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES

2

Note: ThisisaNovice Mode tutorial, designed to introduce the advantages of
instances in working with dialogs. Since the Method Editor is unavailablein
Novice Mode, exposing properties such as titles or message strings for usein
theinstanceis not presented. For a Standard M ode tutorial in which properties
are exposed in an instance, see Chapter 3, “ Creating a Drawing Editor”. For an
advanced tutorial on the same subject, see Chapter 5, “ Creating an RGB Color
Editor in C++".

The Sepsin ThisTutorial

This tutoria takes about 60 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Novice Mode

Step #2: Laying Out the Interfaces

Step #3: Saving Your Work

Step #4: Changing Titles, Labels, and Other Properties

Step #5: Adding Callbacks to the File Selection Boxes

Step #6: Adding Instances of the Dialogs to the Application Window
Step #7: Adding Items to the Menus

Step #8: Adding Behavior to the Menus

Step #9: Testing the Program

Step #10: Generating the Code and Running the Executable

Sep #1: Sarting UIM/X in Novice M ode

Before you begin building the Communication Project, set up a new
directory as follows:

1. Start the X Window System.
2. Bring up aterminal window.
3. Make adirectory to store the files you will create in this tutorial:

mkdir chap?2
4. Change to the directory you just created:

cd chap2

UIM/X Tutorial Guide 39

2 Communicating Between Interfaces
Sep #1: Sarting UIM/X in Novice Mode

5. Start UIM/X from your new directory:

uimx -novice -language ansic &

Note: The - 1language optionsinstructs UIM/X to use ANSI C mode.While
C++ mode accepts code written in C, for the purposes of the tutorial C modeis
sufficient. By default UIM/X startsin C++ mode.

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx directory/bin/uimx -novice -language ansic &
After abrief pause, a copyright notice window appears, to show that UIM/X

is being initialized. When UIM/X is ready, the Project Window and the
Palette appear, as shown in Figure 2-2.

6. lconify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

40 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES

2

—|_Palette: Novice | - |_| X UIM/X - Untitled =

File View Help File Create Edit View Options Mode Tools Help]

j Windows [~ @@@ M@ @Mﬁ
Interfaces

=

appl
Window Dialog

[]

secondary| fileSBox
Window | Dialog Messages

¥ Primitives

=2

label

T

text
Field

||

push
Button

=

default
Button

canvas

Figure 2-2 UIM/X Novice Mode Palette and Project Window

Sep #2: Laying Out the Interfaces

In this step you will lay out the visual elements that make up the
Communication Project interface. You will begin by drawing an Application
Window, moving and resizing it if necessary. You will then add two File
Selection Boxes and a Message Box to the project by drawing and
duplicating.

UIM/X Tutorial Guide 41

2 Communicating Between Interfaces
Sep #2: Laying Out the Interfaces

Dragging and Drawing an Application Window

Dragging and drawing is a convenient way to create a widget of a custom

size. In this step you will create the application’s main interface, an

Application Window, by dragging and drawing.

1. Check that the Design Mode Push Button in the upper-right corner of
the Project Window is selected, as shown in Figure 2-3.

| Da| x|

Figure 2-3 Design Mode Icon

2. Inthe Windows category of the Palette, click on the Application Window
icon with the Select mouse button (the left one), as shown in Figure 2-4.

gi Palette: Novice | - i_l

File View Help

zl Windows ¥

appl
Window Dialog

]

secondary| fileSBox
Window Dialogy

¥ Primitives

label horiz option

Separator| Menu

II_ o

(S8

text vert radio

Field Separator| Check
| ==
push horiz
Button Scale
=k
=
default vert
Button Scale
4 GBoX
pre —
canvas group
- Box

Figure 2-4 Selecting an Application Window from the Palette

42 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Dragging and Drawing an Application Window 2

Notice the mouse pointer changesto a corner shape. Thisindicatesyou are
ready to drag and draw the widget.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and draw operations, for example.

3. Move the mouse pointer to where you want the upper left corner of the
Application Window to begin.

4. Pressand hold the Select mouse button, then drag the mouse downwards
and to theright to create the new widget, as shown in Figure 2-5.

Press

Release

Figure 2-5 Creating an Application Window by Dragging and Drawing

UIM/X Tutorial Guide 43

2 Communicating Between Interfaces
Sep #2: Laying Out the Interfaces
5. Release the mouse button to complete the operation.

The Application Window, called applWwindowl, appears as shown in
Figure 2-6.

J | Se—
E| applWindow1 |- |
File Help

. |

Figure 2-6 Your New Application Window Widget, applWindowl

44 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Dragging and Drawing an Application Window 2

Notice that the new Application Window is represented by anicon in the
Interfaces Area of the Project Window, as shown in Figure 2-7. Each stan-
dalone interface in aproject is displayed thisway, making it easy to select
an entire interface, and keep track of your project.

— UIM/X - Untitled | -]
File Edit View Mode Tools Help
Bl B 4| | @ B e Gl %]

Interfaces
applWindow1

=
Messages

iy

J
NZ -

Figure 2-7 applWindowl’sIcon in the Project Window

Don't worry if your Application Window is not the size or shape you
want. You will learn how to reposition and resize it in a moment.

Also notice the selection handles appearing in the Application Window, as
shown in Figure 2-8.

UIM/X Tutorial Guide 45

2 Communicating Between Interfaces
Sep #2: Laying Out the Interfaces

~i applWindow1 | - iJ
File Help

Figure 2-8 Handles Around a Selected Widget

A widget must be selected before you can move it, resize it, or change its
properties. Newly drawn widgets are automatically selected.

Moving and Resizing Widgets

UIM/X simplifies moving and resizing widgets with the Resize grid. By
pressing the Adjust mouse button (the center one) over a selected widget
you cause the grid to appear, as shown in Figure 2-9. Depending on the
position of the mouse you can stretch the component horizontally or
vertically, or enlarge it in both directions at the same time. You don’t even
have to click on a selection handle itself, just in aregion. By positioning the
mouse pointer in the center square, you can move the widget without
resizing it.

Each widget has nine
invisible regions for
moving and resizing

Figure 2-9 The Resize Grid

46 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Dragging and Dropping the Remaining Widgets 2

Each widget has nine invisible regions for moving and resizing

Note: Do not move or resize an interface using its window decorations (the
box that appears around it). This communicates information to the window

manager only, and will result in the widget returning to its original size and
location at runtime.

Dragging and Dropping the Remaining Widgets

Dragging and dropping allows you to create widgets in their default size. In

this step you will add a File Selection Box to your project, duplicate it, then

add a Message Box dialog. All widgets will be dragged and dropped from

the Palette.

1. Add adefault-sized File Selection Box to the project by clicking and
holding on the icon in the Windows area of the Palette with the Adjust
mouse button (the middle one).

The mouse pointer turnsinto the compass shape, and an outline of the
widget appears beneath it.

2. Movethe outline to the desktop, then rel ease the mouse button.

The File Selection Box appearsin its default size, as shown in Figure
2-10.

—| fileSelBoxDialog1 []_J
Directory
I/bean/usr/leif/tutorials/chap2ﬂ
Filter Files
E [1]
Directories
Selection

i
|| oK | CFitter | Cancel| Help

Figure 2-10 File Selection Box Added to Project

UIM/X Tutorial Guide 47

2 Communicating Between Interfaces
Sep #2: Laying Out the Interfaces

3. Toduplicate the File Selection Box, begin by displaying the Selected

48 UIM/X Tutorial Guide

Objects popup menu by pressing and holding the Menu mouse button (the
right-most one) while over the selected interface.

The Selected Objects popup menu appears, as shown in Figure 2-11.

Selected Objects
(fileSelBoxDialog1)|
Tools -
Cut GlrkeX
Copy GrleC
Paste Glrle ¥
Duplicate
Align -
Arrange
Delete
Recreate
Instance

Figure 2-11 Selected Objects Popup Menu

Select Duplicate from the Menu. UIM/X creates anew File Selection Box,
fileSelBoxDialog?2.

Position the new widget beside the first by pressing and holding the
Adjust mouse button while near its center.

If agrid appears, release the mouse button, move closer to the center of
the component and try again.

Finally, add a Message Box dialog by clicking on the icon in the Windows
area of the Palette with the Adjust mouse button.

Drag the outline to the desktop then release the mouse button.

COMMUNICATING BETWEEN INTERFACES
Dragging and Dropping the Remaining Widgets 2

8. If necessary, usetheresize grid to stretch the Message Box until it appears
as shown in Figure 2-12.

—i msgBoxDialogl | - | |

. OK | Cancell Help | .

Figure 2-12 The Message Box Dialog, msgBoxDialogl

Sep #3: Saving Your Work

Asin any software development environment, in UIM/X it isagood ideato
save your work often. UIM/X facilitates the task of saving (and reloading)
your interface with the notion of a project.

A project is a set of text files containing general project information and
descriptions of each interface in the project. Project information is saved in
afilewith a.prj extension. UIM/X creates one project file per project.
Interface information is saved in afile with a . i extension. UIM/X creates
one interface file for each stand-alone interface in the project. The format
for both of these types of filesis similar to that of an X resource file.

Because these are the only formats UIM/X reads, it is important to save
your interface as a project even if you build your application and generate
its code in one session. UIM/X loads projects by reading the project and
interface files, not by reading the generated code. You need the project and
interface files to make any changes to your project.

1. Select Files>Save Project As... from the Project Window, or click on
the Save Project icon in the icon bar.

2. Check that the project name selection box shows the complete path to
your work directory, chap2, and thefilenameUntitled.prj.

UIM/X Tutorial Guide 49

2 Communicating Between Interfaces
Sep #3: Saving Your Work

Click in the selection box and replace Untitled.prj with
Communication.prj, ashownin Figure 2-13.

= UIM/X '
Directory
r/leif/tutorials/chap2/
Filter Files
5 []
Directories

Enter the project file name.

Communication.prj

|| OK | Filter | Cancell

Figure 2-13 The File Selection Box
3. Click on OK to save your project.

4. You can save your work at any time, in one step, by selecting File=Save
Project or by clicking on the Save Project icon .

Note: If you started UIM/X from the chap2 directory as recommended, the
project is saved in that directory. In the file selection box, you can also provide
acomplete or relative path to store the project in another directory.

50 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Changing the Application Window’' s Title 2

Sep #4: Changing Titles, Labels, and Other Properties

Now that the widgets are in place on the desktop, you are ready to change
their titles, labels and other properties. In this step you will begin by
changing the Application Window's title to something more user-friendly.
Then you will change the default string displayed in the Message Box. In
UIM/X you change properties at design time using the Property Editor.

Changingthe Application Window’'sTitle
In this step you will select the Application Window and load it into the

Property Editor to change its Tit le property.

1. Select the Application Window, applWindow1, by clicking on it with
the Select mouse button.

Selection handles appear, as shown in Figure 2-14.

UIM/X Tutorial Guide 51

2 Communicating Between Interfaces
Sep #4: Changing Titles, Labels, and Other Properties

J.~ applWindow1 |- |
File Help

Figure 2-14 The Application Window, applwWindowl, Selected

2. Open the Property Editor by clicking the menu mouse button (the
right-most one) and choosing Tools= Property Editor from the Selected
Objects popup menu.

The Property Editor appears loaded with the Application Window, as
shown in Figure 2-15.

52 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Changing the Application Window’' s Title

+ Property Editor -0 X
File

e

appiWindow

AddfSearch: I

Find Prev | Find Mext Add | Load |

=

Property Initial Value

Background I Iudcdadf, J &
Create Callhack I [J
DeleteResponse destroy _||

Foreground | I #000000" [
Helght |_§_474 [
IconName I_;_--appm:indwr [|

Apply |

Figure 2-15 Property Editor Loaded with applWindowl

3. Locatethe Tit1le property, and replace thetitle "applWindowl " with
thetitle "Main Interface".

Be sure to include quotation marks around the string.

4. Apply the change to the Application Window by clicking on the Apply
button at the bottom of the Property Editor.

5. Note the change in appearance of the Application Window, as shown in
Figure 2-16.

UIM/X Tutorial Guide 53

2 Communicating Between Interfaces
Sep #4: Changing Titles, Labels, and Other Properties

ﬁi Main Interface | - iJ
File Help

Figure 2-16 Communication Project, applWindowl, with New Title

6. Saveyour work by choosing File= Save Project in the Project Window, or
by clicking on the Save Project icon .

ChangingtheOther Labelsand Properties

You need to repeat the same process for the other widgets to change their
captions and other properties. By dragging and dropping, you can load
widgets into the already open Property Editor. In this step you will drag and
drop the File Selection Boxes and Message Box dialog into the Property
Editor and change their 1abelString properties.
1. Move the mouse pointer to the center of the first File Selection Box,
fileSelBoxDialogl.
2. Pressand hold the Adjust mouse button, just asif you wanted to move the
widget.
The mouse pointer changes to the compass shape, and an outline of the
File Selection Box appears. If the resize grid appears, press Esc and try
again, closer to the center of the label.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and drop operations, for example.

54 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Changing the Other Labels and Properties 2

3. Dragtheoutline to the Widget List area of the Property Editor, as shown
in Figure 2-17, then release the mouse button.

~ Property Editor —OX
File
=
=
appiWindow1
AddfSearch: I
Find Prev | Find Hext Add | Load |
.
Property Initial Value
. Y
Background | I #dcdadS" _I
CreateCallback I] J
Delete Response destroy —'|
Foreground | I #000000" J
Height |_§_4?4 [
IconHame I I applWindos] "
-1
Apply |

Figure 2-17 Using Drag and Drop with the Property Editor
Since the widget istoo large to “fit” in the List area, be sure to move the
compass shape within it.
4. LocatetheDialogTitle property, changing it from "" to "Open™".

5. Apply the changes by clicking on Apply in the Property Editor. The inter-
face is updated to reflect the changes, as shown in Figure 2-18.

UIM/X Tutorial Guide 55

2 Communicating Between Interfaces
Sep #4: Changing Titles, Labels, and Other Properties

— Open |- [
Directory
I/bean/usr/leif/tutorials/chap2£
Filter Files
I * applWindow1.i

. . Communication.op
Directories Communication.prj

. fileSelBoxDialog1.i
uxbackCommunicati |fileSelBoxDialog2.i

|
Selection

|| oK | CFitter | Cancel| Help

Figure 2-18 New DialogTitle Property for fileSelBoxDialogl

6.

10.

11.

12.
13.

56 UIM/X Tutorial Guide

Similarly, load £ileSelBoxDialog2 into the Property Editor by drag-
ging and dropping (using the Adjust mouse button).

Notice the new widget replaces the last one. This is the expected Novice
Mode behavior. In Standard Mode UIM/X you can set the Property Editor
to replace the current widget, or add the new one to the Property Editor at
the same time. You can also set the Property Editor to |oad widgets
automatically when you select them.

LocatetheDialogTitle property, changing it from " " to "Save".
Apply the changes by clicking on Apply.

Finally, load the Message Box, msgBoxDialogl, into the Property Edi-
tor.

Locatethe dialogTitle property, changing it from " " to "About
Application".

Locate the MessageString property, changing it from " " to "Com-
munication Project\nVersion 1.0".

Apply the changes by clicking on Apply.

Table 2-1 summarizes the property changes.

COMMUNICATING BETWEEN INTERFACES
Changing the Other Labels and Properties 2

Table 2-1 Property Changesfor Remaining Widgets

Widget Property Old Value New Value
, , " 1Windowl ["Mai
applWindowl Title appLiindow ain
" Interface"
fileSelBoxDialoglpialogTitle nn "Open"
fileSelBoxDialog2DialogTitle nn "Save"
msgBoxDialogl DialogTitle n
d J d "About
Application"
msgBoxDialogl MessageString [""
gEoxDL d g g "Communication
Project\nVersio
n 1.0"

14. Saveyour work by choosing File= Save Project from the Project Window,
or by clicking on the Save Project icon

Sep #5: Adding Callbacksto the File Selection Boxes

In UIM/X widgets contain a great deal of built-in behavior. Menus drop
down, Push Buttons push in, and so on. You can easily add advanced
behavior by specifying callbacks.

The File Selection Boxes provided contain navigation and selection
behavior. At runtime (and in Test Mode) you can navigate directories by
clicking on directory names, set filter masks, etc. To return the name of the
selected file to the calling program, you must write callbacks for the widget.

Callback code you write is automatically executed when the user triggers its
corresponding event. For example, a File Selection Box's OKCallback is
activated when the user clicks on the OK button. In a similar fashion, other
widgets have callbacks specific to their uses.

One callback all widgets have in common is the Create callback,
triggered when the widget is created. The Create callback is particularly
useful in hiding portions of a widget provided by default, and positioning
dialogs over the calling interface.

In this step you will add callback behavior to the two File Selection Boxes
in the Communication project. When the user selects a file and clicks on
OK the callback code will print a message to stdout. You will also add code

UIM/X Tutorial Guide 57

2 Communicating Between Interfaces
Sep #5: Adding Callbacks to the File Selection Boxes

to the Message Box’s Create calback. The code will “unmanage” the
dialog’s Cancel and Help Push Buttons, and position it to pop up centered
over the Application Window.

Adding Callback Codetothe Open File Selection Box

In this step you will add callback code to the Open File Selection Box’s OK

Push Button. When the user clicks on OK the callback writes a message to

stdout, including the selected file name. In Test Mode, UIM/X captures

messages to stdout and writes them to the Messages area of the Project

Window.

1. Load the Open File Selection Box into the Property Editor by dragging
and dropping, or by double-clicking on it with the Select mouse button.

Note: For most widgets you can open the Property Editor and load the widget
into it in one move, by double-clicking on the widget.

2. Openthe Callback Editor by clicking on the Text Editor button (...) beside
OkCallback.

The Callback Editor appears, with an empty text window ready for your
callback, as shown in Figure 2-19.

= Callback Editor B
File Help
ActivateCallback Static — I
static void

(Widget UxWidget,
XtPointer UxClientData,
XtPointer UxCallbackArg)
{
swidget UxThisWidget = UxWidgetT i UxWi);
KY
I
7
R
/* No connections on this callback™/
}
OK | Apply | Cancel I

Figure 2-19 Callback Editor Loaded with OkCallback
3. Click inthe Text Field, and type the following code exactly asit appears:
printf ("Opening %s\n",
UxGetTextString (UxThisWidget)) ;

58 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Adding Callback Code to the Save File Selection Box

The code prints the selected file name to stdout. In Test Mode it writesto
the Messages Area of the Project Window. In another application you
would most likely call aroutine to open the selected file.

Click on OK in the Callback Editor.
Click on Apply in the Property Editor.

If you have made any typing errors, an error dialog appears, an “X”
appears beside the property, and a message appearsin the Messages Area
of the Project Window.

Note: When you click Apply in the Property Editor your callback codeis
parsed and stored with the associated component, but it isnot run. You use Test
Mode to test your callback code.

6.

Clear up any error messages that appear by checking your code against the
sample provided.

After correcting errors, be sure to click Apply in the Property Editor.

Save your work by choosing File=Save in the Project Window, or by
clicking on the Save Project icon .

Adding Callback CodetotheSave File Selection Box

In this step you will add callback code to the Save File Selection Box’s
OKEvent callback. As with the Open File Selection Box, the callback
code writes a message to stdout.

1.

Load the Save File Selection Box into the Property Editor in either of
two ways:

e Select the widget then drag and drop it into the already open
Property Editor.

* Double-click on the widget.

Open the Callback Editor by clicking on the Text Editor button(...) beside
OkCallback.

Click inthe Callback Editor text field, and type the following code exactly
asit appears

printf ("Saving %s\n",

UxGetTextString (UxThisWidget)) ;

Similar to the code for the Open File Selection Box, the above code prints
the selected file name to stdout. In Test Mode it writes to the Messages

Area of the Project Window. In another application you would most likely
call aroutine to actually save the selected file.

UIM/X Tutorial Guide 59

2

2 Communicating Between Interfaces
Sep #5: Adding Callbacks to the File Selection Boxes

4. Click on OK inthe Callback Editor.
5. Click on Apply in the Property Editor.
6. Saveyour work.

Adding Callback Codetothe M essageBox Dialog'sCreate
Callback

By default Message Box dialogs contain OK, Cancel, and Help Push
Buttons, as shown in Figure 2-20. In this step you will hide the Cancel and
Help Push Buttons by adding callback code to the Message Box dialog’s
Create callback. At the same time you will add code to center the dialog
over the Application Window.

~i msgBoxDialogl | - | |

. OK | Cancell Help | .

Figure 2-20 Default Message Box Dialog
1. Load the Message Box dialog into the Property Editor in either of two
ways:

» Select the widget then drag and drop it into the already open
Property Editor.

* Double-click on the widget.

2. Openthe Callback Editor by clicking on the Text Editor button (...) beside
CreateCallback.

3. Clickinthe Callback Editor text field, and type the following code exactly
asit appears:
XtUnmanageChild (XmMessageBoxGetChild (UxWidget,
XmDIALOG_ HELP BUTTON)) ;

XtUnmanageChild (XmMessageBoxGetChild (UxWidget,
XmDIALOG CANCEL BUTTON)) ;

UxPutDefaultPosition(msgBoxDialogl, "true");
4. Click on OK inthe Callback Editor.
5. Click on Apply in the Property Editor.

60 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Adding the Instances 2

Notice that the Help and Cancel Push Buttons still appear in the Message
Box. Thisis the expected behavior. The Push Buttons will be removed
when the widget is created, in Test Mode or at run time.

6. Saveyour work.

Sep #6: Adding Instances of the Dialogsto the
Application Window

When you add an instance of a dialog to an interface, it is local to the
interface, and the calling interface can easily refer to it in callback code. For
example, to pop up the dialog you simply call the instance’'s UxManage
method.

In Standard Mode UIM/X using instances has additional advantages. By
defining property accessor methods for the original, you can expose
properties in the instances. The property accessor methods and the
properties they make available become local to the calling interface.

In this step you will add instances of both File Selection Boxes and the
Message Box to the Application Window. Next you will verify the addition
using the Browser. The Browser displays an interface’s widget hierarchy in
a concise format, including widgets not visible at design time.

Adding thelnstances

In this step you will add the instances to the Application Window.

1. Click on the Open File Selection Box, fileSelBoxDialogl, to
select it.

An interface must be selected to create an instance of it.
2. Poaint to the Main Interface, applWindowl.

3. Pressand hold the Menu mouse button on the Main Window interface to
display the Selected Objects popup menu.
The Selected Object popup menu appears, as shown in Figure 2-21.
Notice that the bottom selection is “Instance of fileSelBoxDialogl”.

UIM/X Tutorial Guide 61

2 Communicating Between Interfaces
Sep #6: Adding Instances of the Dialogs to the Application Window

Selected Objects

(pushButton1)
Tools -
Cut Ctrl+X

Copy Ctrl+C
Paste Cirle ¥

Duplicate

Align -
Arrange -
Delete

Recreate

Instance

. Figure 2-21 Selected Objects Popup Menu

4. Choose “Instance of fileSelBoxDialogl”. The mouse cursor changes into
the corner shape.

5. Drag and draw theinstance of fileSelBoxDialogl onthe Applica
tion Window, as shown in Figure 2-22.

62 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES

Verifying the Additions and Setting Display Szes Using the Browser 2
~i Main Interface | - i_l
File Help

Figure 2-22 Creating an Instance of fileSelBoxDialogl

Note: Normally, you should draw the instance the size you want it to pop up.
However, since you will be setting the sizes of the instances in the next step, it
does not matter what size you draw them.

Notice that the instanceis not visible on the interface. Thisis expected
behavior for parented top-level widgets.

6. Repeat the above steps to add an instance of the Save File Selection Box,
fileSelBoxDialog2 tothe Application Window.

7. Follow the same process to add an instance of the Message Box to the
Application Window.

8. Saveyour work.

Verifyingthe Additionsand Setting Display SizesUsingthe
Browser

UIM/X features atool called the Browser that displays widgetsin a
compact format. You can view widgets by name or icon, for example, but
other elements such as labels or titles, are not shown. Selecting a widget in
the Browser is exactly like selecting it in the interface. Other operations,
such as dragging and dropping from the Browser to an editor and

UIM/X Tutorial Guide 63

2 Communicating Between Interfaces
Sep #6: Adding Instances of the Dialogs to the Application Window

duplicating widgets are equally possible. The Browser makes it easy to
work with widgets that are not visible at design time, such as instances of
dialogs.

By default, instances of dialogs will pop up in the size you drew them on
the interface. For precise control over an instance's display size, you should
set the instance’s Height and Wwidth properties.

In this step you will open the Browser to verify that the instances were
added to the Application Window. You will also use it to load the instances
into the Property Editor, to set their display sizes.

1. Select the Application Window by clicking on it with the Select mouse
button.

Selection handles indicate the interface is selected.
2. Open the Browser by selecting Selected Objects— Tools—Browser.

(Recall that to display the Selected Objects popup menu, you press and
hold the Menu mouse button while over the selected interface.)

The Browser appears, |oaded with the Application Window, as shown in

Figure 2-23.
—i Browser: applWindowl | - i_l
File Edit View Tools Help
LY B

=

PN | (fileSelBoxDialog2instancel

msgyBoxDialog1instance1

. Figure 2-23 Browser Loaded with the Application Window
3. Choose the view you prefer using the View menu.

* You can view theinterface's widgets by name, icon, or both
name and icon.

e You can display the structure of your interface in tree or outline
format.

64 UIM/X Tutorial Guide

10.

11.

12.
13.

14.
15.

COMMUNICATING BETWEEN INTERFACES
Verifying the Additions and Setting Display Szes Using the Browser

Scroll the Browser window to locate the Open File Selection Box
instance, fileSelBoxDialoglInstancel.

Following the UIM/X naming conventions for widgets, the instances are
named fileSelBoxDialoglInstancel,
fileSelBoxDialog2Instancel, and
MsgBoxDialoglInstancel. In another application you might
rename the instances to something shorter. For the purposes of the tutorial
the default names will suffice.

Select the widget by clicking on representation in the Browser. Reverse
video indicates the widget is selected.

L oad the widget into the Property Editor by choosing Selected
Objects=Tools= Property Editor.

Locate the Height property, changing it to 425.
Locate the width property, changing it to 300.
Click on Apply.

Load the Save File Selection Box instance,
fileSelBoxDialog2Instancel, into the Property Editor by drag-
ging and dropping from the Browser.

Similarly, changeitsHeight and Width propertiesto 425 and 300
respectively.
Click on Apply.

Finally, load the Message Box dialog instance,
MsgBoxDialoglInstancel, into the Property Editor, and changeits
Height andWwidth propertiesto 150 and 285 respectively.

Be sure to apply your changes.
Close the Property Editor by choosing File=Close in the Property Editor.
Close the Browser by choosing File=Close from the Browser menu.

Step #7: Adding Itemsto the Menus

In UIM/X building menus is simplified for two main reasons. First, menu
elements contain built-in behavior including automatic resizing and
positioning. You never have to worry about the size of menu labels, or
pull-down behavior, for example. Second, UIM/X features an editor called
the Menu Editor that provides structured access to your menus.

UIM/X Tutorial Guide 65

2

2 Communicating Between Interfaces
Sep #7: Adding Items to the Menus

By default Application Windows are provided with a menu bar and two

pulldown menus: a File menu and a Help menu. In this step you will use the

Menu Editor to add an Open and a Save item to the File menu.

1. Openthe Menu Editor by selecting the main interface, applWindowl,
and choosing Selected Objects=Tools=Menu Editor.

The Menu Editor appears, as shown in Figure 2-24.

—| MenuBar Editor -1
Create Edit Help
Menu Name IapleenuBarl |
Menu Accelerator |:" <KeyUp>F10" Help Pane help_menurcl
Panes ltems
lﬁ file_close1
help_menurc1

rowColumn _|Use As Help Pane
Name |ffile_menurc1
Label String Ii"File" Mnemonic |"E" q
Accelerator I
Accelerator Text I
Callback | o
OK | Apply | Cancel |

Figure 2-24 Menu Editor

2. Renamethe File menu's default item by clickingonfile closelin
the Itemslist, and entering the values shown in Table 2-2.

Table 2-2 Property Valuesfor Open Menu ltem

Property Value

Name openButton
Label String "Open"
Mnemonic "on

In Novice Mode, items are always added after an existing item. Since this
project features an Exit item at the end of the menu, you must reassign the
default item provided. In Standard M ode you can add items before or after
existing ones.

3. Apply the change by clicking on Apply.

4. To add anitem to the menu ensure openButton is selected in the Items
list, then choose Create=|tem—= Push Button.

5. Enter the values shown in Table 2-3 for the new Push Button:

66 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES
Opening the Connection Editor and Making the First Connection

Table 2-3 Property Valuesfor Save Menu Item

Property Value

Name saveButton
Label String "Save"
Mnemonic ngn

6. Apply the change.

7. Add another item to the menu by selecting Create=Item=Push Button.
8. Enter the values shown in Table 2-4:

Table 2-4 Property Valuesfor Close Menu Item

Property Value

Name exitButton
Label String "Exit™"
Mnemonic "x"

9. Apply the change.
10. Saveyour work.

Sep #8: Adding Behavior to the Menus

To simplify connecting interface elements together, UIM/X features a
Connection Editor. By loading both the source and target widgets into the
editor, you can view the available callbacks in the source, and the methods
in the target. You can then connect the source's callback to the target’s
method visually, rather than via callback code.

In this step you will use the Connection Editor to add behavior to the File
menu’s Open, Save, and Exit items, and the Help menu’s About item using
the Connection Editor.

Openingthe Connection Editor and MakingtheFirst
Connection

In this step you will load the File menu’'s Open item into the Connection

Editor, and connect it to the Open File Selection Box instance using the

instance’s Manage method.

1. Select the Open menu item, openButton, by clicking on it in the
Menu Editor.

UIM/X Tutorial Guide 67

2 Communicating Between Interfaces
Sep #8: Adding Behavior to the Menus

2. Open the Connection Editor by selecting Edit=Connection From=Item
in the Menu Editor.
The Connection Editor appears loaded with openButton in the Source
area, as shown in Figure 2-25. Notice the openButton’s callbacks are
listed in the Callback area of the Connection Editor.

— Connection Editor -]
File Help
Source [bpenButton Target ||
Callback Method

ActivateCallback [

CreateCallback J

/
R

DN m— N S—

Create Update Delete[Edit

[€]=]

Figure 2-25 Connection Editor

3. Open the Browser by choosing Selected Objects= Tools=Browser while
over the Main Interface.

4. Inthe Browser, locate the instance of the Open File Selection Box,
fileSelBoxDialoglInstancel.

5. Drag and drop it from the Browser to the Target area of the Connection
Editor (using the Adjust mouse button). You can also load an object into
the Connection Editor by selecting it, then clicking on the Load Target
icon (the right-most one).

The instance's default methods are listed in the Method area of the
Connection Editor, as shown in Figure 2-26.

68 UIM/X Tutorial Guide

COMMUNICATING BETWEEN INTERFACES

Opening the Connection Editor and Making the First Connection

—-i Connection Editor [- iJ\
File Help |
B
Source |bpen5utton Target |[fi1eselnomialogllnstancel
Callback Method
ActivateCallback = Manage S
CreateCallback Unmanage J
_get_height
i _get_width .
N T 5 T
™
}
’:
A
Create Update| Delete Edit

Figure 2-26 Connection Editor Showing Open’s Methods

6. ClickonActivateCallback inlistof callbacks, and on Manage in

the list of methods.

Any parameters or return values available appear in the parameters area.

7. Complete the connection by clicking on Create.

8. The new connection appears in the Connection Editor, as shown in Figure

2-27.
_.i Connection Editor |- iJ‘
File Help |
Source Iiopemautton Target |jfileselno)mialoglInstancel
Callback Method
5 g
CreateCallback Unmanage J
_get_height
i _get_width vl
M T < T
5
pEnv |[auxi:nv I]| H
-
[create] Update| Delete Edit
ActivateCallback ---> fileSelBoxDialog1instance1::Manage(&UxEnv) _]
Figure 2-27 Connection Editor Showing New Connection

9. Saveyour work.

UIM/X Tutorial Guide 69

2

2 Communicating Between Interfaces
Sep #8: Adding Behavior to the Menus

M akingthe Remaining FileM enu Connections

In this step you will create the remaining File menu connections from menu
items to the dialogs they pop up. First you will connect the File menu’s
Save item to the Save File Selection Box. Then you will connect the File
menu’s Close item to the Application Window’s Exit method.

1.

7.
8.

Click on the saveButton item in the Menu Editor, and choose
Edit=Connection From=Item.

The saveButton isloaded into the Connection Editor.

Drag and drop the instance of the Save File Selection Box,
fileSelBoxDialog2Instancel, from the Browser to the Target
area of the Connection Editor.

Noticethat ActivateCallback and Manage remain selected in the
Connection Editor.

Complete the connection by clicking on Create. The new connection is
added to thelist.

Click on the exitButton item in the Menu Editor, and choose
Edit=Connection From=sItem.

The exitButton isloaded into the Connection Editor.

Drag and drop the Application Window itself, or its representation in the
Browser, to the Target area of the Connection Editor.

Notethat Act ivateCallback remains selected in the Source Callback
list.

Create the connection to exit the application by clicking on Exit inthe
Target Method list.

Complete the connection by clicking on Create.

Save your work.

MakingtheHelp Menu Connection

In this step you will connect the Help menu’'s About item to the Message

Box dialog.

1. Click on the Help menu pane, help menurci, in the Menu Editor.

2. Select the Aboutitem, help aboutl, by clicking onit.

3. Load it into the Connection Editor by choosing Edit=Connection
From=Item in the Menu Editor.

4. Dragand drop the Message Box dialog, msgBoxDialogInstancel,

70 UIM/X Tutorial Guide

from the Browser into the Target area of the Connection Editor.

COMMUNICATING BETWEEN INTERFACES
Making the Help Menu Connection 2

Note that ActivateCallback remains selected in the Source Callback list.
5. Click on Manage in the Method area.
6. Complete the connection by clicking on Create.
The new connection appears in the Connection Editor, as shown in Figure
2-28.

—| C ction Editor [
File Help |
==

Source I:help_aboutl Target I:msgsoxnialoglInstancel

Callback Method

ActivateCallback

CreateCallback

L1

Unmanage

S

<

A

S — N

pEnv |I&U::Env

[E
S m—t

Create Update| De!ete[ﬂ,

ActivateCallback ---> msgBoxDialog1instance1::Manage(&UxEnv)

[l 5]

Figure 2-28 Connection Editor Showing Help Menu's About Connection
7. Close the Connection Editor by choosing File=Close.
8. Close the Menu Editor (by choosing Cancel) and the Browser (by choos-
ing File=Close).
9. Saveyour work.

Step #9: Testing the Program

Before generating code for the project in the next step, take a moment to
switch to Test Mode. Test Mode allows you to see how your interface
behaves, without the need to generate and compile code.

1. Hide the Open, Save, and About Application interfaces by selecting
them in the Project Window and choosing Selected I nterfaces=Hide.

2. Click onthe Test icon in the Project Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

UIM/X Tutorial Guide 71

72

2 Communicating Between Interfaces
Sep #10: Generating the Code and Running the Executable

3.

Test the popup dialog behavior:
e Choosing File=Open or File= Save pops up the Open and Save
File Selection Boxes respectively.
e Choosing Help=About Application pops up the Message Box
dialog.
e Clicking on OK or Cancel in the dialogs pops down the interface.
Test the other added behavior:
» Clicking on OK in either File Selection Box writes a message to

the Messages Area of the Project Window. At runtime, it writes
the message to stdout.

e Choosing File=Exit causes adialog to pop up stating that the
exit () functionwascalled. At runtimeit terminates the
application.

When you are through, switch back to Design Mode by clicking on the
Designicon

Sep #10: Generating the Code and Running the
Executable
The final step in creating your project is to generate its code, and run the

executable. UIM/X provides a convenient Run Mode that allows you to run
your compiled program without leaving the development environment.

In this step you will generate the code for your project, and run it, in one
step.

1.
2.

UIM/X Tutorial Guide

Click on the Run icon in the Project Window’s icon bar.
The Generate Code Options window appears, as shown Figure 2-29.

COMMUNICATING BETWEEN INTERFACES
Where to Go From Here...

—| Generate Code Options I

Makefile Name | Communication.mk

Executable Name Ii:omunication

[~ Run Makefile

[~ Run Executable

] OK | Cancel |

Figure 2-29 Generate Code Options Window
3. Ensurethat the following radio buttons and toggle buttons are selected:

. Run Makefile

. Run Executable
4. Click OK.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

Test the interface. Verify that it works asit did in Test Mode.

To stop the program, choose File=Exit from the Application Window.
Switch back to Design mode by clicking on the Design icon

Save your work.

Exit UIM/X by choosing File=Exit in the Project Window.

© © N oo

WheretoGoFrom Here...

As noted in the introduction, this tutorial presented some of the advantages
of using instances when working with dialogs. Since it was a Novice Mode
tutorial, however, it could not explore all the advantages Standard M ode has
to offer.

For example, this tutorial featured two File Selection Boxes with separate
titles (“Open” and “Save”) that printed custom messages to stdout. In
Standard Mode only one File Selection Box would have been required. By
defining property accessor methods via the Method Editor, you could
expose the related properties in the instance. Then, when popping up the
instance, you could set the title appropriately, via callbacks, or graphically

UIM/X Tutorial Guide 73

2

2 Communicating Between Interfaces
Sep #10: Generating the Code and Running the Executable

using the Connection Editor. Similarly you could have created a method
associated with the File Selection Box’s OK Push Button. UIM/X presents
appropriately named methods in the Behavior category for the instance.

As noted, for a Standard Mode tutorial in which properties are exposed in
an instance, see Chapter 3, “Creating a Drawing Editor”. For an advanced
tutorial on the same subject, see Chapter 5, “Creating an RGB Color Editor
in C++".

Note: Consult the Release Notes for information about the currently supported
C++ code development.

74 UIM/X Tutorial Guide

Part II: Standard Mode
Tutorials

Overview

The tutorials in this section will be completed in Standard Mode of UIM/X.
These tutorials are Creating a Drawing Editor and Building a GUI for a
Command-Line Application.

UIM/X Tutorial Guide 75

Creating a Drawing

Editor

Overview

In most applications there are times when you want a user action to change
a property at runtime. For example, in a color editor, you might want to
allow users to click on acolor chip and assign it to an object. In UIM/X you
can use callbacks to activate the runtime property change, and the
UxGetProperty and UxPutProperty functions to get and assign
property values respectively.

UIM/X simplifies the task of creating menus with an easy-to-use Menu
Editor, providing al the widgets you need and a consistent builder interface
whether you are designing pulldown, popup, or cascading menus. Built-in
behavior includes automatic resizing of menu panes to fit their captions,
positioning and pulldown behavior. Assigning keyboard accelerators and
mnemonics is a snap.

The working area of your interface is often referred to as the application
window, because user activities—such a mouse action or keyboard
clicks—call the functions in your underlying application. UIM/X lets you
quickly create application window behavior by providing structured access
to your application’s functionality via translation tables, where you pair
mouse or keyboard events with your application’s actions.

UIM/X provides a number of dialog widgets to support communication with
the user. The Message Box is the easiest way to present a simple message,
while the Prompt lets you obtain a yes or no answer, for example. While
their purposes differ, all dialog widgets share an ease of use, and the
potential for quick customizing. By writing an interface method for your
chosen dialog widget, you can customize it to pop up from any interface in
your project, with messages created on-the-fly.

UIM/X Tutorial Guide 76

CREATING A DRAWING EDITOR

3
The GUI You Will Build

In this chapter you will create an interface to function as a Drawing Editor.
The Drawing Editor illustrates how to change properties at runtime, change
mouse behavior in the application window, build menus, and pop up a
dialog.

The completed interface, shown in Figure 3-1, consists of the following
areas:

e Menu Bar: Contains pull-down menus with regular panes, mutually
exclusive panes, and panes for selecting options.

e Color-Changing Push Buttons. Push Buttons that change the background
color of the work area.

e Line-Drawing Push Buttons. Allow the user to select from aline,
rectangle, circle, or elipse, then draw the shape in the work area.

* Work Area: Contains a Frame in a Scrolled Window where the user can
draw shapes using the mouse.

* Popup Dialog Area: Clicking on the Push Button pops up a Message Box
displaying any text entered in the Text field.

—i A New Application | - iJ
File Edit View Options Color Help
Y
O
/
O i T
— | s |
Popup.. | Ibrawing Editor Popup Message

Figure 3-1 The Completed Drawing Editor Project

UIM/X Tutorial Guide 77

Creating a Drawing Editor
3 The Sectionsin This Tutorial

To alow the tutorial to focus on new skills while presenting as many
features as possible, a start-up project has been provided. It includes the
main window, with several working menus. Exploration of the callback
code provided is left to the reader.

The Sectionsin This Tutorial

This tutorial takes about 120 minutes to complete. It contains the following
sections:

Section |: Getting Started and Drawing the Interface
Section |1: Working with Menus

Section I11: Adding Line-Drawing Functionality
Section IV: Working with Message Box Diaogs
Section V: Generating the Application Code

Note: The sectionsin thistutorial are independent of one another. If you are
interested in learning about menus, for example, you can jump to Section I1:
Working with Menus, and start there (once you have started UIM/X and loaded
the start-up project).

Section |: Getting Sarted and Drawing the Interface

In this section you will start UIM/X in Standard Mode and load the start-up
project. Next you will create the color-changing Push Buttons, change a few
properties, and add callback behavior to change properties at runtime.
Finally, you will test the color-changing portion of the interface before
proceeding to the next section.

78 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
The Sepsin This Section

The Sepsin ThisSection

This section takes about 20 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Loading the Start-Up Project

Step #3: Laying Out the Working Area

Step #4: Changing Labels and Other Properties
Step #5: Adding Behavior to the Push Buttons
Step #6: Testing the Color-Changing Push Buttons

WhereYou AreintheTutorial

=Section |: Getting Started and Drawing the Interface
Section I1: Working with Menus

Section I11: Adding Line-Drawing Functionality
Section IV: Working with Message Box Dialogs
Section V: Generating the Application Code

Sep #1: Sarting UIM/X in Sandard Mode

Before you begin building the Drawing Editor, set up a new directory and
copy the start-up project into it as follows:

1.
2.
3.

Start the X Window System.
Bring up aterminal window.
Make a directory to store the files you will create in thistutorial:

mkdir chap3
Change to the directory you just created:

cd chap3
Copy the required Drawing Editor project filesinto your work directory:

cp SUIMXDIR/contrib/MotifMain/*
cp SUIMXDIR/contrib/DrawDemo/graphics.c

cp SUIMXDIR/contrib/DrawDemo/* .xpm .

Change the permissions on the project files you copied to make them writ-
able:

chmod a+w *

UIM/X Tutorial Guide 79

3

Creating a Drawing Editor
3 Sep #2: Loading the Start-Up Project

7. Start UIM/X from your new directory:

uimx &

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx directory/bin/uimx &

After abrief pause, a copyright notice window appears, to show that
UIM/X isbeing initialized. When UIM/X is ready, the Project Window
and the Pal ette appear.

8. lconify the terminal window.

Note: To restart the tutorial, begin again from Step 7 above.

Sep #2: Loading the Start-Up Project

To facilitate development of the Drawing Editor, a start-up project has been
provided. It contains the Drawing Editor primary interface with menus
already defined, plus a Message Box and a file selection box. It also
contains some source code in a separate file for creating application window
behavior.

To load the start-up project:

1. Choose File=Open in the Project Window, or click on the Open icon
in the Tool Bar.

2. Selectdraw_start.prj.

80 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Drawing the Scrolled Window and Frame 3

3. Select OK. The Drawing Editor start-up interface appears, as shown in
Figure 3-2.

—i A New Application | - iJ
File Edit View Options Help

Figure 3-2 Drawing Editor Start-Up Project

The Message Box and File Selection Box provided are not visible by
default, though icons for them appear in the Project Window. (To display a
hidden interface double-click on its icon in the Project Window.) These
interfaces are popped up by callbacks provided in the menus. You will test
them later in Section I1: Working with Menus.

Step #3: Laying Out the Working Area

In this step you will create the Drawing Editor’s working area—a Scrolled
Window containing a Frame. Next you will add the Push Buttons for
changing the background color of the scrollable Frame.

Drawing the Scrolled Window and Frame

In this step you will add a Scrolled Window to the Drawing Editor by

dragging and drawing. Then you will drag and drop a Frameinto it, resizing

it to make it larger than the Scrolled Window (making the scroll bars

visible).

1. Makesureyou arein Design Mode. If not, click on the Design icon in
the Project Window.

UIM/X Tutorial Guide 81

Creating a Drawing Editor
3 Sep #3: Laying Out the Working Area

2. Inthe Managers area of the Palette, click on the Scrolled Window icon
with the Select mouse button (the left one), as shown in Figure 3-3.

« Palette: Advanced - Oox

File Edit View Palettes Made

] i | =l

¥ Primitives

¥ Dialogs

=Uuas
Agjwﬂ%

Shells

ODEETE

¥ Gadgets

Eleled] !

Figure 3-3 Selecting a Scrolled Window from the Palette

3. Move the mouse pointer to where you want the upper-left corner of the
Scrolled Window to appear. Use Figure 3-4 as aguide.

4. Pressand hold the Select mouse button, then drag the mouse downwards
and to the right to draw the Scrolled Window. To compl ete the operation,
release the mouse button.

The Scrolled Window appears as shown in Figure 3-4. Note that no scroll
bars are displayed. In order for scroll bars to appear, the Scrolled Window
must contain an object larger than its display area.

82 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Drawing the Scrolled Window and Frame

~i A New Application | - |_||
File Edit View Options Help |

Figure 3-4 Drawing Editor with Scrolled Window added

To add a Frame to the Scrolled Window by dragging and dropping, begin
by pointing to the Frame icon in the Managers area of the Palette.

Press and hold the Adjust mouse button (the middie one).

If you press the Select mouse button by mistake, press Escape to cancel
the operation. Most mouse operations can be cancelled in this way.

The pointer changes to the compass shape, and an outline of the widget
appears. This means the widget is ready for you to drag and drop it.

Drag the outline of the widget onto the main window, and releaseit over
the Scrolled Window.

The Frame appearsin its default size in the upper left corner of the
Scrolled Window, as shown in Figure 3-5.

UIM/X Tutorial Guide 83

Creating a Drawing Editor
3 Sep #3: Laying Out the Working Area

]

—| A New Application | - iJ
File Edit View Options Help

Figure 3-5 Drawing Editor with Frame Added to Scrolled Window

9. Resizethe Frame until it islarger than the Scrolled Window using the
resize grid, as shown in Figure 3-6.

84 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR

Drawing the Scrolled Window and Frame 3
—i A New Application | - i_]
File Edit View Options Help

Figure 3-6 Using the Resize Grid to Resize the Frame

Note that scroll bars appear when you release the mouse, as shown in
Figure 3-7.

—i A New Application | - i_l
File Edit View Options

Help
}

Figure 3-7 Scrolled Window Showing Scroll Bars

UIM/X Tutorial Guide 85

Creating a Drawing Editor
3 Sep #3: Laying Out the Working Area

Note: If you need to move the Scrolled Window, select it by clicking on a
scroll bar, then choose Selected Objects=Other=Move. If you try to move it
using the resize grid alone, you will move the Frame it contains instead.

10. Saveyour work asanew project, DrawingEditor.prj, by selecting
File=>Save Project As.

Addingthe Color-Changing Push Buttons

The Drawing Editor features four Push Buttons used to change the

background color of the drawing area (the Frame in the Scrolled Window).

In this step you will create a Push Button and duplicate it.

1. Inthe Primitives category of the Palette, click on the Push Button icon.

2. Drag and draw the Push Button, aligning it with the left edge of the
Scrolled Window, using Figure 3-8 asamodel.

~i A New Application | - i_]
File Edit View Options Help

}

Figure 3-8 Primary Interface with First Push Button

Don't worry if the Push Button is not large enough to contain its label.
You will remove the label |ater, when changing properties.

3. Duplicate the Push Button by choosing Selected Objects=Duplicate.
4. Create thefinal two Push Buttons (for atotal of four) by duplication.
5. Align and distribute the Push Buttons, using Figure 3-9 as a model.

86 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR

Removing the Push Buttons' Default Labels 3
~i A New Application | - i_l
File Edit View Options Help
AY

N T =

shButtd shButtd shButtd shButtq

Figure 3-9 Primary Interface with All Four Push Buttons Added
6. Saveyour work.

Sep #4: Changing Labels and Other Properties

Now that the drawing area and color-changing Push Buttons are in place on
the interface, you are ready to change their labels and other properties. In
this step you will begin by removing the Push Buttons' default labels. Next,
you will change their background colors using the Color Editor.

Removing the Push Buttons' Default L abels

UIM/X features the ability to edit the properties of several widgets at once.
In this step you will load the Push Buttons into the Property Editor together,
and remove their labels by setting all four Push Buttons' LabelString
properties.

1. Select all four Push Buttons by marquee selection, or by Ctrl-clicking.

Press and hold the Select mouse button then drag the marquee around the
Push Buttons, or hold down the Control key and click on each widget in
turn.

2. Pressthe Menu mouse button, and choose Selected
Objects=Tools= Property Editor.

UIM/X Tutorial Guide 87

Creating a Drawing Editor
3 Sep #4: Changing Labels and Other Properties

3. The Property Editor appears, loaded with the Push Buttons, as shown in
Figure 3-10.

+ Property Editor —0Ox
File Edit View Options

& 9l F &

pushButtonz (pushButton)
pushButton1 (pushButlon} J
pushButton3 (pushButton) .

AddiSearch: I
Find Prev | Find Next | A Load

Core g |

Initial Value

Accelerators I o

Ancestor3ensitive true

=

Background | | sdedads” [
Backgrounid Fizmagp I I o _I
]

I

BorderColor | | #0D0000"

BorderPizmap | | o

Apply

Figure 3-10 Property Editor L oaded with the Push Buttons

4. Inthe Specific category of properties, locatethe LabelString property,
changing it to the empty string ().
Note that the initial value appears to be blank, and a“ not-equals’ icon
appears beside the property. When more than one widget isloaded into the
Property Editor, the “not-equals’ icon indicates that the same property has
adifferent value in at least one of the widgets.

5. Apply the changes by clicking on Apply in the Property Editor.
Theinterface is updated to reflect the changes, as shown in Figure 3-11.

88 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Changing the Push Buttons' Background Colors

~i A New Application | - i_l
File Edit View Options Help
Y
/
N T =
£ -~ §F - 3 FE -~ §E - 1

Figure 3-11 Drawing Editor with Empty Strings on Push Buttons
6. Saveyour work.

Changing the Push Buttons Background Colors

In the final step in laying out the color-changing Push Buttons, you will
change their background colors. To select a color you will use the Color
Viewer, which gives access to your system’s color database. You can
optionally mix a custom color using UIM/X’s Color Editor. The colors you
assign the Push Buttons will be used later, to set the background color of
the drawing area (the Frame in the Scrolled Window).
1. Load the first Push Button into the Property Editor by selecting it
individually and dragging and dropping.
Since you will give each Push Button a different color, you cannot change
them all at once.

2. Inthe Core set of properties, click on the Background property Push
Button to open the Color Viewer.

The Color Viewer appears, as shown in Figure 3-12.

UIM/X Tutorial Guide 89

3

Creating a Drawing Editor
3 Sep #4: Changing Labels and Other Properties

= Color Viewer |- |}
File Edit Help

[] (|
Background

I# fbeefbeefbee

Name Filter

[Aa-Z] X

Color Database

GhostWhite =
WhiteSmoke
FloralWhite
OldLace
AntiqueWhite
/

- OK Apply Filter Cancel

Figure 3-12 Color Viewer
3. Choose abackground color for the Push Button in one of three ways:

» Sdlect acolor from the Palette across the top of the Color Viewer.
» Scroll through the Color Database and select a color by name.
« Typean RGB vaueinto the Background field.

Note: The color selections that you make should contrast with the foreground
color (by default, "black™) so that lines, shapes, and text drawable later in this
tutorial will be visible.

4. Click OK to apply your choice to the Property Editor and close the Color
Viewer, or Apply to apply your choice without closing it.

90 UIM/X Tutorial Guide

5. To create a custom color, open the Color Editor by selecting Edit=Edit

CREATING A DRAWING EDITOR
Changing the Push Buttons' Background Colors

Color from the Color Viewer menu bar.
The Color Editor appears as shown in Figure 3-13.

J.

=] Color Editor B

File Help

Color IE#fbeefbeefbee

Hue / Saturation / Intensity

o | P e | P— v | — e |
|1 1
[|
] 13

Working and Original Color Samples
I Il |

Component Intensities £~ RGB ., CMY

[J] P T |
I | P —— T |
- /|

| OK I Apply| Reset| Cancel|'

Figure 3-13 Color Editor

6. Create acustom color using the diders:

8.

Use the dliders to edit the Hue-Saturation-Intensity (HSI),
Red-Green-Blue (RGB), or Cyan-Magenta-Yellow (CMY) color
balance.

The colors at the end of each slider show the color obtained by
moving the slider all the way to that end.

The working color on the left changes as you mix the new color.
7. Onceyou are satisfied with your color, click OK in the Color Editor. The

color is copied to the Background area of the Color Viewer.

Click OK inthe Color Viewer to apply the color to the Property Editor.

The hexadecimal value for the color is displayed in the Background
property. For colors chosen from the Color Database, the nameis

displayed.

3

UIM/X Tutorial Guide 91

92

Creating a Drawing Editor
Sep #5: Adding Behavior to the Push Buttons

9. Apply your change to the Push Button by clicking Apply in the Property
Editor.

10. Repeat the above steps for the remaining Push Buttons. Select from the
Color Database using the Color Viewer, or compose new colors using the
Color Editor. Don't forget to apply your changes at each step. For thefinal
Push Button, close the Color Editor and Color Viewer by clicking on OK.

11. Saveyour work.

Sep #5: Adding Behavior to the Push Buttons

Now that you have laid out the working area of the interface, changed
captions and background colors, the next step is to add behavior to the Push
Buttons. While UIM/X components contain a great deal of built-in
behavior—clicking on a Push Button changes its graphical representation,
for example—advanced behavior must be added by writing callback code.

Callback code is automatically executed when the user triggers its
corresponding event. A Push Button'sActivateCallback, for example,
is triggered when the user clicks on the Push Button. Other widgets contain
callbacks particular to their special uses.

Since each color-changing Push Button performs the same task using the
same callback code, in this step you will load al four Push Buttons into the
Property Editor at once. You will then use a Ux Convenience Library
function, UxPutBackground, to set the background color of the Frame.

To add behavior to the Push Buttons:

1. Select all four Push Buttons and load them into the Property Editor.

2. Open the Callback Editor by clicking on the Push Button [...] beside
ActivateCallback (inthe Behavior category).

The Callback Editor appears as shown in Figure 3-14.

UIM/X Tutorial Guide

CREATING A DRAWING EDITOR

Changing the Push Buttons' Background Colors 3
=| Callback Editor |- |y
File Help
ActivateCallback
static void
I (Widget UxWidget,

XtPointer UxClientData,
XtPointer UxCallbackArg)

{
swidget UxThisWidget = UxWidgetToSwidget(UxWidget);

~N—_— M

/< No connections on this callback*/

OK | Apply | Cancel

Figure 3-14 Callback Editor

3. Click inthe Callback Editor Text Field, and type the following callback
code:

UxPutBackground (framel, UxGetBackground (UxThisWidg
et));

4. Click on OK on the Callback Editor to update the Property Editor with
your entry.

5. Click on Apply in the Property Editor to save your changes and update all
four Push Buttons at once.

6. Closethe Property Editor by selecting File=Close from the Property Edi-
tor menu.

7. Saveyour work. You are now ready to test this portion of the interface.

Sep #6: Testing the Color-Changing Push Buttons

Before beginning to work with the menus in the next part of this tutorial,
take a moment to switch to Test Mode. Test Mode allows you to see how
your interface will behave at runtime, without the need to compile code or
exit the development environment.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

UIM/X Tutorial Guide 93

Creating a Drawing Editor
3 Section I1: Working with Menus

2. Test the color-changing Push Buttons:
e Clicking on a Push Button changes the color of the Frame.

* Usethescroll barsin the Scrolled Window.

3. When you are through, switch back to Design Mode by clicking on the
Designicon

Section I1: Working with M enus

In UIM/X working with menus is simplified for two main reasons. First,
menu elements contain built-in behavior including automatic sizing and
positioning. You never have to worry about the size of menu labels, or
pull-down behavior, for example. Second, UIM/X features a Menu Editor
that provides a structured means to build your menu bar and add items to
the menus.

In this section you will work with the menu bar already provided with the
start-up project, adding a pulldown menu to it. You will also add a
cascading menu, illustrating how to create an additional level of structured
access to your application’s commands. At runtime choosing an item in the
menu will change the background color of the Frame. You will then test the
menus.

The Sepsin ThisSection

This section takes about 30 minutes to complete. It contains the following
steps:

Step #7: Adding a Pulldown Menu

Step #8: Adding a Cascading Menu

Step #9: Adding Behavior to the Color Menu

Step #10: Testing the Menus

WhereYou AreintheTutorial
Section I: Getting Started and Drawing the Interface
=Section |1: Working with Menus
Section I11: Adding Line-Drawing Functionality
Section 1V: Working with Message Box Dialogs
Section V: Generating the Application Code

94 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Where You Arein the Tutorial

Sep #7: Adding a Pulldown Menu

In this step you will add a new pulldown menu to the menu bar provided,
and populate it with items. At runtime choosing an item from the new Color
menu will change the background color of the Frame.

To Add a Pulldown 1. Select any widget in the menu bar, and open the Menu Editor by
Menu: choosing Selected Objects=Tools=Menu Editor.

The Menu Editor appears as shown in Figure 3-15.

i MenuBar Editor -1
Create Edit Options Help
Menu Name Parent mainWindow

Menu Accelerator | <KeyUp>F10" Help Pane helpPane

Panes Items

’j newButton j
/

editPane openButton
viewPane filePane_b7
optionsPane saveButton

rowColumn _|Use As Help Pane

Name |ifilePane

Label String |i"!‘i1e” Mnemonic ["E"

Accelerator I

Accelerator Text I

Caliback I _I

OK I Apply | Cancel I

Figure 3-15 Menu Editor
2. Add anew pane by choosing Create=Pane from the Menu Editor.

3. Enter the values shown in Table 3-1 for the new pane,
pullDownMenu pé6:

Table 3-1 Property Valuesfor Color Menu Pane

Property Value

Name colorPane
Label String "Coloxr™"
Mnemonic el

4. Add anitem to the new pane by selecting Create=Item After—Push But-
ton.

5. Enter the values shown in Table 3-2 for the new Push Button:

UIM/X Tutorial Guide 95

3

Creating a Drawing Editor
Sep #7: Adding a Pulldown Menu

Table 3-2 Property Valuesfor White Menu ltem

Property Value

Name colorWhite
LabelString "White"
Mnemonic “W”

6. Add asecond Push Button with the values shown in Table 3-3:
Table 3-3 Property Valuesfor Green Menu Item

Property Value

Name colorGreen
LabelString "Green"
Mnemonic "G

7. Add athird Push Button with the values shown in Table 3-4:
Table 3-4 Property Valuesfor Blue Menu ltem

Property Value

Name colorBlue
LabelString "Blue"
Mnemonic "B"

8. Add afourth (and final) Push Button with the values shown in Table 3-5:
Table 3-5 Property Valuesfor Hot Pink Menu Item

Property Value

Name colorHotPink
LabelString "Hot Pink"
Mnemonic np"

9. Click on Apply to apply your changes.

Note the new menu, Color, is added to the menu bar, as shown in Figure
3-16. The mnemonic you specified for the Color menu, “C”, is underlined.

96 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Where You Arein the Tutorial 3

_i A New Application B iJ

File Edit View Options Color Help

=

Figure 3-16 Drawing Editor with Color Menu Added

10. Save your work, leaving the Menu Editor open for the next step, adding a
cascading menu.

Sep #8: Adding a Cascading Menu

Cascading menus are a convenient way to provide choices without taking
up too much room. When the user clicks on a pane designated as a
cascading menu (indicated by a right-arrow), the submenu is presented. As
with other elements of a menu, UIM/X takes care of positioning the
cascading menu, providing the right-arrow graphics, and the cascading
behavior itself.

In this step you will add a cascading menu to the Color menu just created.
The cascading menu will be called Grayscale, and will contain three items:
Light Gray, Medium Gray, and Dark Gray. First you will create the
submenu, then you will add the cascade button and connect it to the
submenu. All work will be performed in the Menu Editor.

UIM/X Tutorial Guide 97

Creating a Drawing Editor
3 Sep #8: Adding a Cascading Menu

To add a cascading menu:

1. Create the new submenu by choosing Create=Pane from the Menu

Editor.

A new pane, pullDownMenu_p7, isadded to the end of the Paneslist.
2. Add an item to the submenu by choosing Create=Item After=Push But-

ton in the Menu Editor.

3. Enter the values shown in Table 3-6 for the new Push Button:
Table 3-6 Property Valuesfor Light Gray Menu |tem

Property Value

Name 1lightGray
LabelString "Light Gray"
Mnemonic "L

4. Add asecond Push Button with the values shown in Table 3-7:
Table 3-7 Property Valuesfor Medium Gray Menu ltem

Property Value

Name mediumGray
LabelString "Medium Gray"
Mnemonic "M

5. Add thethird and final Push Button with the values shown in Table 3-8:
Table 3-8 Property Valuesfor Dark Gray Menu |tem

Property Value

Name darkGray
LabelString "Dark Gray"
Mnemonic "p"

6. To create the Cascading menu, begin by selecting the Color menu by
scrolling through the list of panesin the Menu Editor, and selecting col -

orPane.

The list of items contained in the Color menu appear in the Items area, as

shown in Figure 3-17.

98 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR

Where You Arein the Tutorial 3
—| MenuBar Editor -]
Create Edit Options Help
Menu Name pullDownMenu Parent mainWindow
Menu Accelerator | <KeyUp>F10" Help Pane helpPane
Panes Items
optionsPane ~ [colorWhite
helpPane colorGreen
@MHE!!!!!!!!!!EJ colorBlue
pullDownMenu_p7] colorHotPink
rowColumn _| Use As Help Pane

Name l}color?ane
Label String Ii”Color" Mnemonic II"C"
Accelerator I
Accelerator Text I
Callback I

OK | Apply | Cancel |

Figure 3-17 Menu Editor Showing colorPane’s ltems
7. Intheltemslist, select colorHotPink.

8. Add acascading menu after the Hot Pink item by choosing Create=Item
After=Cascade Button in the Menu Editor.

A new item, colorPane_ bb, isadded to the end of the Itemslist.
9. Enter the values shown in Table 3-9 for the cascading menu:
Table 3-9 Property Valuesfor Cascade M enu Pane

Property Value

Name grayCascade
LabelString "Grayscale"
Mnemonic "g"

Next Pane ullDownMenu p7

The value for Next Pane links the Cascade Button to the pulldown menu
you created earlier.

10. Click on OK to apply your changes and close the Menu Editor.
11. Saveyour work.

UIM/X Tutorial Guide 99

Creating a Drawing Editor
3 Sep #9: Adding Behavior to the Color Menu

Sep #9: Adding Behavior tothe Color Menu

To simplify connecting interface elements together, UIM/X features a
Connection Editor. By loading both the source and target widgets into the
editor, you can view the available callbacks in the source, and the methods
in the target. You can then connect the source’s callback to the target’s
method visually, rather than via callback code.

In this step you will 1oad the Color menu'’s items into the Connection
Editor, connecting their ActivateCallback callbacks to the Frame's
SetBackground method. First you will open the editor and make the
first connection. Next you will load the remaining menu items into the
editor, one by one, and connect them. Since menu items are not visible in
the interface at design time, you will use the Browser to view and select the
items for loading.

Openingthe Connection Editor and MakingtheFir st
Connection

In this step you will load the Color menu’s White item into the Connection

Editor and create a connection to change the Frame's background color.

1. Open the Browser by choosing Selected Objects=Tools=Browser
while over the Main Interface.

Since menus contain many widgets, you might find it convenient to view
the widgets by Name only.

2. Inthe Browser click on the colorWhite menuitem (under color-
Pane), as shown in Figure 3-18.

—| Browser: mainWs |- [
File Create Edit View Tools Help
EEEREEE B
i

¥S [-{mainWindow

—

—

fileCascade = = - J

[orayCascade] fightGray]

[
] =g
N T

Figure 3-18 Browser Showing colorWhite Menu ltem Selected

3. Open the Connection Editor by choosing Selected Objects=Tools=Con-
nection Editor while over the Browser.

100 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Opening the Connection Editor and Making the First Connection 3

The Connection Editor appears loaded with colorWhite itemin the
Source area, as shown in Figure 3-19. Notice colorWhite’s callbacks
are listed in the Callback area of the Connection Editor.

_i Connection Editor B iJ
File Help
Source |colorwhite Target |/
Callback Method
ActivateCallback [T
ArmCallback J
/ /
AN R A

N —

Create Update Deiem| Edit

Figure 3-19 Connection Editor Showing colorWhite’s Callbacks
4. Loadthe Frameinto the Target area of the Connection Editor in one of two
ways:

¢ Click onit with the Adjust mouse button, then drag and drop it
into the Target area of the Connection Editor.

¢ Click onit with the Select mouse button and click on the Load
Target icon (the right-most one) in the Connection Editor.

The instance's default methods are listed in the Method area of the
Connection Editor, as shown in Figure 3-20.

UIM/X Tutorial Guide 101

Creating a Drawing Editor
3 Sep #9: Adding Behavior to the Color Menu

102 UIM/X Tutorial Guide

~i Connection Editor | - iJ
File Help
Source IicolorWhite Target IIfra.mel
Callback Method
ActivateCallback |3 Insensitive &
ArmCallback Manage J

CreateCallback
DestroyCallback

Sensitive
SetBackground

/

AN — ~N— |~
=
]
7
o
Craate Update f,)(%f&té&l Edit

Figure 3-20 Connection Editor Showing £ramel’s Methods

Click on ActivateCallback inlist of callbacks, and on SetBack-
ground inthelist of methods.

The Color parameter appears in the parameters area.
Replace the default value, "black", with the desired value, "white".
Complete the connection by clicking on Create.

If your system’s color database does not contain a definition for “white”,
you will receive an error message. Edit the connection, substituting the
color white's hexadecimal value, "#fafafafafafa", instead. Be sure
to enclose the hexadecimal value in quotation marks.

To see the colors for which strings are defined, use UIM/X’s Color
Viewer.

The new connection appears in the Connection Editor, as shown in Figure
3-21.

CREATING A DRAWING EDITOR
Making the Remaining Connections

~i Connection Editor | - i_]
File Help
Source |colorwhite Target |framel
Callback Method
ActivateCallback] Insensitive A
AmcCallback Manage J
CreateCallback Sensitive
DestroyCallback SetBackground
/
N —— N J—

Color | "whitd!]

Createl U;xiai:e| Deietel Edit
ActivateCallback —--> frame1::SetBackground("white")

|_ |_ 'T\I_IrllT ' ~

Figure 3-21 Connection Editor Showing New Connection
9. Saveyour work.

M aking the Remaining Connections

In this step you will create the remaining Color menu connections, selecting
menu items in the Browser and loading them into the already open
Connection Editor.

1. Select the colorGreen menu item in the Browser.

2. Load it into the Source area of the Connection Editor by clicking on the
Load Sourceicon (theleft one) or choosing File=Load Source in the
Connection Editor.

Note that the Color parameter retains the previous setting, for
convenience.

3. Replace "white" with "green" then complete the connection by
clicking on Create.

Asbefore, if “green” isnot defined on your system, you will have to enter
the hexadecimal value instead (or an equivalent string).

4. Repeat the process for the remaining menu items. Table 3-10 list all the
menu items and the values you should assign the Color parameter. For
convenience the table lists the hexadecimal values as well.

UIM/X Tutorial Guide 103

3

Creating a Drawing Editor
3 Sep #10: Testing the Menus

Table 3-10 Valuesfor Color Parameter for All Menu ltems

Menu I tem Valuefor Color Hexadecimal Value
colorWhite "white" "#fafafafafafa"
colorGreen "green" "#0000E£E£E££0000"
colorBlue "blue" "#51005100fbo0O"
colorHotPink "hot pink" "#ff£f£6969b4b4a"
lightGray "light gray" "#d3d3d3d3d3d3"
mediumGray "gray" "#bebebebebebe"
darkGray "dark slate gray" "#2f2f4F4F4F4EFn

5. When complete close the Connection Editor by choosing File=Close.
6. Saveyour work.

Step #10: Testing the Menus

Before adding the drawing functionality in the next section, take a moment
to test the menus.

1. Switch to Test Mode by clicking on the Test icon in the Project

Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Test the pulldown behavior:

* Todisplay apulldown menu, click on the menu bar.

104 UIM/X Tutorial Guide

Dragging the cursor highlights the menu items.
3. Test the menu you added:

Change the drawing area’s color by choosing an item from the

Color menu.

Choose Color=Grayscale to display the cascading menu.

CREATING A DRAWING EDITOR
Making the Remaining Connections 3

4. Test the functionality provided with the start-up project:

e File=Open and File=Save As pop up the File Selection Box
provided with the project. Selecting afile prints a message to the
Project Window message area.

» FilesExit pops up the Message Box provided. UIM/X traps any
exit command, printing a message instead.

e Selecting an item on the Edit menu prints a corresponding
message to the message area.

Items on the View menu change the background color of the
Main Window, printing a message in the message area.

* The Options menu contains multiply-sel ectable options (the
general options) and mutually exclusive options (the radio
options).

5. Test the keyboard control:

e To open amenu using the keyboard, press Alt and the menu’'s
mnemonic (the underlined letter).

e Usethe arrow keysto move between menus and menu items, or
simply press the next mnemonic.

* To choose amenu item without opening the menu use its
keyboard accelerator. For example, pressing Shift-Del prints
“Ccut !” to the message area.

6. When you are through, switch back to Design Mode by clicking on the
Design icon [ﬁl
You are now ready to add the line-drawing functionality, in the next
section.

Section I11: Adding Line-Drawing Functionality

In UIM/X widgets are provided with a great deal of built-in behavior, and
more complex behavior is easily added via callbacks. To respond to events
such as mouse clicks and mouse motion, a more general technique is
required. For example, dragging the cursor through the working area of a
Text Editor application would most likely select text. In a Drawing Editor
application, you would expect different behavior. This third kind of
response is most often provided by the underlying application, rather than
the interface. In UIM/X this is referred to as application window behavior.

UIM/X Tutorial Guide 105

Creating a Drawing Editor
3 Section 111; Adding Line-Drawing Functionality

Specifying application window behavior is done via trandation tables,
structures that link application window events to application actions. Using
the Translation Table List and its associated editors, you can graphically
specify the mouse and keyboard events to which you want to respond, and
create links to your application libraries.

The advantages of translation tables are two-fold. First, translation tables
are shared by the project as a whole. This makes it easy for two separate
portions of the interface to initiate the same kind of behavior. Second, you
can easily activate and deactivate translation tables, substituting behavior as
required. In this way the same mouse event can trigger different responses,
depending on the state of your application.

In this section you will use translation tables to add line-drawing
functionality to the Drawing Editor. You will begin by drawing the new
Push Buttons. Next you will use the Translation Table Editor to create
different application window behavior for each Push Button, linking mouse
events to the library of graphics commands provided with the start-up
project. You will then use the Push Button's ActivateCallback to
activate the appropriate translation table. Finally, you will test the
line-drawing functionality.

The Sepsin ThisSection

This section takes about 30 minutes to complete. It contains the following
steps:
Step #11: Creating the Line-Drawing Push Buttons
Step #12: Creating the Application Window Behavior
Step #13: Applying the Behavior to the Line-Drawing Push Buttons
Step #14: Testing the Line-Drawing Push Buttons

WhereYou AreintheTutorial
Section |: Getting Started and Drawing the Interface
Section I1: Working with Menus
=Section I11: Adding Line-Drawing Functionality
Section 1V: Working with Message Box Dialogs
Section V: Generating the Application Code

106 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Where You Arein the Tutorial 3

Step #11: Creating the Line-Drawing Push Buttons

In this step you will draw the Push Buttons, and use the Icon Viewer to
preview and load bitmaps into each one.

To add the line-drawing Push Buttons:

1. Drag and drop a Push Button from the Primitives area of the Palette to
your main window interface.

Position it to the left of the Scrolled Window, as shown in Figure 3-22.

~i A New Application B iJ
File Edit View Options Color Help
pushButton5{ F

Figure 3-22 Drawing Editor with First Line-Drawing Push Button Added

2. Create three more Push Buttons by dragging and drawing, dragging and
dropping, or duplication.
Pasition the new Push Buttons under the first one. Don’'t worry if they are
not all the same size. They will resize automatically when you add their
pixmaps.

3. To add a pixmap to the first Push Button, pushBut ton5, begin by load-
ing it into the Property Editor.
Doubleclick onit, or select it (by clicking once) and choose Selected
Objects=Tools= Property Editor.

4. Locatethe LabelType property in the Specific category, changing it
from string to pixmap.

5. Locatethe LabelPixmap property in the Specific category and open the
Icon Viewer by clicking on the Label Pixmap button.

UIM/X Tutorial Guide 107

Creating a Drawing Editor
3 Sep #11: Creating the Line-Drawing Push Buttons

108 UIM/X Tutorial Guide

The Icon Viewer appears, as shown in Figure 3-23.

—| Icon Viewer | - | |
File Help
Directory
I /bean/usr/leif/tutorials/chap3/
Filter Files
I % draw.prj =

]] draw_start.op
Directories draw_start.prj
o draw_textbm
uxbackdraw draw_textxpm
uxbackdraw_start drawExitD.c.cc
uxbackDrawingEdi drawExitD.i]

——— 7 - F————71 -
labelPixmap

[

Icon

| No Icon Yet |

| OK | Preview Filter Cancell

I

Figure 2-23 Icon Viewer

Find the line pixmap, 1ine

e Tolist only the bitmapsin your current directory, enter * . xpmin

. Xpm:

the Filter area, then click on the Filter button.

* To preview abitmap, highlight the file name. It will appear

automatically in the Pixmap area of the Icon Viewer.

Load the lineicon into the Property Editor by clicking OK in the Icon

Viewer.

Click on Apply in the Property Editor.

CREATING A DRAWING EDITOR
Where You Arein the Tutorial 3

9. Thelineicon isloaded into the Push Button, which resizes to fit it. Your
application should now look similar to Figure 3-24.

ﬁi A New Application B i_l

File Edit View Options Color Help

/| j

pushButtonG'

pushButtonTI

pushButton8| =y T

— | e |

Figure 3-24 Line-Drawing Push Button, pushBut ton5, with Pixmap Added

10. Repeat the process, adding pixmaps to the remaining three Push Buttons.
Table 3-11 lists all the Push Buttons and the pixmaps they should contain:

Table 3-11 List of Pixmapsfor the Push Buttons

Widget Name Pixmap
ushButton5 line.xpm
ushButtoné circle.xpm

pushButton? rectangle.xpm
ushButton8 ellipse.xpm

11. When you are done, close the Property Editor by choosing File=Close.

UIM/X Tutorial Guide 109

Creating a Drawing Editor
3 Sep #12: Creating the Application Window Behavior

12. Align and arrange the line-drawing Push Buttons. When compl ete, the
interface should ook as shown in Figure 3-25.

~i A New Application | - i_|
File Edit View Options Color Help

KY

0B le

— | s |

Figure 3-25 Drawing Editor with Pixmaps Added
13. Saveyour work.

Sep #12: Creating the Application Window Behavior

UIM/X provides two editors to facilitate the specification of application
window behavior: the Translation Table Editor and the Event Editor. It also
provides a structured access to the translation tables in your project, via the
Translation Table List.

The Trandlation Table List lets you pair user-generated events with
application generated actions. You can also set the table policy to override,
augment, or replace the current application window behavior.

While you can enter any X Toolkit event into the Translation Table Editor,
you can also specify events graphically via the Event Editor. By simply
pointing and clicking, you can define events for most mouse activity, as
well as keyboard events.

In this step you begin by opening the editors associated with translation
tables. Next you will initialize the interpreter with the graphics library
provided with the start-up project. You will then create a translation table
for each line-drawing Push Button.

110 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Opening the Editors

3

OpeningtheEditors

In this step you will open the editors.

1. To begin, open the list of translation tables for the interface by
choosing Selected Objects=Tools=Translation Table List.

The Trandation Table List appears, as shown in Figure 3-26.
-]
Help

Translation Table List: mainW$s

Edit

Figure 3-26 Trandation Table List

2. Click <Select> the mainWS interface from the “Interfaces” area of the
UIM/X Project window.
3. Addatranglation tableto the project and open the Tranglation Table Editor

by choosing Edit=Add in the Translation Table List.
The Trandlation Table Editor appears, as shown in Figure 3-27.

= T Table Editor: mainWs B
Edit Help
Table Name: Itrans'l‘ablel |
Table Policy: \ Override v Aug v R

Event String Actions
~T =
|A T]
oK [Apply | Cancel |

Figure 3-27 Trandlation Table Editor

4. Next, open the Event Editor by choosing Edit=Event Editor in the Trans-

lation Table Editor.

UIM/X Tutorial Guide 111

3 Creating a Drawing Editor

Sep #12: Creating the Application Window Behavior

The Event Editor appears, as shown in Figure 3-28.

Event Editor

Translation table: transTable1

Mouse Events

Modifiers

Key Events

v None

l vKey: [

_|Button1 _{Button2 _|Button

(Btn1 IV Btn2 . Btn3
wUp ~Down -+ Motior
_| Clicks:

Window Events

_| Shift _JCtrl _I| Meta

l v Enter v Leave

Event string: |

oK |

Apply |

Cancel

Figure 3-28 Event Editor
5. Position the three dialogs so you can work with them conveniently.

Initializing thelnterpreter with the Action Code

Before specifying the actions that will occur in response to mouse events,

you must initialize the interpreter with the action code. That way, when you

specify responses in the translation table, UIM/X will accept the function

calls without error.

1. Choose Tools=Interpreter in the Project Window. The interpreter
appears, as shown in Figure 3-29.

—| C++ Interpreter : General E i O
File Edit Interpret Module Help
EEEE E =
i Y

= T
iy
S

Figure 3-29 Interpreter
2. Choose File=L oad Source Code in the interpreter.

Loading source code into the interpreter makes the code module's
functions available to the development environment. It is similar to
compiling code for run-time execution.

112 UIM/X Tutorial Guide

6.

CREATING A DRAWING EDITOR
Defining a Translation Table for the Line-Drawing Push Buttons

In the file selection box that appears, select graphics. ¢ and click OK.
The following message appears in the Messages Area of the Interpreter:

Result: OK
Initialize the graphics code by typing the following line;
UxInitGraphics () ;

UxInitGraphics isdefinedingraphics.c. Itinitiadizesthe
graphics code and registers the actions you will use later.

To execute the function, double-click to highlight it and choose Inter-
pret=Evaluate in the Interpreter, or click on the Evaluate icon.

The Messages Area now shows:;
Result: 0
Choose File=Close in the Interpreter.

Defininga Translation Tablefor theLine-Drawing Push
Buttons

In this step you will define three events to match mouse clicks and motion
in the application window. Using the Event Editor you will graphically
define events, copying them to the translation table editor. Since the
translation tables for the line, circle, rectangle, and ellipse Push Buttons are
almost the same, you will then duplicate the translation table for the other
Push Buttons.

1.

In the Translation Table Editor, replace the default table name,
transTablel, with Line, and set the Table Policy to replace.

In the Event Editor, click on the Btn1 and Down radio buttons in the
Mouse Events area.

<BtnlDown> appearsin the Event String area, as shown in Figure 3-30.

—| Event Editor []

Translation table: Line

Mouse Events Modifiers Key Events
A Btnt B2 B3 None ‘ wKey [
v Up |/\ Down |v Motion || _| Button1 _[Button2 _|Button3 Window Events
_clicks: [_Ishift _ctrl _IMeta [Enter Leave
Event string: | <BtnlDown>
OK | Apply | Cancel

Figure 3-30 Event Editor Showing <BtnlDown> Event

3. Copy the event to the Trand ation Table Editor by clicking on Apply.

UIM/X Tutorial Guide 113

3

Creating a Drawing Editor
3 Sep #12: Creating the Application Window Behavior

The <BtnlDown> event appearsin the Translation Table Editor, as
shown in Figure 3-31.

~i Translation Table Editor: mainWs B i_]
Edit Help

Table Name: |Line

Table Policy: , override v augment N replace
Event String Actions
| N |?<Btn1Dovm> J | _|

OK | Apply I Cancel |

Figure 3-31 Trandlation Table Editor Showing <BtnlDown> Event
4. IntheActions area, add the following action:

first_point
Thefirst point functionisdefined inthegraphics.c file
loadedearlier.

5. Apply the change by clicking on Apply in the Translation Table Editor.
UIM/X automatically adds any missing parentheses to the function call.

6. Add anew event-action pair by choosing Edit=Add in the Translation
Table Editor.

An empty pair is added.

7. Repeat the process, creating new event strings in the Event Editor, copy-
ing them to the Tranglation Table Editor, and adding the appropriate
actions. Table 3-12 lists all the event-action pairs required by the Line
trandation table.

Table 3-12 Event-Action Pairsfor Line Trandation Table

Events Actions
<BtnlDowns> first point
<BtnlMotion> draw_line
<BtnlUp> last point

114 UIM/X Tutorial Guide

8.

CREATING A DRAWING EDITOR
Creating Translation Tables for the Other Push Buttons

When complete the Translation Table Editor should appear as shown in
Figure 3-32.

~i Translation Table Editor: mainWs | - iJ
Edit Help
Table Name: |Line
Table Policy: , override v augment \ replace
Event String Actions

<& |;<Btn1nown> J |§first _point ()

J Iidraw_line() J
J |11ast _point () J
Apply |

Figure 3-32 Trand ation Table Editor Showing All Events Needed
Click on OK to apply your changes and close the Trandlation Table Editor.

v I<Btn1Motion>§

A | <Btniup>

OK | Cancel |

Creating Trandation Tablesfor the Other Push Buttons

In this step you will duplicate the translation table just created for each of
the remaining Push Buttons. You will change the action for the
<BtnlMotions> eventto amore appropriate function call.

1.

To duplicate the translation table, begin by selecting the line translation
table by clicking on it in the Translation Table List.

Choose Edit=Duplicate in the Translation Table List.

A new trandlation table is created, t ransTablel, and itsicon is added
to thelist.

Double-click on the new icon to open its Tranglation Table Editor.
Replace the existing Table Name t ransTablel with Circle.

Since the circle Push Button should draw acircle and not aline, replace
the <BtnlMotions action, draw_1ine, with amore appropriate
action, draw_circle.

Apply your changes and close the editor by clicking on OK in the Tranda-
tion Table Editor.

Repeat the process, creating two more translation tables, for the rectan-
gle-drawing and ellipse-drawing Push Buttons respectively.

Table 3-13 lists the trandlation tables for all four Push Buttons, with the
appropriate actions for the <BtniMot ion> events:

UIM/X Tutorial Guide 115

3

Creating a Drawing Editor
3 Sep #13: Applying the Behavior to the Line-Drawing Push Buttons

Table 3-13 <BtnlMotion> Actionsfor the Four Trandation Tables

Push Button Name Translation Table <BtnlMotion> Action
pushButton5 Line draw line
pushButtoné Circle draw _circle
pushButton7 Rectangle draw_rectangle
ushButton8 Ellipse draw ellipse
After your entries, the Trandation Table List should now look as shown in
Figure 3-33.
—i Translation Table List: mainWs | - iJ
Edit Help

o o 2 o
T o il P
o o o o
Line Circle Rectangle m

Figure 3-33 Tranglation Table List with All Four Icons
8. Click on OK to closethe Translation Table List.
9. Saveyour work.

Sep #13: Applying the Behavior to the Line-Drawing
Push Buttons

With the translation tables created, it now remains to apply each one to the
Frame in the Scrolled Window at the appropriate moment. In UIM/X you
can attach a translation table to an object at design time using the
Translations property, or dynamically at runtime using
UxPutTranslations.

In this step you will add behavior to each of the Push Buttons to apply its
translation table to the Frame inside the scrolled window.

1. Double-click on the line-drawing Push Button, pushBut ton5 to open
the Property Editor.

116 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Creating Translation Tables for the Other Push Buttons

In the Behavior category, locate the Act ivateCallbackevent, and
type the following callback code into it:
UxPutTranslations (framel, Line) ;

Apply the change by clicking on Apply in the Property Editor.

Repeat the process for each of the remaining Push Buttons, substituting
the appropriate translation tables.

Table 3-14 liststhe Act ivateCallback code for all four Push
Buttons:

Table 3-14 ActivateCallback Codefor the Four Push Buttons

Push Button TrandationTable RActivateCallback Codes
Name

pushButton5 [Line

UxPutTranslations (framel,

Line) ;
. UxPutTranslations (framel,
pushButtoné [|Circle , (
Circle) ;
UxPutTranslations (framel,
pushButton7 [Rectangle
Rectangle) ;

ushButton8 [Ellipse Ellipse) ;

UxPutTranslations (framel,

2.

3.

Close the Property Editor by selecting File=Close from the Property Edi-
tor menu.

Save your work. You are now ready to test this portion of the interface.

Sep #14: Testing the Line-Drawing Push Buttons

Before continuing with the tutorial, take a moment to test the work you
have done in this section.

1.

Switch to Test Mode by clicking on the Test icon in the Project
Window

The Palette and any other open editors disappear. The UIM/X main
window and your interface remain.

Test the line-drawing functions:

« Draw aling, circle, rectangle, or ellipse by clicking on the
appropriate Push Button, then dragging and drawing in the
Scrolled Window.

e Ifitisdifficult to see the drawn object, change the background
color of the frame to increase the contrast.

UIM/X Tutorial Guide 117

3

Creating a Drawing Editor
3 Section 1V: Working with Message Box Dialogs

3. When you are through, switch back to Design Mode by clicking on the
Designicon

Section 1V: Working with M essage Box Dialogs

UIM/X features a number of dialog widgets designed to convey information
to users, and simplifies working with dialogs in several ways. By using an
instance of a dialog in your calling interface, for example, you protect it
from unwanted changes. In addition, you can create property accessor
methods to greatly simplify reading or writing a custom message to the
dialog. Finally, the instance and accessor method combination simplify
popping up the interface.

Some dialog widgets are well-suited to displaying simple messages, others
to asking a question and obtaining a yes or no answer. Still others contain
graphics conveying the degree of urgency of the message. In UIM/X all
dialogs share a convenience of use, and the ease with you can display
custom messages dynamically.

Placing an instance of the dialog in the interface where you will call it
protects the dialog from modification. As with other widgets, creating an
instance of it renders most of its properties unavailable in the instance. This
isideal for distributing a modified dialog throughout your design team, or
simply for maintaining a consistent look when the dialog is used in different
interfaces. Changes to the origina dialog are of course possible, and are
automatically reflected in all the instances.

To make the message area—or any property—available for reading or
writing in the instance you create property accessor methods for the original
dialog. Property accessor methods are pairs of methods following a specific
naming convention: ObjectName get MethodName and
ObjectName set MethodName. You provide the method names, while
UIM/X provides the prefixes. In the body of the method, you “expose” the
property using the UxGet Property and UxSetProperty functions.

When UIM/X identifies a pair of get and set accessor methods in an
instance, it presents a MethodName property in the Property Editor. Setting
the new property cals the underlying method for the instance. Since the
new property behaves like any other, you can provide it with a default value
using the Property Editor, or set it at run time in callback code. You can
also make a connection to it using the Connection Editor.

118 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
The Sepsin This Section

There is afinal advantage to using instances and property accessor methods
for dialogs. The property accessor methods and the properties they make
available become local to the calling interface. Therefore, there is no need
to declare global variables for the dialog, or the interface from which it is
called.

In this section you will add a Message Box dialog to the Drawing Editor
interface. To facilitate displaying a message, you will create an interface
method for the dialog, and add an instance of the dialog to the main
interface. Next you will use the Connection Editor to pop up the dialog
from the Push Button, and write the contents of the Text Field to the
message area. As in the other sections, you will end by testing the dialog
functionality.

The Sepsin ThisSection

This section takes about 20 minutes to complete. It contains the following
steps:
Step #15: Adding the Widgets
Step #16: Creating Property Accessor Methods for the M essage Box
Step #17: Adding Behavior to the Popup Push Button
Step #18: Testing the Message Box and Text Box

WhereYou AreintheTutorial
Section |: Getting Started and Drawing the Interface
Section I1: Working with Menus
Section I11: Adding Line-Drawing Functionality
=Section IV: Working with Message Box Diaogs
Section V: Generating the Application Code

UIM/X Tutorial Guide 119

3

Creating a Drawing Editor
3 Sep #15:; Adding the Widgets

Step #15: Adding the Widgets

In this step you will add the widgets associated with the dialog: a Push

Button, Text Field, and the Message Box dialog itself. At run time clicking

on the Push Button will pop up the Message Box. Any text you have typed

in the Text Field will appear as its message.

1. Add a Push Button to the lower-left area of the Drawing Editor, as
shown in Figure 3-34.

—| A New Application | - i_l
File Edit View Options Color Help
P K
/
/
O i T
— | e |
| FpushButton9y

Figure 3-34 Drawing Editor with Push Button Added

2. Load the Push Button into the Property Editor, and changeits Label -
String property (in the Specific category) from "pushButton9" to
"Popup...".

3. Apply your changes.

120 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Where You Arein the Tutorial 3

4. Next, add a Text Field to the interface, placing it beside the Push Button,
as shown in Figure 3-35.

~i A New Application | - iJ
File Edit View Options Color Help
) Y
TN
.
/
O " i
— | e |
| Popup... H i ﬂ |

Figure 3-35 Drawing Editor with Text Field Added

5. Finaly, add a Message Box dialog by clicking on it in the Dialogs area of
the Palette and dragging and drawing outside the Drawing Editor inter-
face.

6. Load the Message Box into the Property Editor, and change itsDialog-
Title property (in the Specific category) to "Popup Message".

7. Apply your changes.

8. Saveyour work.

UIM/X Tutorial Guide 121

3

Creating a Drawing Editor
Sep #16: Creating Property Accessor Methods for the Message Box

Sep #16: Creating Property Accessor Methodsfor the
M essage Box

In this step you will use the Method Editor to create a pair of get and set
accessor methods for the Message Box. These methods will operate on the
Message Box's MessageString property. You will also add an instance
of the Message Box to the Drawing Editor interface, making the methods
easily available to callbacks in the Drawing Editor.

To create property accessor methods for the message box:

1.

122 UIM/X Tutorial Guide

Select the Message Box dialog, then open the Method Editor for the
interface by choosing Selected Objects= Tools=Method Editor.

The Method Editor appears, as shown in Figure 3-36.

— Interface Methods: applWindow1 | - iJ
File Edit View Options Help
selal g Method —| Corba20 —| Public —| vVitual —|

Interface Methods . _Definition
Return Type Name
Ii applWindow1 ”
<applWindow1> UxThis;
i B -
7
~ T
CORBA::Environment *pEnv;
4
—Code
{
i ‘ =
7
(=) T
}
g 7 Create Method | Change Metho(ﬂ Revert Method |
Figure 3-36 Method Editor for the Message Box Dialog,

messageBoxDialogl
Change the method type from Method to Get Property.

Notice the method prototype changes to reflect the required naming
convention. For example, the method name prefix changes from
messageBoxDialogl tomessageBoxDialogl get.

CREATING A DRAWING EDITOR
Where You Arein the Tutorial 3

4. Edit aget method for the interface by entering the values shown in Table
3-15.
Table 3-15 Get M ethod Definition

In ThisArea Type the Following Code

Return Type char *

Name MsgStrng

Arguments none.

Code return UxGetMessageString (UxThis) ;

5. Create the new method by clicking on Create Method.

The get method appearsin the Interface Methods area, as shown in
Figure 3-37.

[=] Interface messageBoxDialog1 [
File Edit View Options Help
geg g Get Property — | Corba20 — |
Interface Methods _Definiti
KY
get MsgStmg Return Type Name
z 1
char * BoxDialoal aet [}
<messageBoxDialog1> UxThis;
7
T

=
CORBA::Environment *pEnv;

Code

{

return UxGetMessageString(UxThis);

—n

5 T

- Create Method| Change Method Revert Method |

Figure 3-37 Method Editor Showing New Method

6. Similarly, create aset method by changing tothe Set Property
method type.

Notice the method prototype changes once again. For convenience, the
Method Editor retains much of the code you entered for the get method. A
variable called value isautomatically declared for the set method.

7. Edit aset method for the interface by entering the values shown in Table
3-16.

UIM/X Tutorial Guide 123

Creating a Drawing Editor
3 Sep #17: Adding Behavior to the Popup Push Button

Table 3-16 Set M ethod Definition

In ThisArea [Typethe Following Code

Return Type void
Name MsgStrng
char *value;
Arguments (Be sureto changeint to char *,)
Code UxPutMessageString (UxThis, value) ;
8. Create the new method by clicking on Create Method.The set method is

10.

11

12.

added to the Interface Methods area.
Close the Method Editor by selecting File=Close.

To add an instance of the Message Box to the Drawing Editor interface,
begin by selecting the Message Box and choosing Selected
Objects=Instance.

Point to the Drawing Editor interface then click the Adjust mouse button.

This adds a default-sized instance of the Message Box to the interface.
Whileinstances of dialogs are visible in the Browser, they are not visible
in the interface itself.

Save your work.

Step #17: Adding Behavior to the Popup Push Button

In this step you will use the Connection Editor to add behavior to the Popup
Push Button. First you will use the Connection Editor to attach the Push
Button's ActivateCallback event—the event that takes place when it
is clicked—to the method you created for the Message Box. You will use
the method to copy text from the Text Field to the Message Box’s Message
String. Similarly, you will connect the ActivateCallback event to the
UxManage () method.

1.
2.

124 UIM/X Tutorial Guide

Select the Popup... Push Button just added to the interface.

Open the Connections Editor by selecting Selected Objects— Tools=Con-
nection Editor.

The Connection Editor appears |oaded with pushButton9, asshown in
Figure 3-38.

CREATING A DRAWING EDITOR

Where You Arein the Tutorial 3
—i Connection Editor | - iJ
File Help

Source |pushButtong |Target |;

Callback Method

ActivateCallb: [
ArmCallback
/

A R

Crazte Update Be¥e£e| Edit

. |_ |_ Lr\I_FlLI- I |

Figure 3-38 Connection Editor
Open the Browser by selecting Selected Objects= Tools=Browser.

Since the instance of the Message Box is not visible, you must select it
using the Browser.

In the Browser, locate the instance of the Message Box,
messageBoxDialoglInstancel, andload it into the Target area of
the Connection Editor by dragging and dropping.

The set MsgStrngand get MsgStrng methodsyou created are
displayed in the Method area of the Connection Editor, along with the
instance’s default methods, as shown in Figure 3-39.

UIM/X Tutorial Guide 125

Creating a Drawing Editor
3 Sep #17: Adding Behavior to the Popup Push Button

126 UIM/X Tutorial Guide

— Connection Editor | |
File Help |
Source Ipushsuttong Target :‘ Dialogll 1
Callback Method
ActivateCallback Manage ~
ArmCallback Unmanage
CreateCallback _get_MsgStrng
DestroyCallback _get_height
DisarmCallback _get_width
HelpCallback _get x
_gety
_set_MsgStrng
vi _set_height .
N— I N I,
o
’ ﬁ
7
-+
Create Update Delete Edit| J

Figure 3-39 Connection Editor Showing Instance's Method

Click onActivateCallback inlist of callbacks, and on
_set MsgStrng inthelist of methods.

The list of arguments appearsin the arguments area.
Type the following in the value property:
UxGetText (textFieldl)

Compl ete the connection by clicking on Create.

The new connection appears, as shown in Figure 3-40.

— Connection Editor [-11
File Help |
Source Ipushsuttong Target | wDialoglI: 1
Callback Method
[ActivateCallback A Manage S
ArmCallback Unmanage
CreateCallback _get_MsgStrng
DestroyCallback _get_height
DisarmCallback _get_width
HelpCallback _get_x
_gety
7 ’
—————— - R T
e
Y
value IUxGetText(textFieldl)] = J
pEnv I_&mnv [a]]]
e
| Crealel Updatel Delete Edit|
ActivateCallback ---> messageBoxDialog1instance1::_set_MsgStrng(UxGetText(textFi _]
=) T =

Figure 3-40 Connection Editor Showing New Connection

CREATING A DRAWING EDITOR
The Sepsin This Section 3

9. Next, create the connection to pop up the Message Box Dialog by select-
ing ActivateCallback inthe Source Callback list, and on Manage
in the Target Method list.

10. Complete the connection by clicking on Create. The new connection is
added to thelist.

11. Close the Connection Editor and the Browser.
12. Saveyour work.

Sep #18: Testing the Message Box and Text Box

Before generating code for the entire project in the next step, switch to Test
Mode to verify the behavior of the portions just added.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

2. Test the Message Box functions:
» Pop up the Message Box by clicking on the Popup... button.
e Click on OK to pop down the Message Box.
* Any message you type in the Text Field appears in the Message
Box when it pops up.

3. Whenyou are through, switch back to Design Mode by clicking on the
Designicon.

Section V: Generating the Application Code

The final step in the Drawing Editor is to generate the application code for
the project. Before you can generate the code, you must edit main program
to initialize the Drawing Editor draw functions included with the start-up
project. You must also edit the Makefile template, to include the object file
for the graphics code.

The Sepsin ThisSection

This section take about 15 minutes to complete. It contains the following
steps:

Step #19: Customizing the Main Program and Makefile

Step #20: Generating the Code and Running the Executable

UIM/X Tutorial Guide 127

Creating a Drawing Editor
3 Sep #19: Customizing the Main Program and Makefile

WhereYou AreintheTutorial
Section I: Getting Started and Drawing the Interface
Section I1: Working with Menus
Section I11: Adding Line-Drawing Functionality
Section 1V: Working with Message Box Dialogs
=Section V: Generating the Application Code

Sep #19: Customizing the Main Program and M akefile

In this step you will modify the main program to initialize the graphics code
in graphics. c, the file containing the code for the line-drawing Push
Button. You will also edit the makefile template for the project, so that
running make generates the object file for the code.

EditingtheMain Program

In this step you add initialization code to the main program file.

1. Open the Program Layout Editor by choosing Tools=Program Layout
from the Project Window.

The Program Layout Editor appears, as shown in Figure 3-41.

_i Program Layout Editor B iJ
File Options Help

Application Class: I:DrawingEditor

Startup Interface: I drawExitD

Ux Main Program:

7 4

* $sSource: /res/res2/config/main.tem.md,v $

Ux Explicit Loop:

i |
Ux Makefile:
|:####################################M###########H#####H J

$source: /rcs/res2/config/make.tem.md,v

OK I Apply | Cancel |

Figure 3-41 Program Layout Editor

2. Open aText Editor on the main program by clicking on the button next to
the Ux Main Program area.

128 UIM/X Tutorial Guide

CREATING A DRAWING EDITOR
Editing the Makefile Template

The Text Editor appears as shown in Figure 3-42.

—| Text Editor []
File Help
Ux Main Program
Iz B
x $Source: /res/res2/config/main.tem.md,v §
* $Date: 1996/07/17 20:29:51 § $Revision: 2.6 §

Copyright 1991, Visual Edge Software Ltd.

x
* ALL RIGHTS RESERVED. Permission to use, copy, modify, and

* distribute this software and its ion for any purp

* and without fee is hereby granted, provided that the above

* copyright notice appear in all copies and that both that |

N T =

OK I Apply | Cancel |

Figure 3-42 Main Program Text Editor
L ocate the section for global declarations:;

Just after it, add a declaration for UxInitGraphics:

extern int UxInitGraphics() ;
Next, locate the section for initialization code:

/* ___
* Insert initialization code for your application
here-----c-mmm - * /

Add thefollowing call to UxInitGraphics:

UxInitGraphics () ;

Click on OK in the Text Editor to complete the change. The Text Editor
disappears from view.

EditingtheM akefile Template

When generating code, UIM/X uses a makefile template, replacing variables
in the template with the names of elements in your project. Since UIM/X
cannot know about the code file graphics.c used by your project, you
must edit the makefile and add names of object files you want produced.

In this step you will edit the makefile template for your project, adding the
name of the object file, graphics.o

UIM/X Tutorial Guide 129

3

Creating a Drawing Editor
3 Sep #20: Generating the Code and Running the Executable

1.

Click on the Text Editor button [...] next to the Ux Makefile field. The
Text Editor appears, as shown in Figure 3-43.

—| Text Editor -]
File Help

Ux Makefile

$Source: /rcs/rcs2/config/make.tem.md,v $
$Date: 1996/09/09 17:42:48 § $Revision: 2.84 §
#
#

Copyright 1991, Visual Edge Software Ltd.

ALL RIGHTS RESERVED. Permission to use, copy, modify, and
distribute this and its ion for any purpose
and without fee is hereby granted, provided that the above
copyright notice appear in all copies and that both that

7

R T >4

OK I Apply | Cancel |

Figure 3-43 Makefile Text Editor
Locate thelinethat beginsAPPL_OBJS and, placing the cursor at the end,
add the following:
APPL _OBJS = ... graphics.o

For clarity, the part you typeisindicated in bold. The three dotsindicate
you should leave the rest of the text asis. Do not type the three dots.

Close the Text Editor by clicking OK.
Save your changes and close the Program Layout Editor by clicking OK.
Save your work.

Sep #20: Generating the Code and Running the
Executable

The final step in creating your project is to generate code for the Drawing
Editor.

1.

130 UIM/X Tutorial Guide

Check that you are in Design Mode.

2.

© © N o

CREATING A DRAWING EDITOR
Editing the Makefile Template

Choose Options=Code Generation in the Project Window. The Code
Generation Options window appears, as shown in Figure 3-44.

~i Code Generation | - i_|
—Language—— ~Options Defaults
v K&RC ™ Include File
v ANSIC [~ Context Support
N C++ _| Message Catalog
_|UIL Code Source file suffix ’F
Header file suffix ,h—

[~ Use Ux Convenience Library

_| Use Ux Convenience Library C++ bindings

£ | OK I Apply | Cancel|

Figure 3-44 Code Generation Options
Check that the language selected isANSI C.

If you wish to generate C++ code, copy or rename graphics.c to
graphics.ccinaterminal window.

Save your changes and close the dialog by clicking on OK.
Click on the Run icon in the Project Window's icon bar.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

Test your program. Verify that it works asit did in Test Mode.
To stop the program choose File=Exit.

Switch back to Design mode by clicking on the Design icon
Save the changes to your program.

Now when you modify the Drawing Editor, you can simply click on the
Run Mode toggle to generate the code, compileit, and run the executable
in one step.

UIM/X Tutorial Guide 131

Creating a Drawing Editor
3 Sep #20: Generating the Code and Running the Executable

Whereto GoFrom Here...

Congratulations on having completed the Drawing Editor tutorial! If you
wish to continue to develop the Drawing Editor, additional functionality can
easily be added. The start-up project contains action routines not yet used in
your project. Table 3-17 lists the functionality you can add, along with the
icons and action routines required.

Table 3-17 Additional Functionality You Can Add

Functionality Icon Action Routine
Drawing Freehand freehand.xpm freehand
Writing Text draw text.xpm draw text

For other ideas, two project files have been included. The
draw_final.prj project file contains the completed Drawing Editor.
Thedraw full.prj project file contains a Drawing Editor tutorial with
the additional freehand and text functionality.

132 UIM/X Tutorial Guide

Building a GUI for a
Command-Line
Application

Overview

Building a GUI for a command-line application is a three-step process. First
you lay out the interface. Next you add subprocess control code to the
interface using the Declaration Editor. Finally, you add callback behavior to
execute the subprocess on the appropriate user action.

The UIM/X Convenience Library features a number of functions especially
designed for subprocess control. UxCreateSubproc (), for example,
creates the subprocess, returning a handle to it. You can then run the
subprocess by calling UxExecSubproc().

More often than not, command line applications permit (or require) that you
specify options at the command line. UIM/X provides a number of ways to
present and submit any arguments that might be expected. Options menus
are convenient for presenting mutually exclusive options, with only the
currently active option visible. Toggle Buttons can be used to display all
available options, and can be mutually exclusive or permit multiple
selection. The simplest way to build the command is to append the selected
options to a string defined globally for the interface.

UIM/X Tutorial Guide 133

Building a GUI for a Command-Line Application
4 The GUI You Will Build

The GUI You Will Build

This chapter demonstrates how to use UIM/X in Standard Mode to create an
interface for a command-line application, illustrating subprocess control.
The Command Line interface, shown in Figure 4-1, executes the UNIX 1s
command as a subprocess to list the contents of directories. You select
arguments for the command graphically, using Toggle Buttons and an
Option menu.

The interface consists of the following elements:
* TextField: A Text Field where the user can enter the directory to be listed.

« Toggle Buttons: Mutually exclusive Toggle Buttons for selecting thefile
attributes listed.

e Option Menu: An Option menu for listing files alphabeticaly, reverse
alphabetically, by latest date, or earliest date.

e Scrolled Text: A scrollable window showing the results of the 1s
subprocess.

e OK Push Button: The Push Button that spawns the subprocess.

—| bulletinBoard1 | -]
Directory 2 . 61265 d [
2 .. 80260 i
97321 4lib 14784 k
/uszq 41 Sbin 2112 k
33795 TT_DB 27456 1
42 adm 90907 1
8448 bin 31
Attributes 10560 ccs 108 1
11 dict 4 n
112 dt 39 n
_| owner i
_lgroup
[~ inode
| A -
ORDER alphabetical — | | oK I

Figure 4-1 The Completed Command Line Project

134 UIM/X Tutorial Guide

BUILDING A GUI FOR A COMMAND-LINE APPLICATION

The Sepsin This Tutorial

This tutorial takes about 45 minutes to complete. It contains the following

steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Laying Out the Interface

Step #3: Changing Labels and Other Properties

Step #4: Adding Declarations and Final Code

Step #5: Adding Behavior to the Interface

Step #6: Testing the Program

Step #7: Generating the Code and Running the Executable

Sep #1: Sarting UIM/X in Sandard Mode

Before you begin this tutorial, set up a new directory as follows:

1.
2.
3.

6.

Start the X Window System.
Bring up aterminal window.
Make a directory to store the files you will create in thistutorial:

mkdir chap4
Change to the directory you just created:

cd chap4
Start UIM/X from your new directory:

uimx &

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx directory/bin/uimx &

After abrief pause, a copyright notice window appears, to show that
UIM/X isbeing initialized. When UIM/X is ready, the Project Window
and the Pal ette appear.

[conify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

UIM/X Tutorial Guide 135

4

Building a GUI for a Command-Line Application
4 Sep #2: Laying Out the Interface

Sep #2: Laying Out the Interface

In this step you will lay out the interface for the Command Line project.
First, you will create a Bulletin Board to contain the other widgets. Then,
you will add a Text Field where the files will be displayed, a Text widget
for entering the directory to be listed, and Labels to identify the areas, and a
Push Button. Next you will add Toggle Buttons for selecting the
information displayed in the Text Field. Finally, you will add an Option
menu for ordering the files.

DrawingtheBulletin Board

In this step you will drag and draw a Bulletin Board widget.

1. Make sure you are in Design Mode. If not, click on the Design toggle
button.

2. Inthe Managers area of the Palette, click on the Bulletin Board icon.

3. Move the mouse pointer to where you want the upper-left corner of the
Bulletin Board to appear.

4. Pressand hold the Select mouse button, then drag the mouse downwards
and to the right to draw the Bulletin Board. To complete the operation,
release the mouse button.

The Bulletin Board widget appears as shown in Figure 4-2.

|
— bulletinBoard1 [

Figure 4-2 The Bulletin Board Widget

136 UIM/X Tutorial Guide

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding the Text, Push Button, and Label Widgets 4

Addingthe Text, Push Button, and L abel Widgets

In this step you will add the remaining widgets that make up the Command
Line project’s interface. You will add a Text, a Scrolled Text, Push Button,
and Label. You will also duplicate the Label. At the end of this step the
interface should look similar to Figure 4-3.

1. Inthe Primitives category of the Palette, click on the Text icon with the
Adjust mouse button.

Be sure to select the Text icon, and not the Text Field icon.

2. Drag the outline of the widget onto the Bulletin Board, and releaseit in the
upper left corner.

3. Similarly, in the Primitives category click on the Scrolled Text icon, then
drag and drop the widget, placing it on the right side of the Bulletin Board.

4. Resizethe Scrolled Text until it fills most of the right hand side of the
interface, using Figure 4-3 as a model.

5. Add aPush Button by dragging and dropping, placing it below the
Scrolled Text.

6. Addalabel tothe interface, placing it above the Text widget.

7. Toduplicate the Label, begin by pressing the Menu mouse button to dis-
play the Selected Objects popup menu.

8. Choose Duplicate to make a copy of the first Label, then drag and drop it
below the Text widget.

9. Saveyour work asanew project, CommandLine.prj.

J.
= bulletinBoard1 [=]C

labelt i

—

=) T

| pushButton1 | |

L T

Figure 4-3 The Text, Push Button, Scrolled Text, and Label Widgets Added

UIM/X Tutorial Guide 137

Building a GUI for a Command-Line Application
4 Sep #2: Laying Out the Interface

Creatingthe Row Column and Toggle Buttons

The Command Line project features Toggle Button gadgets used to change
the file attributes displayed in the Scrolled Text. In this step you will add
the Toggle Buttons, placing them inside a Row Column. Row Columns
make excellent containers for several widgets of the same type, since they
can position the widgets in a grid.

1. Inthe Managers category, click on the Row Column icon.

2. Place the Row Column below the second Label, 1abel2, asshownin
Figure 4-4.

=i bulletinBoard1 [

labelt i

—

label2

pushButton1

Figure 4-4 Bulletin Board with Row Column Added
3. Inthe Gadgets category of the Ux Palette, click on Toggle Button Gadget.
4. Position the toggle button on the top part of the Row Column widget.

Notice how the Row Column automatically shrinks to fit the Toggle
Button. Thisisthe expected behavior.

5. Duplicate the Toggle Button by choosing Selected Objects= Duplicate. To
display the Selected Objects popup menu, press the Menu mouse button.

6. Inthe same way, create athird Toggle Button by duplication.

138 UIM/X Tutorial Guide

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Creating the Option Menu 4

Note the new Toggle Buttons are automatically placed below the first one,
as shown in Figure 4-5.

—| bulletinBoard1 [

labell i

[
label2

_ | toggleButtonGadget1
_ | toggleButtonGadget2
E_I toggleBu:ttonGadget:i]

pushButton1

Figure 4-5 Bulletin Board with All Three Toggle Buttons Added
7. Saveyour work.

Creating the Option Menu

Like Toggle Buttons, Option Menus are a convenient way to present a
limited number of choices to the user. Unlike toggle buttons, only the
current option is displayed by the Option Menu.

In this step you will add an Option Menu to the interface. The menu will be
used to specify the order in which files are displayed: alphabetical, reverse
alphabetical, latest first, or earliest first.

1. Inthe Menus category, click on the Option Menu icon.

2. Position the menu below the third toggle button, but outside the Row Col-
umn.

Notice it appears with an option button already in place.
3. Double-click on the Option Menu to open the Option Menu Editor.

4. Select optionMenu pl inthe Paneslist, then type "ORDER" in its
LabelString property.

5. Display the propertiesfor the first item in the menu,
optionMenu p_ bl, by clicking onitinthe ltemslist.

6. ChangeitsLabel String property to "alphabetical™.

UIM/X Tutorial Guide 139

Building a GUI for a Command-Line Application
4 Sep #2: Laying Out the Interface

7. ToaddanitemtothemenuensureoptionMenu p bl isselectedinthe
Items list, then choose Create=Item After=Push Button.

8. ChangeitsLabel String propertyto "reverse alpha'.

9. Repeat the process to add another Push Button item to the menu, thistime
with Label String property setto "latest first".

10. Create onelast Push Button item, with LabelString property set to
"earliest first".

When complete, the Option Menu Editor should appear as shownin

Figure 4-6.
J. J.

—| Option Menu Editor |- [
Create Edit Options
Menu Name [loptionMenul Parent bulletinBoard1
Label String ["ORDER" Mnemoni |[""
Panes ltems
optionMenu_p1 optionMenu_p_b1

optionMenu_p1_b2
optionMenu_p1_b3

optionMenu_p1_b4

pushButton
Name optionMenu_pl_b4
Label String "earliest first] Mnemoni [E""—
Accelerator fr
Accelerator Text ("

Callback i o

T OK | Apply | Cancel | |

Figure 4-6 Option Menu Editor Showing All Four Items

11. Click on OK in the Option Menu Editor to apply the changes to the inter-
face.

The interface is updated to reflect the changes, as shown in Figure 4-7.

140 UIM/X Tutorial Guide

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Creating the Option Menu 4

= bulletinBoard1 L]

labelt

label2

_| toggleButtonGadget1
_| toggleButtonGadget2
_| toggleButtonGadgetd

. J

IORDER slphabetical — | pushButton!

i I

Figure 4-7 All the Widgetsin Position
12. Saveyour work.

Sep #3: Changing Labelsand Other Properties

Now that the widgets are in place, you are ready to change their titles,
labels and other properties. In this step you will begin by changing the
Scrolled Text to display multiple lines of information (by default it scrolls
horizontally). Then you will change the default string displayed in the
Message Box. In UIM/X you change properties at design time using the
Property Editor.
1. Double-click on the Scrolled Text to open the Property Editor and load
the widget into it in one step.

2. Locatethe EditMode property in the Specific category.

3. Click onthe EditMode option menu, changing it to
multi line edit, asshownin Figure 4-8.

UIM/X Tutorial Guide 141

Building a GUI for a Command-Line Application
4 Sep #3: Changing Labels and Other Properties

142 UIM/X Tutorial Guide

[« Property Editor —Ox
File Edit View Options
&l o =
scrolledTextl (scrolledText)
AddiSearch: I
Find Prev | Find Mext Adld Load
-+
M Initial Value
CursorPositionVisible true 5
EditMode | i
Editable tue
FontList | I_E_“-Misc-Fixed-nedium-n-sEmicmdgnsed--la-un-?s [l
Foreground | I +000000" [
HighlightColor | |p#000000- [||
Apply |

Figure 4-8 Property Editor Loaded with the Scrolled Text Widget
Apply the change by clicking on Apply.

Set the Property Editor to load widgets automatically by choosing Options
=Automatic Load.

Now you can load awidget into the Property Editor simply by selectingit.
Click on pushButtoni toload it into the Property Editor.

Locate the LabelString property inthe Specific category, and
replace "pushButtonl" with "OK".

Apply the change by clicking on Apply in the Property Editor.
Continue loading widgets into the Property Editor (using automatic |load-
ing), and changing their LabelString properties.

Table 4-1 lists al the widgets whose Label St rings must be changed,
and the values you should give them.

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Creating the Option Menu 4

Table 4-1 Widgets and New LabelString Properties

Widget Name New LabelString Property
labell "Directory"
label2 "Attributeg"
toggleButtonGadgetl "owner"
toggleButtonGadget2 "group"
toggleButtonGadget3 "inode"
When you have made the changes, your interface should appear as shown
in Figure 4-9.
= bulletinBoard1 -1
Directory I A
Attributes
| owner
_| group
_linode
7
~N '
ORDER alphabetical . | oK |

Figure 4-9 Bulletin Board with LabelStrings Changed
10. Saveyour work.

Sep #4: Adding Declarations and Final Code

In this step you will open the Declaration Editor for the Bulletin Board and
define a few global constants. These will be shared by the interface's
callbacks that you will add later.

1. Click on the Bulletin Board to select it.

2. Open the Declaration Editor by pressing the Menu mouse button while
over the interface, and choosing Sel ected Objects= Tools=Declaration
Editor.

3. The Declaration Editor appears, as shown in Figure 4-10.

UIM/X Tutorial Guide 143

Building a GUI for a Command-Line Application
4 Sep #4: Adding Declarations and Final Code

—| Declaration Editor I
7 Includas, definas, global variablaz */
#include <stdic h> B

dinplude <stdlib h>
fifdef _ cpluspius

1~ Interface specific variables */

#* Interface function */
swidget create_bulletinpoardl (swicget uxear: |

{

swidget rtrg

% Initial code */

rrn = build_bulletnBoardi()

)" Fimal cods */

retarn(rern| ; _-]
}
1~ Awodliary funclions */

oKk | Apply | Cancel |

Figure 4-10 Declaration Editor

4. Open the Text Editor by clicking on the[...] button next to the / *
Includes, defines, global variables */ area, andaddthe
following constants:

144 UIM/X Tutorial Guide

BUILDING A GUI FOR A COMMAND-LINE APPLICATION

Creating the Option Menu 4

#include "UxSubproc.h"
#include "UxLib.h"
int Owner = False,

Group = False,

Inode = False;
char Attribute[10] = "-a ";
handle h;
Make sure to enter a space for the character definition ("-a ") . During

the subprocessthisis passed to UNIX, which requires the space to run the
command line properly.

5. Click on OK to closethe Text Editor.

6. Openthe Text Editor forthe /* Final Code */ areaand addthefol-
lowing code, just before the return call (the return call is shown below, for
reference).

/* create subprocess object */
h=UxCreateSubproc ("/bin/ls ","",UxAppendTo) ;

if (UxSetSubprocClosure(h, (char *) UxGetWidget
(scrolledTextl))==-1)

printf ("Can’t set subproc closure\n") ;

}

return(rtrn) ;

As above, make sure to include the space indicated (" /bin/1s ").
7. Click on OK inthe Text Editor.
8. Click on OK inthe Declaration Editor.
9. Saveyour work.

Step #5: Adding Behavior tothe Interface

Now that you have defined global variables and added final code to the
interface you are ready to add behavior to the widgets by specifying
callbacks. First you will add behavior to the Toggle Buttons using the
Property Editor. Next you will add behavior to the Option menu using the
Option Menu Editor. Finally, you will add behavior to the OK Push Button.

UIM/X Tutorial Guide 145

Building a GUI for a Command-Line Application
4 Sep #5: Adding Behavior to the Interface

Adding Behavior tothe Toggle Buttons

In this step you will add callback code to the Toggle Buttons. Since all three
Toggle Buttons contain similar callback code, you will load them all into
the Property Editor at the same time, write the callback, then customize it
for each Toggle Button.

1. Click on the owner Toggle Button to load it into the Property Editor.

2. Load the group and inode Toggle Buttonsinto the Property Editor with the
first, by holding down the Control key and clicking each onein turn.

3. Locatethe valueChangedCallback property inthe Behavior cate-
gory, and open the Callback Editor by clicking on the Text Editor button
(...) besideit.

4. Click inthe Text Field, and type the following code exactly asit appears:

XmToggleButtonCallbackStruct *s
= (XmToggleButtonCallbackStruct *)
UxCallbackArg;

Owner = s->set;

Click on OK in the Callback Editor.

Click on Apply in the Property Editor.

Click on the group Toggle Button to load it alone into the Property Editor.

Open the Callback Editor for valueChangedCallback, changing
Ownerto Group.

9. Click on OK in the Callback Editor, then click on Apply in the Property
Editor.

10. Repeat the process for the inode Toggle Button, replacing Owner with
Inode.

11. Save your work.

© N o’

Adding Behavior tothe Option Menu Buttons

In this step you will use the Option Menu Editor to add behavior to the
Option Menu buttons.

1. Double-click the Option menu button (labelled alphabetical) to
pop up the Option Menu Editor.

2. Click onthefirst Push Buttonin the Itemslist, opt ionMenu_p b1, and
enter the following callback for it:

strcpy (Attribute," -a ");

146 UIM/X Tutorial Guide

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding Behavior to the Option Menu Buttons

3. Click on each of the remaining Push Buttons on the Itemslist and enter the

Callbackslisted in Table 4-2:

Table 4-2 Callback Code for Option Menu Items

[tem allback Code

optionMenu_pl b2 strcpy (Attribute," -ar ");
optionMenu pl b3 strcpy (Attribute," -t ");

optionMenu pl b4 strcpy (Attribute, " -tr ");

Make sure to enter a space before and after each parameter to be passed to
UNIX,ie" -ar "," -t ",and" -tr ".After making your
entries, the Option Menu Editor should look as shown in Figure 4-11.

4. Apply your changes and close the Option Menu Editor by clicking on OK.

i J
=| Option Menu Editor |
Create Edit Options
Menu Name [optionMenul bulletinBoard1
Label String ["oROER" Mosmenic [I""
Panes
optionMenu_p1_b2
optionMenu_p1_b3
optionMenu_p1_b4
pushButton
Name [optionMenu_pi_b4d
Label String ["earliest first"” Mnemonic [Im-
Accelerator I
Accelerator Text I
Callback strcpy (Attribute, " -tr ") |
oK | Cancel | 4

Figure 4-11 Option Menu Editor with the New Callbacks

5. Saveyour work.

UIM/X Tutorial Guide 147

4

Building a GUI for a Command-Line Application
4 Sep #5: Adding Behavior to the Interface

Adding Behavior tothe OK Push Button

In this step you will add behavior to the OK Push Button.
1. Load the ok Push Button into the Property Editor.

2. Openthe Callback Editor by clicking on the Text Editor button (...) beside
ActivateCallback (inthe Behavior category).

3. Click inthe Text Field, and type the following code:
char arglist[128];
UxClearText (scrolledTextl) ;
arglist[0] = "\O0';
/* owner, group & inode flags */

if (Owner)

strcat (arglist," -o ");
if (Group)
strcat (arglist," -g ");

if (Inode)
strcat (arglist," -i ");
/* alphabetically, ... */
strcat (arglist, Attribute);
/* directory name */
strcat (arglist, UxGetText (textl)) ;
if (UxExecSubproc (h,arglist) == -1)

{

printf ("Can’t start the application\n") ;
return;

}

Asbefore, don't forget to a space before and after each parameter passed
to UNIX, asindicated.

4. Click on OK inthe Callback Editor.
5. Click on Apply in the Property Editor.
6. Saveyour work.

148 UIM/X Tutorial Guide

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding Behavior to the OK Push Button

Step #6: Testing the Program

Before generating code for the project in the next section, take a moment to
switch to Test Mode.

1.

2.

Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

Hide the Command Line interface by choosing View=Hide Project.

Note: Thiswill cause the “CommandLine”’ application’s GUI to disappear in
Test Mode. Thisisthe desired response, as the subsequent stepswill re-launch
the application through the Interpreter. The more conventional Test Mode
interface lacks the needed subproc support, but |oading the module into the
Interpreter will take care of this detail whilein Test Mode.

3.
4,

Choose Tools=Interpreter in the Project Window.

Select the Bulletin Board interface by clicking on itsicon in the Project
Window.

Choose Module=Selected Interface in the Interpreter or click on the cor-
responding icon .

The Interpreter title bar changes to reflect the new scope.

Enter the following code in the Interpreter window.
UxPopupInterface (create bulletinBoardl (NO_PARENT)
, no_grab) ;

Triple-click the line of code to highlight it, then choose Interpret=Evalu-
ate.

The Interpreter evaluates the code, pops up the Command Line interface,
and prints the following to the Interpreter Messages Area:

Result: O
Close the Interpreter by choosing File=Close.

UIM/X Tutorial Guide 149

4

Building a GUI for a Command-Line Application
4 Sep #7: Generating the Code and Running the Executable

9.

Test the interface:
e Typeadirectory name in the Directory Text widget.

e Click on aToggle Button to view files listed by owner, group, or
inode.

e Order thefiles aphabetically, reverse alphabeticaly, earliest
first, or latest first.

e Click on OK to display thefiles.

10. When you are through, switch back to Design Mode by clicking the

Designicon
When prompted to do so, discard the duplicate interfaces.

Sep #7: Generating the Code and Running the
Executable
You have now successfully constructed and tested the Command Line

project. In this step you will generate the code for the application, and run
it, without leaving the development environment.

1.
2.
3.

150 UIM/X Tutorial Guide

Check that you are in Design Mode. If not, click on the Design icon
Choose Options= Code Generation on the Project Window menu.

In the Code Generation options window that appears, check that the lan-
guage selected is ANSI C, and that Context Support is desel ected.

More economical code is produced with context support disabled, for
applications using only single copies of an interface.

Save your changes and close the dialog by clicking on OK.
Click on the Run icon in the Project Window’sicon bar.
Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

Test your program. Verify that it works asit did in Test Mode.
To stop the program select Close from the window control box.
Save the changes to your program.

Now when you modify the Command Line project, you can simply click
on the Run Mode icon to generate the code, compileit, and run the
executable in one step.

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding Behavior to the OK Push Button 4

UIM/X Tutorial Guide 151

Building a GUI for a Command-Line Application
4 Sep #7: Generating the Code and Running the Executable

152 UIM/X Tutorial Guide

Part III: Advanced
Tutorials

Overview

The tutorials of this section are of an advanced nature. These tutorials are
Creating an RGB Color Editor in C++ and Integrating a Non-Visual Object.

UIM/X Tutorial Guide 153

Creating an RGB Color
Editor in C++

Overview

In a sophisticated application it is possible to spend a great deal of time
perfecting a small portion of the interface. In such cases it might be
desirable to reuse that portion in other areas, at the same time protecting it
from unwanted changes. As an interface management system that
encourages object-oriented development, UIM/X provides a simple yet
robust mechanism for doing so. You create a new class for the portion to be
reused, then add an instance of the class to the interface.

In UIM/X each stand-alone interface is its own class. To create a new class,
you simply turn the widget into a stand-alone interface by dragging and
dropping it onto the desktop. To reuse it in another interface, UIM/X lets
you drag and draw (or drag and drop) an instance of the class on the target
interface.

Since they inherit al their properties and behavior from their class,
instances are exact duplicates of the originating class. Properties and
behavior are by default uneditable in the instance, providing the desired
protection from unwanted changes. Should you want to, it is a simple matter
to expose properties or behavior in the instances.

To expose properties in an instance you define property accessor methods
for the class. These are paired get and set methods following a specific
naming convention. In the body of the methods, you write code that acts on
the property you want to expose. UIM/X recognizes pairs of property
accessor methods, and presents the new property in the Specific category of
the Property Editor.

Similarly, you can create behavior accessor methods to present callbacksin
the Property Editor. A behavior accessor method is a single method
following a specific naming convention. In this case, the body of the
method contains code that adds the desired Xt callback to the callback list.
UIM/X presents the new callback in the Behavior category of the Property
Editor.

UIM/X Tutorial Guide 154

CREATING AN RGB COLOR EDITOR IN C++

5

Exposed properties and new callbacks behave just like those provided by
default. As noted, they show up in the Property Editor in the appropriate
category. You can provide a new property with a default value at design

time, and write callback code for new callbacks. In addition, you can set
properties at runtime in callback code, or connect callbacks to properties

graphically using the Connection Editor.

The GUI You Will Build

Note: If you haveinstalled UIM/X in its C-only configuration, do not attempt
the tutorial in this chapter. The tutorial assumes that UIM/X is running in C++

mode, and that you have a C++ compiler.

In this chapter you will create an interface to function as an RGB Color
Editor. The Color Editor illustrates how to create a new class, expose
properties and behavior in instances of the class, and how to call interface
methods to update a display (in this case, a sample color). In addition, it
provides an example of programming in C++. The completed interface,
shown in Figure 5-1, consists of the following areas:

* Color-Changing Scales: Horizontal Scales with arange from 0 to 255.
One each for the red, green, and blue component of an RGB color
definition. Each scaleis an instance of a Scale class with properties and

behavior exposed.

* Color Display Area: A Drawing Areawidget whose
BackgroundColor property isupdated by the Scales, using a shared

interface method.

» Information Display Area: Two Labels, one of which is updated by the
above interface method.

Color-Changing
Scales

=

RGB Color Editor

0
|
RED

[

GREEN
0

BLUE

Color Display
Area

RGB Value Information

Display Area

Figure 5-1 The Completed RGB Color Editor Project

UIM/X Tutorial Guide 155

Creating an RGB Color Editor in C++
5 Sep #1: Sarting UIM/X in Sandard Mode

The Sepsin ThisTutorial

This tutorial takes about 60 minute to complete. It contains the following
steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Laying Out the Interface

Step #3: Changing Label Strings and Other Properties

Step #4: Adding Declarations and Global Code

Step #5: Defining a Method to Update the Display

Step #6: Creating a Scale Class

Step #7: Exposing Propertiesin the Scale Class

Step #8: Exposing Behavior in the Scale Class

Step #9: Setting Properties in the Instance

Step #10: Adding Behavior to the Instance

Step #11: Completing the Interface

Step #12:; Testing the Program

Step #13: Generating the C++ Code and Running the Executable

Sep #1: Sarting UIM/X in Sandard Mode

Before you begin building the RGB Color Editor project, set up a new
directory as follows:

1. Start the X Window System.

2. Bring up aterminal window.

3. Make abase directory for this tutorial:
mkdir chaps

4. Changeto the directory you just created:
cd chaps

5. Start UIM/X from your new directory:

uimx &

Note: Sincethistutorial features C++ codeinits declarations and callbacks, do
not specify any language options at the command line. UIM/X startsin C++
mode by default.

156 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
The Sepsin This Tutorial 5

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:
uimx_ directory/bin/uimx &

After abrief pause, a copyright notice window appears, to show that
UIM/X isbeing initialized. When UIM/X is ready, the Project Window
and UIM/X palette appear.

6. Iconify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

Sep #2: Laying Out the Interface

In this step you will lay out the interface for the Color Editor. First, you will
create a Form to contain the other widgets. Then, you will add a Drawing
Area, a Scale, and Labels to identify the areas and display color
information.

To lay out the interface:

1. Drag and draw (or drag and drop) a Form from the Managers category
of the Palette to your desktop, as shown in Figure 5-2.

=] form1 [t

Figure 5-2 The Form Widget

UIM/X Tutorial Guide 157

Creating an RGB Color Editor in C++
5 Sep #2: Laying Out the Interface

2. AddaDrawing Area (from the Managers category) to the Form, making it
large enough to almost fill the upper-right corner of the Form, as shownin
Figure 5-3.

— form1 -]

Figure 5-3 Form Widget with Drawing Area Added

3. AddalLabel tothe interface, placing it in the upper left corner of the
Form, as shown in Figure 5-4.

— form1 -]

Figure 5-4 Form with Label Added

158 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
The Sepsin This Tutorial 5

4. Createtwo more Labels by dragging and dropping, dragging and drawing,
or duplication, positioning them as shown in Figure 5-5.

=) form1 [

labell

fabers

Figure 5-5 Form with All Three Labels Added

5. Finaly, add aHorizontal Scale to the interface, positioning it under the
first Label.
You will add the other two Horizontal Scales once you have created the
Scale class, exposed properties and behavior, and connected it to the
interface el ements, later.

UIM/X Tutorial Guide 159

Creating an RGB Color Editor in C++
5 Sep #3: Changing Label Strings and Other Properties

6. Your interface should look similar to Figure 5-6. (The widgets are shown
selected, for display purposes.)

— form1 [- 11

fabetd

Figure 5-6 Form with All Necessary Widgets
7. Saveyour work asaproject, caling it ColorEditor.prj.

Sep #3: Changing LabelSrings and Other Properties

Now that the widgets are in place, you are ready to change their

LabelStrings and other properties.

1. Double-click on the 1abel1 to open the Property Editor and load the
widget into it in one step.

2. LocatetheLabelString property inthe Specific category, chang-
ingitfrom "labell" to "RGB Color Editor"

3. Apply the change by clicking on Apply. The interface is updated to reflect
the change, as shown in Figure 5-7.

160 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++

The Sepsin This Tutorial 5
— form1 -]
RGB Color Editor
-
label2
label3

Figure 5-7 RGB Color Editor with New Label

4. Set the Property Editor to load widgets automatically by choosing
Options= Automatic Load.

Now you can load awidget into the Property Editor smply by selecting it.
5. Click on 1abel2 toload it into the Property Editor.

6. LocatetheLabelString property inthe Specific category, chang-
ingitfrom"label2" t0"RGB Value".

7. Apply the change by clicking on Apply.

8. Continue loading widgets into the Property Editor (using automatic |oad-
ing) and changing properties.
Table 5-1 lists all the widgets with properties to be changed, and the
values you should give them.

Table 5-1 Property Changesfor the Color Editor

Widget Name [Category Property Name New Value

labell Specific [LabelString "RGB Color Editor"
label2 Specific LabelString "RGB Value"

label3 Specific [LabelString "#000000"
drawingAreal [Core Background "black"

UIM/X Tutorial Guide 161

Creating an RGB Color Editor in C++
5 Sep #3: Changing Label Strings and Other Properties

Widget Name [Category Property Name New Value
Height (set the

scaleHl Core ight (Default
isour ce—see note below)

scaleH1 Specific Maximum 255

scaleH1 Specific P?OCES?lng max on left
Direction - -

scaleHl Specific ShowValue true

scaleH1 Specific TitleString "Color"

Note: In order for the Scal€’s title to be shown, you must set the source of it's
Height property to Default. (When drawn, the source is automatically set
to Private.) To show awidget's property sources, choose View=Hide

Source in the Property Editor.

When you have made the changes, your interface should appear as shown in

-1

Figure 5-8.
—| form1
RGB Color Editor
0
I pe= e |
Color

RGB Value

#000000

Figure 5-8 Form with LabelStrings and Other Properties Changed
9. Closethe Property Editor by choosing File=Close.
10. Saveyour work.

162 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
Defining Global Variables and the rghcolor Class 5

Sep #4: Adding Declarations and Global Code

In this step you will enter code to be used by multiple elements in your
interface. First you will declare some global variables, and a class called
rgbcolor. Next you will define interface-specific variables and set initial and
final code. Finally you will define the body for the rgbcolor class. All work
will be performed in the Declaration Editor.

Defining Global Variablesand thergbcolor Class

In this step you will declare the rgbcolor class, a class containing two public

member functions to initialize and update an RGB value respectively. You

will also declare a few global variables for use in the interface.

1. Click on the Form to select it.

2. Open the Declaration Editor by pressing the Menu mouse button while
over the interface, and choosing Sel ected Objects= Tools=Declaration
Editor.

3. The Declaration Editor appears, as shown in Figure 5-9.

* nchides, defines. global vasiabiles */
Illu-xun. <widio h» u

fizcloge <stdlid B>
* imertace spacihic varnbles */

|

* imertace funchion
Evidget cxeate formli (swidget Waxeat)

{
ewdget rim;
I~ Indtinl code *)

rtm = Baid_feemi(k
™ Fiead code /

retarn(ctien);

)
* Awdbary functions */

ox | Appl | Cancel |

Figure 5-9 The Declaration Editor
4. Click on the Text Editor button (...) beside the

/* Includes, defines, global variables */.

UIM/X Tutorial Guide 163

Creating an RGB Color Editor in C++
5 Sep #4: Adding Declarations and Global Code

5.

164 UIM/X Tutorial Guide

Add the following declarations, just after the #endif statement (shown
below for reference):

#include <stdio.h>
#include <stdlib.hs>
#ifdef cplusplus
#include <iostream.h>
#endif /* _ cplusplus */
#include <X11/Xutil.h>

class rgbcolor

érivate:
Display *display;
Colormap cmap;
int screen;
XColor newcolor;
public:

void InitColor (swidget, unsigned short,
unsigned short,

unsigned short) ;

void UpdateColor (unsigned short, unsigned
short, unsigned

short) ;

}i

Close the Text Editor and copy the code to the Declaration Editor by click-
ing on OK.

Apply your changesto the interface without closing the Declaration Editor
by clicking on Apply.

Save your work.

CREATING AN RGB COLOR EDITOR IN C++
Defining Interface-Specific Variables and Initial and Final Code 5

Defining Interface-Specific Variablesand I nitial and Final
Code

The Declaration Editor allows you to define interface-specific variables, as
well as to set initial code and final code. Initial code is executed when the
interface is created. Final code is executed just before the interface is
popped up. In this step you will add code to these areas of the Declaration
Editor, initializing the Drawing Area’s background color to black.

1. Click on the Text Editor button (...) beside the /* Interface
specific variables */ area

2. Add thefollowing declarations:
rgbcolor current color;

unsigned short vl1, v2, v3;

3. Click OK in the Text Editor.

4, Addthefollowing codetothe /* Initial Code */ area
vl = v2 = v3 = 0;

5. Addthefollowing codetothe /* Final Code */ area,just beforethe
return call (the return call is shown below, for reference).

current color.InitColor (drawingAreal, v1, v2,
v3);
return(rtrn) ;

6. Click on Apply in the Declaration Editor.
7. Saveyour work.

Defining Auxiliary Functions

In this step you will define rgbcolor’s two public functions:
InitColor() and UpdateColor()

1. Click on the Text Editor button (...) beside the /* Auxiliary
functions */ area

UIM/X Tutorial Guide 165

Creating an RGB Color Editor in C++
5 Sep #4: Adding Declarations and Global Code

2. Add thefollowing definitions:

void rgbcolor::InitColor(swidget sw, unsigned
short red, unsigned short green, unsigned short
blue)

Arg arglist[20];

unsigned long planes[l], pixels[1];
display = XtDisplay(UxGetWidget (sw)) ;
screen = DefaultScreen(display);

cmap = DefaultColormap(display, screen);

XAllocColorCells(display, cmap, False,
planes, (int) 0, pixels, (int) 1);

newcolor.flags = DoRed | DoGreen | DoBlue;
newcolor.pixel = pixels[0];

newcolor.red = red;

newcolor.green = green;

newcolor.blue = blue;

XStoreColor(display, cmap, &newcolor);

XtSetArg(arglist [0], XmNbackground,
pixels[0]) ;

XtSetValues (UxGetWidget (sw), arglist, 1);

}

void rgbcolor: :UpdateColor (unsigned short red,
unsigned short green,

unsigned short blue)

newcolor.red = red * 65535 / 256;
newcolor.green = green * 65535 / 256;
newcolor.blue = blue * 65535 / 256;

XStoreColor (display, cmap, &newcolor);

166 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++

Defining Auxiliary Functions

3. Click on OK inthe Text Editor.
4. Apply your changes and close the Declaration Editor by clicking on OK.

5. Saveyour work.

Sep #5: Defining a M ethod to Update the Display

In this step you will add a method to the Color Editor interface to update

the display. The UpdateDisplay (

UpdateColor ()

) method calls rghbcolor’s

public member function (which in turn sets the
Background color of the Drawing Ared). The UpdateDisplay ()
method also sets the third Label’s LabelString value to the current RGB

value. It will be invoked later, when adding behavior to the Scales.
1. Click on the Color Editor interface to select it.

2. Open the Method Editor by choosing Selected Objects= Tools=Method

Editor.
The Method Editor appears, as shown in Figure 5-10.
= Interface Methods: form1 [|
File Edit View Options Help
HEEEEY Method —| Corba20 —
Interface Methods . ~Definiti
1| Return Type Name
Ir form1 |
d;nlb UxThis;
| -
CORBA:Environment *pEnv;
~Code =
{
= 7
¥
— Create Method | Change Meathod| Revert Method |

Figure 5-10 Method Editor

3. Inthe Return Type area, type the following:

void

4. Inthe Name area, type the following:

UpdateDisplay

5

UIM/X Tutorial Guide 167

Creating an RGB Color Editor in C++
5 Sep #6: Creating a Scale Class

5. Inthe Code area, type the following:
char vstring[20];
current color.UpdateColor (vl, v2, v3);
sprintf (vstring, "#%02x%02x%02x", vl1, v2, Vv3);
UxPutLabelString(label3, wvstring);

6. Click on Create Method. The method appears in the Interface Methods
list.

7. Choose File=Close to close the Method Editor.

8. Saveyour work.

Sep #6: Creating a Scale Class

In UIM/X each stand-alone interface is its own class. To create a class for a
widget already embedded in an interface, you simply drag and drop the
widget onto the desktop. In this step you will turn the Horizontal Scale into
aclass. In the next, you will enhance the class definition with new
properties and behavior.

1. Click on the Horizontal Scale to select it.

2. Pressand hold the Adjust mouse button, then drag and drop the Horizontal
Scale onto the desktop.
A dialog appears, asking if you want to replace the Horizontal Scale just
removed from the interface with an instance of it.

3. Click Yes.
UIM/X creates the component class and places an instance of it in the
interface.

4. Saveyour work.

Step #7: Exposing Propertiesin the Scale Class

By default, an instance has no editable properties. However, by defining
property accessor methods for the class you can make properties available
in the instance. In UIM/X, creating property accessor methods is simplified
using the Method Editor. Once created, the properties exposed can be used
like any other.

Instances inherit all their properties from the class of which they are an
instance. This allows you to create complex objects with built-in behavior
then use exact replicas of them (including the behavior) in other interfaces.

168 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
Creating the TitleString Property Accessor Methods 5

For example, you could create an About-type Dialog Box with your
company logo and standard copyright notice in it, and reuse it in all your
projects without any risk of it being modified inadvertently.

To make a property available for reading or writing in an instance you
create property accessor methods for the class. Property accessor methods
are pairs of get and set methods. In the body of each method you specify
code that operates on the desired property, usually getting or setting it.
When UIM/X identifies a pair of get and set accessor methods in an
instance, it presents a new property in the Property Editor.

The Method Editor provides a convenient mechanism for defining property
accessor methods. Property accessor method names are of the form
ObjectName get MethodName and
ObjectName set MethodName. You provide the method names, while
UIM/X provides the prefixes. In the body of method, you “expose” the
property. In C++ Mode you can use bindings of the form
class.GetProperty and class.SetProperty. In C Mode you can
use the UxGet Property and UxPutProperty functions.

Once created, the exposed property behaves like any other editable
property. You can edit it by loading the instance into the Property Editor,
where it shows up in the Specific category. You can provide it with a default
value using the Property Editor, or set it at run time in callback code. You
can also make a connection to it using the Connection Editor.

In this step you will create two pairs of get and set accessor methods for the
Scale class. First you will create a pair of methods to expose the Scale's
TitleString property. Next you will create a pair to expose the Scale's
Value property. All work will be done in the Method Editor.

Creatingthe TitleString Property Accessor M ethods

In this step you will create a pair of property accessor methods to expose
the Scale’'s TitleString property. In another step you will set thisin the
instances using the Property Editor.

To create the TitleSring property accessor methods for the Scale:

1. Select the Scale class (the stand-alone interface), then open the Method
Editor for the interface by choosing Selected Objects—=Tools=Method
Editor.

The Method Editor appears.
2. Change the method type from Method to Get Property.

UIM/X Tutorial Guide 169

Notice the method prototype changes to reflect the required naming

Creating an RGB Color Editor in C++
Sep #7: Exposing Propertiesin the Scale Class

convention. For example, the method name prefix changes from
scaleHlto scaleHl get.

3. Edit aget method for the class by entering the values shown in Table 5-2

Table 5-2 Get Method Definition

In ThisArea Type the Following Code

Return Type char *

Name TitleString

Arguments none.

Code return scaleHl.GetTitleString() ;

4. Create the new method by clicking on Create Method.

The get method appears in the Interface Methods area, as shown in

Figure 5-11.

=)

Interface Methods: scaleH1 [

File Edit View Options

Help

HTEEEE

Interface Methods

get_TitleString 5

[——— 1

Get Property — | Corba20 — |

~Definiti
Return Type Name

char * scaleH! aet |Titlestring

<scaleH1> UxThis;

[}
CORBA::Environment *pEnv;

—Code
{

return scaleHl GetTitlestring():

(=)

Create Method| Shange Method Revert Method|

Figure 5-11 Method Editor Showing New Method

170 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
Creating the Value Property Accessor Methods 5

5. Similarly, create a set method by changing to the Set Property method
function prototype.
Notice the method prototype changes once again. For convenience, the
Method Editor retains much of the code you entered for the get method. A
variable called value isautomatically declared for the set method.

6. Edit aset method for the interface by entering the values shown in Table
5-3.

Table 5-3 Set M ethod Definition

In ThisArea Typethe Following Code
Return Type void

Name TitleString
char *value;

Arguments

(Be sure to changeint to char *.)

Code scaleHl.SetTitleString (value) ;

7. Create the new method by clicking on Create Method. The set method is
added to the Interface Methods area.

8. Saveyour work.

Creatingthe Value Property Accessor M ethods

In this step you will create a pair of property accessor methods to expose
the Scale’'s value property. The get method will return the Scale’s current
value. The set method will write the current value to the value property.

1. Change the method type to Get Property.
2. Edit aget method for the class by entering the values shown in Table 5-4.
Table 5-4 Get Method Definition

In ThisArea Type the Following Code

Return Type int

Name Value

Arguments none.

Code return scaleHl.GetValue () ;

3. Create the new method by clicking on Create Method.

4. Similarly, create aset method by changing to the Set Property method
function prototype.

UIM/X Tutorial Guide 171

Creating an RGB Color Editor in C++
5 Sep #7: Exposing Propertiesin the Scale Class

Enter the values shown in Table 5-5
Table 5-5 Set M ethod Definition

In This Area Type the Following Code

Return Type void

Name Value

Arguments int value;

Code scaleHl.SetValue (value) ;

5. Create the new method by clicking on Create Method.
6. Saveyour work.

172 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
Creating the Value Property Accessor Methods 5

Step #8: Exposing Behavior in the Scale Class

In the last step you created methods to expose properties in an instance.
Making behavior properties—normally called callbacks—available is
equally possible. To do so you simply create a callback accessor method for
the class. This is a method that follows a specific naming convention,
class.AddCallbackNameProc (), where class isthe widget class
name, and CallbackName is the hame you want appearing in the
Property Editor. The body of the method calls Addcallback (),
specifying the Xt callback to be used.

Since Scales return their current value during a drag and their final value
when the dragging has stopped, in this step you will define two callback

accessor methods for the Scale class. DragCallback () will return the
Scale’s current value. ValueChanged () will return the Scale's final

value. All work will be performed in the Method Editor.

To create callback accessor methods for the Scale:
1. Change the method type to Method.

2. EditabDrag callback accessor method for the class by entering the values
shown in Table 5-6.

Table 5-6 Add M ethod Definition

In ThisArea Typethe Following Code

Return Type void

Name AddDragCallbackProc

XtCallbackProc cb;

XtPointer client data;
scaleHl.AddCallback (XmNdragCallback,

Code cb,
client data) ;
3. Click on Create Method.

The AddDragCallbackProc calback accessor method appearsin the
Interface Methods area, as shown in Figure 5-12.

Arguments

UIM/X Tutorial Guide 173

5

Sep #8: Exposing

Creating an RGB Color Editor in C++

Behavior in the Scale Class

Interface Methods: scaleH1

(B |

File Edit View Options

Help

_set_Value

= EEEE Method —| Corba20 —|
Interface Md.hodn - — Definition

'?::‘I“.k fu.‘ o Return Type Name

“get_Value [vosa scalett [Addrrageallbackproe

[AddDragCallbackPro|

<scaleH1> UxThis;

KtCallbackProc cb;
XtPointer client data:

Dﬂ

>

5}
CORBA::Environment *pEnv;

~Cod,
{
|juu.m.mmmcx(mm.ngcaumx, cb, client_data); Ej

=
)

Create Method Shange Method Revert Method

Figure 5-12 Met
4. Similarly edit

hod Editor Showing AddDragCallbackProc Method
aValueChanged callback accessor method for the class

by entering the values shown in Table 5-7.
Table 5-7 Add M ethod Definition

In ThisArea

ype the Following Code

Return Type

void

Name

AddValueChangedCallbackProc

Arguments

XtCallbackProc cb;
KtPointer client data;

Code

scaleHl.AddCallback (XmNvalueChangedCallback,
cb, client data);

5. Create the new method by clicking on Create Method.

TheAddvalueChangedProc callback accessor method appearsin the
Interface Methods area, as shown in Figure 5-13.

174 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++

Creating the Value Property Accessor Methods 5
= Interface Methods: scaleH1 || |
File Edit View Options Help
g=98H Method —| Corba20 — |
Interface Methods . ~Definition
?:: I.".kf".mg Return Type Name
“get_Value [vosa scalel1 |AddvalueChangedcallbackPro
_set_Value
AddDragCallbackPro« | |[~
<scaleHt> UxThie;
KtcallbackProc cb; D -
XtPointer client data;
5
CORBA::Environment “pEnv;
~Cod :
(
‘scaleMl . AddCallback (¥mivalueChangedCallback, cb, clien Eﬂ
[7 >
)
—_— L Create Method Shange Method Revert Method

Figure 5-13 Method Editor Showing AddvalueChangedProc Method
6. Closethe Method Editor by choosing File=Close.
7. Saveyour work.

Sep #9: Setting Propertiesin the Instance

In this step you will set the TitleString property you exposed earlier.

1. Double-click onthescaleHl1Instancel to open the Property Editor
and load the instance into it in one step.

2. Switchtothe Specific category of Properties.

Notice the Specific category contains the two properties you exposed in
the class, namely TitleString and Value, asshown in Figure 5-14.

UIM/X Tutorial Guide 175

Creating an RGB Color Editor in C++
5 Sep #9: Setting Propertiesin the Instance

w Property Editor

—OX
File Edit View Options ‘
& ol =t
scaleH1Inslancel (scaleH1)
AddiSearch: |
Find Prev | Find Next | Ada Load
.
__ Speitic_ | Initial Value
. o
TitleString | "Colod" [
Value |?_u [
Apply

Figure 5-14 Property Editor Showing Exposed Properties
3. Changethe TitleString property from "Color" to "RED".

4. Apply your changes by clicking on Apply. The interfaceis updated, as
shown in Figure 5-15.

176 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
Making the Scal€’ s Connections to the Form 5

(e

— form1 |- ||

RGB Color Editor

RED

RGB Value

Figure 5-15 Color Editor with Tit1eString Property Updated
5. Close the Property Editor.
6. Saveyour work.

Step #10: Adding Behavior to the Instance

In this step you will add behavior to the Scale instance. First you will
connect the Scale’s callbacks to the Form’'s UpdateDisplay method.
Next you will connect them to the Scale’sown get Value method, to
retrieve the color component value required by UpdateDisplay. Finaly,
you will re-order the connections. All work will be performed graphically,
using the Connection Editor.

Makingthe Scale’'sConnectionstothe Form

In this step you will load the Scale instance and the Form into the
Connection Editor. Then you will connect its DragCallback and
ValueChangedCallback to UpdateDisplay. It isimportant to make
both connections. When a Scale stops moving its final value is returned via
ValueChanged only. ThisisaMaotif convention.

1. Select the RED Scale instance by clicking on it.
UIM/X Tutorial Guide 177

Creating an RGB Color Editor in C++
5 Sep #10: Adding Behavior to the Instance

2.

178 UIM/X Tutorial Guide

Press the Shift key and hold down the Select mouse button, then drag the
cursor to the Form.

Notice aline follows the cursor. This indicates the Connection Editor is
available.

Release the mouse button (and the Shift key) to pop up the Connection
Editor, loaded with the Scale in the Source area and the Form in the Target
area, as shown in Figure 5-16.

Noticethe s1ider’s callbacks you exposed in the class,
DragCallback and ValueChangedCallback, arelisted in the
Callback area of the Connection Editor. The method you create for the
Form, UpdateDisplay, islisted in the Methods area.

=] Connection Editor []
File Help
ElE
Source [scalemiinstancel Target [iforma
Callback Method
DragCallback + SetForeground
ValueChangedCallback Unmanage
UpdateDisplay
_get_height
7 4
I — j~d. -
| [i
C'eale] Update De ete] Edil|
-
] -
______________________________________ 1

Figure 5-16 Connection Editor

Click on DragCallback inlist of callbacks, and on UpdateDis-
playinthelist of methods.

The Method's default parameter appears in the Parameters list.
Complete the connection by clicking on Create.

The new connection appears in the Connection Editor, as shown in Figure
5-17.

CREATING AN RGB COLOR EDITOR IN C++
Making the Scale Instance’ s Connections to ltself

—| Connection Editor

-1

File

Help

=l

Callback

Source |mu.uunsunoo1

Target |zonu
Method

. SetForeground
ValueChangedCallback Unmanage
_get_height
i’ s
| p— = =
pEnv JsowEny - ﬁ
-
| create| Update| Delete| Edit| 1
DragCallback ---> form1::UpdateDisplay(&UxEnv) _]

Figure 5-17 Connection Editor Showing Scale's First Connection

6. Click onvalueChangedCallback inlist of calbacks (keeping
UpdateDisplay highlighted in the Methods list).

7. Complete the connection by clicking on Create. Again, the display is
updated to show the new connection.

8. Saveyour work.

Making the Scalel nstance’'sConnectionsto I tself

Recall that UpdateDisplay calls rgbcolor’'s UpdateColor public

member function, passing in

three values, one each for the red, green, and

blue components of a color. The function is shown below, for reference:

char vstring[20];

current color.UpdateColor (vl, v2, v3);

sprintf (vstring,

"#%02x%02x%02x", vl, v2, Vv3);

UxPutLabelString(label3, wvstring) ;

In this step you will retrieve a value for v1 from the Scale instance’s own
_get _Value method that you created earlier to expose its Value
property. As before, you will connect both the Dragcallback and
ValueChangedcallback to _get Value.

UIM/X Tutorial Guide 179

5

Creating an RGB Color Editor in C++
5 Sep #10: Adding Behavior to the Instance

1. Load the Scale instance itself into the Target area of the Connection
Editor:

e Select the Scaleinstance, scaleHlInstancel, thenclick on
the Load Target icon (the right-most one).

e Or, drag and drop the Scale instance into the Target area.

The instance's methods are displayed in the Methods list, including those
you defined for it, _get Value,and _set Value.

2. ClickonDragCallback inthe Callback list,and _get Value inthe
Method list.

3. FortheReturn parameter, enter the following value:
vl
The variable v1 will hold the red RGB value.
4. Complete the connection by clicking on Create.
The new connection appears in the Connection Editor, as shown in Figure

5-18.
= Connection Editor L
File Help
ElE
Source Iscalonunsbancol Target Isoalom!nnanool
Callback Method
ragCallback r Manage F
ValueChangedCallback Unmanage |
_get_TitleString
s’ s’
S jod. -

3
pEnv |suxEnw -
Return |v1] |

7

e

Create| Update| Delete| Edit|
DragCallback ~-~> form1::UpdateDisplay(&UxEnv) _I
DragCallback ———> scaleH1Instance1::_get_Value{&UxEnv)
|

Figure 5-18 Connection Editor Showing Three or Four Connections for Scale

5. Next, click on ValueChangedCallback in the Calback list (keeping
_get_Value highlighted in the Methods list.

6. EnsuretheReturn parameter has the following value:
vl

7. Complete the Connection by clicking on Create.

180 UIM/X Tutorial Guide

CREATING AN RGB COLOR EDITOR IN C++
Making the Scale Instance’ s Connections to ltself 5

The Connection Editor now shows four connections for the Scaleinstance,
as shown in Figure 5-19.

= Connection Editor [-]1
File Help
Bl
Source |malanllnsunoo1 Target |scaledlinstancel
Callback Method
DragCallback = Manage E
Unmanage [
_get_TileString
’ /
N d -

3
pEnv |soxEny -
Return Jval |

7

=

[create] Update| Delete| Edit
DragCallback ~~~> form1::UpdateDisplay(&UxEnv) ll
DragCallback ———> scaleH1Instance1::_get_Value(&UxEnv)
ValueChangedCallback —-> scaleH1Instance1::_get_Valua(&UxEnv) _I
ValueChangedCallback ~--> form1::UpdateDisplay(&UxEnv)

Figure 5-19 Connection Editor Showing All Four Connections for Scale
8. Saveyour work.

Reordering the Connections

Connection event-action pairs are executed in the order in which they
appear in the Connection Editor. In this step you will reorder the
connections so UpdateDisplay receives the most recent value from the
Scale.

1. Highlight the following line in the connections list

DragCallback --->
scaleHlInstancel::_get Value (&UxEnv)

2. Click on the up-arrow to move the DragCallbackget Value con-
nection to the top of thelist.

3. Inthe sameway, highlight the following connection:

ValueChangedCallback --->
scaleHlInstancel:: get Value (&UxEnv)

UIM/X Tutorial Guide 181

Creating an RGB Color Editor in C++
5 Sep #11: Completing the Interface

4,

Moveit until it isjust abovethe valueChangedCallbackUpdate-
Display connection.

When complete the connections should appear in the following order:

DragCallback --->
scaleHlInstancel::_get Value (&UXEnv)
DragCallback ---> forml::UpdateDisplay (&UxEnv)
ValueChangedCallback --->
scaleHlInstancel::_get Value (&UXEnv)
ValueChangedCallback --->

forml: :UpdateDisplay (&UXEnv)
Close the Connection Editor by choosing File=Close.
Save your work.

Sep #11: Completing the Interface

With the Scale class defined and behavior added you are now ready to
complete the interface. First you will duplicate the Scale instance and
update its TitleString property. Next you will update the connections
for the duplicate Scales, setting their Return values to write to the global
variables v2 and v3, the green and blue components of a color.

Duplicating the Scaleand Updating Properties

In this step you will duplicate the Scale instance and set the
TitleString properties.

1

182 UIM/X Tutorial Guide

Click on the Scale instance to select it then choose Selected
Objects=Duplicate.

Position the new instance under the first.

Duplicate the Scale instance once again, positioning the third instance
under thefirst two.

The interface should now appear as shown in Figure 5-20.

CREATING AN RGB COLOR EDITOR IN C++
Duplicating the Scale and Updating Properties

= form1 [-)

RGB Color Editor

0
| |
RED
0
| pum |
RED
0
[- | RGB Value
RED

$000000

Figure 5-20 Color Editor with All Three Scale Instances

Double-click on the second Scale instance, scaleHlInstance?2 to
load it into the Property Editor.

Locatethe TitleString property inthe Specific category, chang-
ing it from "RED" to "GREEN".

Apply your changes.

Similarly, load the third Scale instance, scaleHlInstance3 intothe
already open Property Editor by dragging and dropping, or selecting it and
clicking on the Load icon.

In this case, changethe TitleString property from "RED" to
"BLUE" and apply your changes.

The interface should now appear as shown in Figure 5-21.

UIM/X Tutorial Guide 183

5

Creating an RGB Color Editor in C++
5 Sep #11: Completing the Interface

= form1 -1

RGB Color Editor

0
| R
RED

0
I]
GREEN

0
[—J RGB Value
BLUE

#000000

Figure 5-21 Color Editor with Scale Tit leString Properties Updated

Updating the Connections

In this step you will set the Return values for the duplicate scales to write
to the global variables v2 and v3, the green and blue components of a
color.

1

184 UIM/X Tutorial Guide

Load the second Scale instance, scaleHlInstance2, into the
Connection Editor by selecting it and choosing Selected
Objects=Tools=Connection Editor.

Highlight the following connection in the Connections list:
DragCallback --->
scaleHlInstance2:: get Value (&UxXEnv)
Click on Edit.

Notice the Scale instance is loaded into the Target area, and its
_get_Value method isautomatically highlighted.

Change the Return parameter from v1 to v2. v2 isthe variable used to
set the green value.

Update the connection by clicking on Update.

CREATING AN RGB COLOR EDITOR IN C++
Updating the Connections 5

6. Similarly, begin updating valueChangeCallback by highlighting the
following connection in the Connections list:

ValueChangedCallback --->
scaleHlInstance2:: get Value (&UxEnv)

7. Click on Edit.

8. ChangetheReturn parameter from v1 to v2, and click on Update.

9. Repeat the process for the BLUE scaleinstance, scaleHlInstance3,
changing the Return parameters from v1 to v3.

10. When complete, close the Connection Editor by choosing File=Close.
11. Saveyour work. Theinterface is now ready for testing.

Step #12: Testing the Program

Before generating code for the project in the next section, take a moment to
switch to Test Mode.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Hidethe Color Editor interface by choosing View=Hide Project.
3. Choose Tools=Interpreter. The Interpreter window appears, as shown in

Figure 5-22.
= C++ Interpreter : General [-]
File Edit Interpret Module Help
APEE [= ::l
=3 ')
f|
I~ J

Figure 5-22 C++ Interpreter Window
4. Select the Form interface by clicking on itsicon in the Project Window.

UIM/X Tutorial Guide 185

Creating an RGB Color Editor in C++
5 Sep #12: Testing the Program

5.

186 UIM/X Tutorial Guide

Choose Module= Selected Interface in the Interpreter or click on the cor-
responding icon .

The Interpreter title bar changes to reflect the new scope.

Enter the following code in the Interpreter window, as shown in Figure
5-23.

UxPopupInterface (create forml (UxParent),
no_grab) ;

—| C++ Interpreter : form1 | -]

File Edit Interpret Module Help
2 B =is Ej[i

UxPopupinterface (create forml (UxParent), no_grab);

I~ J

Figure 5-23 Evaluating the Interface’s Create Function

Triple-click the line of code to highlight it, then choose Interpret=Evalu-
ate.

The Interpreter eval uates the code, pops up the Color Editor interface, and
prints the following to the Interpreter Messages Area:

Result: O
Close the Interpreter by choosing File=Close.
Test the Color Editor interface:

Sliding a Scale updates the value on the scale, the value in the Label, and
the Drawing Areawidget itself.

When you are through, switch back to Design Mode by clicking on the
Designicon.

CREATING AN RGB COLOR EDITOR IN C++
Updating the Connections 5

Sep #13: Generating the C++ Code and Running the
Executable

You have now successfully constructed and tested the Command Line

project. In this step you will generate the code for the application, and run

it, without leaving the development environment.

1. Check that you are in Design Mode. If not, click on the Design icon.

2. Choose Options=Code Generation on the Project Window menu. The
Code Generation Options window appears, as shown in Figure 5-24.

- Code Generation B
~Language—— —Options Defaults
v K&RC ™ Include File
v ANSIC [T Context Support
A Core _| Message Catalog
_JUIL Code Source file suffix |cc
Header file suffix [h

[~ Use Ux Convenience Library
[~ Use Ux Convenience Library Ce+ bindings |

oK | Apply | Cancel |

Figure 5-24 Code Generation Options
3. Ensurethat the following radio buttons and toggle buttons are selected:

o C++

e Context Support

Context support is required when generating code for an interface that
uses instances.

4. Saveyour changes and close the dialog by clicking on OK.

5. Click on the Run Mode icon or choose File=Generate Code As... on the
Project Window menu.

UIM/X Tutorial Guide 187

Creating an RGB Color Editor in C++
5 Sep #13: Generating the C++ Code and Running the Executable

6. Check that the following radio buttons and toggle buttons are sel ected:

Write All Interfaces
Run Makefile

Write Main Program
Run Executable
Write Makefile

7. Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

8. Test your program. Verify that it works asit did in Test Mode.

9. To stop the program select Close from the window control box, or switch
back to Design Mode by clicking on the Designicon .

10. Save the changesto your program.
Now when you modify the Color Editor project, you can simply click on
the Run Mode icon to generate the code, compileit, and run the
executable in one step.

188 UIM/X Tutorial Guide

|ntegrating a Non-Visual

Object

Overview

UIM/X provides the objects and tools needed to develop sophisticated
applications with graphical user interfaces quickly and easily. But some
objects, by their very nature, cannot be represented visually. Files, servers,
database objects and data structures, for example, have no graphical user
interface. Yet application developers and development teams would benefit
greatly from these and other non-visual objects. With the Non-Visual Shell,
UIM/X provides the structure for developing non-visua object classes. By
integrating them into UIM/X you can extend the UIM/X palette to include
your new non-visual object classes, facilitating their use by you and your
design team.

Consider the advantages of a non-visual linked list object, for example.
Instead of declaring the linked list in the Declaration Editor you could
simply drop an instance of alinked list object from the palette into the
interface where you need it. If the linked list were equipped with add and
delete methods you could call these from your interface callback code, or
connect to them visually using the Connection Editor.

As the above example illustrates, the Non-Visual Shell object extends the
benefits of the UIM/X development environment to the non-visual aspects
of your application. Using the Non-Visual Shell you can graphically create
any non-visual object you need. Then you can use the Method Editor to
give it functionality.

Integrating the non-visual object into the UIM/X development environment
provides additional advantages. As with a visual GUI object, you can
pre-register its create function and methods with the interpreter for faster
processing. Further, by placing an instance of the object into the palette,
you can ensure that its methods are available for use, while remaining
uneditable.

UIM/X Tutorial Guide 189

Integrating a Non-Visual Object
6 About This Tutorial

About This Tutorial

This tutorial demonstrates how to create a non-visual object and integrate it
into UIM/X. While you will create the new object using the Non-Visual
Shell, to facilitate using it in an application, a start-up project has been
provided. As part of the development process you will test the new object
by using it in the start-up project. Once integrated into the UIM/X
executable, you will use the non-visual object in the start-up project once
again, this time by dragging and dropping the integrated object from the
Palette.

Note: If you have installed UIM/X in its C-only configuration, do not attempt
the tutorial in this chapter. The tutorial assumes that UIM/X is running in C++
mode, and that you have a C++ compiler.

The GUI You Will Build

In this chapter you will create a non-visual object to open, read, write, and
close files. You will then use the new object in a To Do List application in
two ways. First, you will use it directly, by simply adding an instance of the
object to the To Do List main interface. Next, you will augment the UIM/X
executable with the new object, and use the integrated version in the same
To Do List application.

To allow the tutorial to focus on development of the File object and
augmenting UIM/X, the To Do List application has been provided as a
start-up project, as shown in Figure 6-1.

The interface consists of the following areas:

e Menu Bar: Contains pull-down menus with commands to open and close a
file, and exit the application. The Help menu pops up a Message Box
dialog.

e Work Area: Contains a Scrolled Window where you can view, edit, or
delete the tasksin your To Do List.

» Push Button Area: Containsa Field for editing tasks, a dlide bar for setting
the task’s priority, and Push Buttons for adding the task to the work area,
or clearing the Field.

190 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT

Figure 6-1 To Do List

The Sectionsin This Tutorial

This tutorial takes about 120 minutes to complete. It contains the following

sections:

Section I; Creating a Non-Visual File Object
Section I1: Using the File Object in the To Do List
Section I11: Integrating the File Object into UIM/X
Section IV: Using the Integrated File Object

—| To Do List -1
File Help Menu Bar
—— Work Area
s
H r)
Edit Task | Delete Task |
Task T
P 3 [Y P
rlority D —— Push Button
Add | Replace | Clear | Area

UIM/X Tutorial Guide 191

Integrating a Non-Visual Object
6 Section |: Creating a Non-Visual File Object

Section |: Creating a Non-Visual File Object

This section focuses on creating the non-visual object with the following
features:

e Theobject will contain all the code it needsto open, read, write, and close
afile.

* Methodswill be used so other interfaces have access to the object’s
functions.

In this section you will start UIM/X in Standard Mode. Next you will create
the non-visual File object based a Non-Visual Shell, modifying its create
function to allow the File object to receive afile name. Finally, you will add
methods to the File object to open, close, read, and write files. These
methods will be used in the next section, when you use the File object in a
To Do List project.

The Sepsin ThisSection

This section takes about 20 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Creating the Non-Visual File Object

Step #3: Adding Functionality to the File Object

WhereYou AreintheTutorial
=Section |: Creating a Non-Visual File Object
Section I1: Using the File Object in the To Do List
Section I11: Integrating the File Object into UIM/X
Section 1V: Using the Integrated File Object

Sep #1: Sarting UIM/X in Standard M ode

Before you begin building the File object, set up new directories and copy
the start-up project as follows:

1. Start the X Window System.
2. Bring up atermina window.
3. Make abase directory for this tutorial:

mkdir chapé

192 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Where You Arein the Tutorial

4. Changeto the directory you just created:

cd chapé6
5. Make adirectory to store the files you will create in this section:
mkdir sectl
6. Changeto the directory you just created:
cd sectl
7. Start UIM/X from your new directory:
uimx &
If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:
uimx directory/bin/uimx &

After abrief pause, a copyright notice window appears, to show that
UIM/X isbeing initialized. When UIM/X is ready, the Project Window
and UIM/X palette appear.

8. Iconify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

Step #2: Creating the Non-Visual File Object

UIM/X provides a Non-Visual Shell class especialy designed for creating
nonvisual objects. By modifying the new object’s create function, you can
easily pass values to it. You can also declare variables for use with the
object’s methods.

Adding a parameter to an object’s create function allows you to pass values
to it each time it is created. The parameter also shows up in the Property
Editor for instances of the object, so you can give it a default value, or
assign it avalue at runtime. In this case, the parameter will be used to pass
the name of the file to be manipulated.

In this step you will use a Non-Visual Shell widget to create the File object.
Next you will use the Declaration Editor to define a few global variables to
function as error messages. You will also modify its create function to add
a filename parameter. The error messages and filename parameter will be
used in the next step, when you create methods for the File object to read,
write, open and close files.

UIM/X Tutorial Guide 193

Integrating a Non-Visual Object
6 Sep #2: Creating the Non-Visual File Object

Drawing the File Object

In this step you will create the File object, based on the Non-Visual Shell.

1. Drag and draw (or drag and drop) a Non-Visual Shell from the Shells
area of the Palette to your work area, as shown in Figure 6-2.

—

—| nonVisualShellt -] |

-

Figure 6-2 Non-Visual Shell Added to the Project
It does not matter what size you make the Non-Visual Shell.
2. Open the Property Editor by double-clicking on the Non-Visual Shell.

The property Editor appears, |oaded with the Non-Visual Shell, as shown
in Figure 6-3.

194 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Drawing the File Object

+ Property Editor —Oox
Fle Edit View Options
= ol Fals
nonVisualShelll {nonVisual Shell)
AdddiSearch: |
Find Prev| Find Hext | _pa | Loau |
=
e Initial Value
Helght |_“_1'm [dl
Width |_“_2[|4 [
X |_“_51u [
¥ |_“_2'm [
ey |

Figure 6-3 Property Editor Loaded with Non-Visual Shell

Note that while the Non-Visual Shell has dimension and position
properties, these apply to Design Mode and Test Mode only. At runtime
Non-Visual Shells, asthe name implies, are not visible.

In the Declaration category, locate the Name property, and change it from
nonVisualShellltoFile.

Apply the change by clicking on Apply.
Close the Property Editor by choosing File=Closein the Property Editor.

Save the interface as a project by choosing File=Save Project Asin the
Project Window.

Check that the project name selection box shows the path to your work
directory, chap6/sect1.

Clickintheselectionbox andreplaceUntitled.prj withfile.prj,
then click OK to save your project.

UIM/X Tutorial Guide 195

6

Integrating a Non-Visual Object
6 Sep #2: Creating the Non-Visual File Object

Defining Global Variablesfor the File Object

In this step you will load the File object into the Declaration Editor and
define afew global constants. These will be shared by the object’s methods
that you will add later. You will also add a filename parameter to the File
object’s create function. The parameter will be used to name the file
operated upon by the File object.

1. Open the Declaration Editor by pressing the Menu mouse button while
over the interface, and choosing Selected Objects= Tools=Declaration
Editor.

2. The Declaration Editor appears, as shown in Figure 6-4.

—] Declaration Editor l- 14
™ Includes, defines, global variables */
#include <stdioc.h> B
#include <stdlib. h>
I Interface specific variables "/

™ Interface function */
swidget create_File(swidget UxParent) :J

{

 Inial code *

rtrn = build_File();

/* Final code '.IQO

return(rtrn) ; :l
}
™ Awiliary functions */

oK | Apply | Cancel |

Figure 6-4 Declaration Editor

196 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Defining Global Variables for the File Object

3. Click ontheeditor button(...) nexttothe /* Includes, defines,
global variables */ area and add the following macro constants:

#define FILE NOERROR 1

#define FILE ERROR ALREADY OPEN -1

#define FILE ERROR CANNOT OPEN -2

#define FILE ERROR CANNOT CLOSE -3

#define FILE ERROR NOT_ OPEN -4

#define FILE_ERROR EOF -5

4. Closethe Text Editor by clicking on OK.

5. Addthefollowing definitiontothe /* Interface specific
variables */ area
FILE *file ptr;

6. Open atext editor for the interface function area by clicking on the editor
button(...) nexttothe /* Interface function */ area
The interface function appears as follows:
swidget create File(swidget UxParent)

7. Add aparameter, £ilename, to theinterface function;
swidget create File(swidget UxParent, char*

filename)

The filename parameter will be used to hold the name of the file opened
by the object’s methods.

8. Closethe Text Editor by clicking on OK.

9. Addthefollowingcodetothe /* Final Code */ area,just beforethe

return call (thereturn call is shown below, for reference).
file ptr = NULL;

return(rtrn) ;

10. Apply the changes by clicking on OK in the Declaration Editor.
11. Saveyour work.

UIM/X Tutorial Guide 197

6

Integrating a Non-Visual Object
6 Sep #3: Adding Functionality to the File Object

Step #3: Adding Functionality to the File Object

Now that you have created a File object that is not visible at runtime, the
next step is to add functionality to it. Methods present the most convenient
way to add functionality to objects designed for integration, for two
reasons. First, methods are inherited by instances of the object, with an
automatic naming convention that makes them easy to access. Second,
when augmenting UIM/X with a new object, methods provide functionality
while remaining uneditable.

When you place an instance of an object into an interface, any methods you
defined for it become available for use. They are visible in the Connection
Editor, and are available in callback code. But the bodies of an object’'s
methods are not editable in the instance, providing structured access, and
security for the underlying code.

In UIM/X method names are of the form

InterfaceName MethodName. The first part of the name reflects the
interface (or object) containing the method, and is automatically provided
by UIM/X. The second part you provide when creating or editing the
method.

In this step you will use the Method Editor to add four methods to the File
object. The methods will open, close, read and write afile respectively, with
error-checking. In Section Il: Using the File Object in the To Do List, you
will add an instance of the File object to the To do List interface and call
the methods.

Note: Since the results of file operations are not directly observable, this step
makesuse of #ifdef DESIGN TIME statementsto write messages to the
Project Window when in Test Mode. DESIGN_TIME isamacro constant
defined when in Design Mode and Test Mode but not at runtime.

Creatingthe Open M ethod

In this step you will add a method to the File object for opening files. In
Test Mode the open method will write to the Messages area of the Project
Window as well.

1. Click on the File interface to select it.

2. Open the Method Editor by choosing Selected Objects— Tools=Method
Editor.

3. The Method Editor appears, as shown in Figure 6-5.

198 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT

Creating the Open Method

Interface Methods: File L1

File Edit View Options

Help

2885
Interface Methods

Definiti

Return Type

Method —| Corba2o —|

Name

Fite [

<File> UxThis;

5
CORBA_Environment “pEnv;

Cod
Code

{

I
}

Create

Method | Change Method Revert Method |

int

Figure 6-5 Method Editor
In the Return Type area, type the following:

In the Name area, type the following:

Open

In the Arguments area, type the following:

char *access;

UIM/X Tutorial Guide 199

Integrating a Non-Visual Object
6 Sep #3: Adding Functionality to the File Object

7. Inthe Code area, type the following:
#ifdef DESIGN TIME
printf ("Trying to open %$s \n", filename) ;

#endif /* DESIGN TIME */

if (file ptr != NULL)

{

#ifdef DESIGN_TIME
printf ("%s is already open\n", filename) ;

#endif /* DESIGN TIME
* /return FILE ERROR ALREADY OPEN;

}

file ptr = fopen(filename, access);

if (file ptr == NULL)

{

#ifdef DESIGN TIME
printf ("%s cannot be opened\n", filename) ;
#endif /* DESIGN_ TIME */
return FILE ERROR CANNOT OPEN; }
#ifdef DESIGN TIME
printf ("%s opened\n", filename) ;
#endif /* DESIGN_TIME */

return FILE NOERROR;

8. Click on Create Method. The method appears in the Interface Methods
list.

9. Saveyour work.

200 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Creating the Remaining Methods 6

Creatingthe Remaining M ethods

In this step you will create the methods to close, read, and write afile.
1. Repeat the process to create the Close method.

The complete definition for the Close method is shown in Table 6-1.
Table 6-1 Close M ethod Definition

Area Code

Return Type lint

Name Close

Arguments jhone.

Code #ifdef DESIGN TIME
printf ("Trying to close %s \n", filename) ;
#endif /* DESIGN TIME */
if (file_ptr == NULL)
{
#ifdef DESIGN_TIME

printf ("%s not open\n", filename) ;
#endif /* DESIGN TIME */

return FILE_ERROR NOT OPEN;
}

if (fclose(file ptr) == EOF)
{
#ifdef DESIGN_TIME

printf ("Unable to close %$s \n", filename);
#endif /* DESIGN_TIME */

return FILE ERROR CANNOT CLOSE;
}

#ifdef DESIGN_TIME

printf ("%$s closed\n", filename) ;
#endif /* DESIGN TIME */

file ptr = NULL;

return FILE NOERROR;

2. Once you have entered the code for the Close method, be sure to click on
Create to define the method.

3. Repeat the process for the Readline method, as shown in Table 6-2.

UIM/X Tutorial Guide 201

Integrating a Non-Visual Object
6 Sep #3: Adding Functionality to the File Object

Table 6-2 Readline M ethod Definition

Area Code
char *

Return Type

Name Readline

Arguments |none.

static char str[256];
#ifdef DESIGN_TIME
printf ("Trying to read from %$s \n", filename);
#endif /* DESIGN TIME */
if (file ptr == NULL)
{
#ifdef DESIGN_TIME

printf ("$s is not open\n", filename) ;
#endif /* DESIGN TIME */

return NULL;

}

Code if (fgets(str, sizeof(str), file ptr) == NULL)
{
#ifdef DESIGN_TIME

printf ("no more in %s\n", filename) ;
#endif /* DESIGN_TIME */

return NULL;
}

#ifdef DESIGN TIME

printf ("read from %s \n", filename) ;
#endif /* DESIGN_TIME */

return str;

4. Repeat the process one last time for the Writeline method, as shownin
Table 6-3.

202 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Creating the Remaining Methods

Table 6-3 Writeline M ethod Definition

Area Code
int
Return Type
Name Writeline

Arguments [char *line;

Code #ifdef DESIGN TIME
printf ("Trying to write to %$s \n", filename);
#Hendif /* DESIGN_TIME */
if (file_ptr == NULL)
{
#ifdef DESIGN_TIME

printf ("%s is not open\n", filename) ;
H#Hendif /* DESIGN_TIME */

return FILE_ERROR NOT OPEN;
}

#ifdef DESIGN_TIME

printf ("%s written to\n", filename) ;
#Hendif /* DESIGN_TIME */
fprintf (file ptr, "%$s\n", line);
return FILE NOERROR;

5. Choose File=Close to close the Method Editor.
6. Saveyour work. The File object is now complete.

Section I1: Using the File Object in the To Do List

Now that you have finished creating the non-visual File object, you can put
it to use in a project. Since you defined the object’s functionality using
methods, the simplest way to use it is to add an instance of it to the
interface. Adding an instance makes the object’s methods available for use
in the interface, while keeping them local to the interface. Values can be
passed to and from the instance directly, without the need for declaring
them as extern.

In this section you will load the To Do List start-up project provided. Next
you will add an instance of the File object to the To Do List. Then you will
modify the menus to work using the File object’s methods. After testing the
To Do List, you will generate code for the project.

UIM/X Tutorial Guide 203

Integrating a Non-Visual Object
6 Sep #4: Loading the Start-Up Project

This section takes about 20 minutes to complete. It contains the following
steps:

Step #4: Loading the Start-Up Project

Step #5: Adding an Instance of the File Object to the Interface
Step #6: Modifying the To Do List Menus

Step #7: Testing the To Do List

Step #8: Generating the Code and Running the Executable

WhereYou AreintheTutorial

Section |: Creating a Non-Visual File Object
=Section I; Using the File Object in the To Do List
Section I11: Integrating the File Object into UIM/X
Section 1V: Using the Integrated File Object

Sep #4. Loading the Start-Up Project

To facilitate development of the To Do List, a start-up project has been
provided. It contains the To Do List main interface with menus already
defined, plus a Message Box. In this step you will load the start-up project.

ToL oad the Sart-Up Project

1.

204 UIM/X Tutorial Guide

Under the chapedirectory, make a directory to store the files you will
create in this section of the tutorial:

mkdir sect2

Change to the directory you just created:

cd sect2
Copy the To Do List project filesinto your work directory:

cp uimx_directory/contrib/ToDoList/*

Change the permissions on the project files you copied to make them writ-
able:

chmod a+w *

In the same way, copy the File interface from the chapé/sect1 direc-
tory into your current directory:

cp ../sectl/File.i

Reset UIM/X by choosing File=Reset in the Project Window. Before
loading anew project, it is helpful to reset UIM/X.

INTEGRATING A NON-VISUAL OBJECT
To Load the Sart-Up Project 6

Choose File=Open in the Project Window.

Navigateto chapé/sect2, choose ToDo . prj, and click OK.

Dialogs will appear indicating that you are loading an interface originally
created in Novice Mode, and that compound objects will be converted to
widgets.

Dismiss each dialog as it appears by clicking Replace. The To Do List
start-up interface appears, as shown in Figure 6-6.

= To Do List [l =l About To Do List -1
File Help |

To Do List Version 3.0

OK | Cancel Help

Edit Task | Delete Task |
Task [
3 Meadi
Priority r T T—
Add | Replace | Clear |

Figure 6-6 To Do List Start-Up Project

The Message Box isnot visible by default, though an icon appearsfor it in
the Project Window. Thisinterface is popped up by a callbacks provided
in the menus. You will test it later in this section.

UIM/X Tutorial Guide 205

Integrating a Non-Visual Object
6 Sep #5: Adding an Instance of the File Object to the Interface

Sep #5: Adding an Instance of the File Object to the
| nterface

Now that you have loaded the To Do List interface, you can add an instance
of the File object to it. Placing an instance on the interface allows you to
refer to its methods directly, without declaring them as external to the
interface.

1. Add the File object to the To Do List project by choosing File=Open
in the Project Window, and selecting File. 1.

2. Click ontheFileinterfaceto select it. An interface must be selected to cre-
ate an instance of it.

3. Point tothe To Do List interface, then press and hold the Menu mouse but-
ton to display the Selected Objects popup menu.

Notice the selection “Instance of File” appears on the menu as shown in

Figure 6-7.

Selected Objects
(appHormi)
Tools -
Cut CtrieX
Copy Ctrl+C
Paste Ctri+V

Duplicate

Align -
Arrange -
Delete

Oﬂ_let -
Managers -
Primitives -
Gadgets

Menus

Instance of File

Figure 6-7 Selected Objects Popup Menu
4. Choose “Instance of File”. The cursor changes into the corner shape.

206 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
To Load the Sart-Up Project

Drag and draw the instance of the File on the To Do List interface.

Make sure to add the instance to the work area of the interface. It does not
matter what size you draw it, since the instance will not be visible. You
will work with the instance via the Browser.

Open the Browser by choosing Selected Objects= Tools=Browser while
over the To Do List interface.

The Browser appears, as shown in Figure 6-8.

—| Browser: applWindow1 | -]
File Creste Edit View Tools Help
o] |- RS =

{ s

Dl ey ieatnece |

.IA\..

Iiekalascel 7

) =

Figure 6-8 Browser Showing the Instance of the File Object,
FileInstancel

Load the Fileinstance, FileInstancel, into the Property Editor by
selecting it in the Browser and choosing Sel ected Objects= Tools=Prop-
erty Editor.

In the Core category locate the £ i1ename property, changing it from
NULL to "todo.out".

The £ilename property isthe result of having added a parameter to the
File object’s create function. This property specifies thefile that will be
opened and closed.

In the Declaration category locate the Name property, changing it from
FileInstanceltotodofile.

10. Apply your changes by clicking on Apply in t

he Property Editor.

11. Close the Property Editor by choosing File=Close.

12. Saveyour work.

UIM/X Tutorial Guide 207

6

Integrating a Non-Visual Object
6 Sep #6: Modifying the To Do List Menus

Sep #6: Modifyingthe To Do List Menus

The menus provided with the To Do List project already contain

functionality to open and close files. In this step you will change the

callbacks to use the methods defined for the File object instead.

1. Select the menu bar and open the Menu Editor by choosing
Tools=Menu Editor.

The Menu Editor appears, as shown in Figure 6-9.

=] MenuBar Editor [
Create Edit Options Help
Menu Name IﬂppluﬂnuBﬂtl I Parent appMainWin1
Menu Accelerator I."<K0Y'-’P>?1°“ Help Pane help_menurct
Panes tems
file_open
help_menurct file_save
file_separator
file_exit
rowColumn _ Use As Help Pane
Name Irue_mnurcl
Label String I:"Fno" Mnemonic I:"P'
Accelerator I
Accelerator Text I
Callback I _]
OK | Apply | Cancel |

Figure 6-9 Menu Editor
2. Selectthefile open item. The propertiesand callbacks arelistedinthe
display area.
3. Click on the Text Editor button (...) beside the Callback property.

A Text Editor appears, displaying the code included with the To Do List
project.

208 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
To Load the Sart-Up Project 6

4. Delete the code provided, replacing it with the following code:

char *str;
Widget w;
XmString xms;

if (File Open(todofile, "r", &UxEnv))

{

w = UxGetWidget (scrolledListl) ;
XmListDeleteAllItems (w) ;

while (str = File Readline(todofile, &UxEnv))

{

/* remove trailing newline and add to the list */
strstrlen(str)-1] = '\0’;

xms = XmStringCreateSimple (str) ;

XmListAddItem(w, xms, 0);XmStringFree (xms) ;

}

File Close(todofile, &UxEnv) ;

}
5. Close the Text Editor and copy the code to the callback by clicking OK.

6. Apply the changes without closing the Menu Editor by clicking Apply.

UIM/X Tutorial Guide 209

Integrating a Non-Visual Object
6 Sep #6: Modifying the To Do List Menus

7. Similarly, enter the following callback for the file save item.

char *taskList;
char *processList;

if (File Open(todofile, "w", &UxEnv))
{

taskList = UxGetItems (scrolledListl) ;
if (taskList)

{

/* Replace commas by newlines and write out to the
list */

processList = taskList;

while (*processList)

if (*processlList == ’,’)

*processList = '\n’;

processList++;

File Writeline(todofile, taskList, &UxEnv) ;
File Close(todofile, &UxEnv) ;

}
8. Apply the changes and close the Menu Editor by clicking OK.

9. Saveyour work.

210 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
To Load the Sart-Up Project

Step #7: Testingthe To Do List

Before generating code for the project in the next section, take a moment to
test the menus.

1.

Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

Test the To Do List interface:

* Toadd atask to the work area, type your text in the Task field,
and click on Add.

* Usethedlider to assign the task a priority level.

» Toeditanexisting task, highlight it in thework area, and click on
Edit. The task is copied to the Task area.
Test the File functionality:

* Choosing File=Save writes the contents of your to do list to
todo.out.

» Choosing File=Open displays the contents of todo.out in
the work area.

* Notethat Snce DESIGN TIME isdefined in Test Mode,
appropriate messages are printed to the Project Window.

When you are through, switch back to Design Mode by clicking on the
Designicon.

Sep #8: Generating the Code and Running the
Executable

The final step in this section is to generate code for the To Do List project.

1.
2.

Check that you are in Design Mode.
Choose File=Generate Project Code As on the Project Window menu.

UIM/X Tutorial Guide 211

6

Integrating a Non-Visual Object
6 Section I1; Integrating the File Object into UIM/X

3. Check that the following radio buttons and toggle buttons are sel ected:
e Write All Interfaces
* RunMakefile
e Write Main Program
* Run Executable

e Write Makefile
4. Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

5. Test your program. Verify that it works asit did in Test Mode (minus the
status messages).

6. To stop the program choose File=Exit.
7. Savethe changesto your program.

Now when you modify the To Do List project, you can simply click on the
Run Mode toggle to generate the code, compile it, and run the executable
in one step.

8. Sinceyou will restart UIM/X in the next section, exit now by choosing
File=EXxit in the Project Window.

Section I11: Integrating the File Object into UIM/X

Fundamental to integrating a new object into UIM/X is creating a new class
definition for the object. The class definition contains information about the
new object that allows it to be added to the UIM/X executable and used like
any other widget. It contains code that lets you use it in projects where both
C or C++ code may be generated. It can also provide a common API and
user interface to the component, and can determine what properties and
callbacks are available for it in the Property Editor.

UIM/X has been designed for easy integration of the custom objects you
create. First you generate a C++ class definition for the object. This code
includes additional “wrapper” and “integration” code required by UIM/X.
For an object created within UIM/X, this code can be produced
automatically.

212 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Where You Arein the Tutorial

While generating class code in UIM/X is automatic, it requires options not
normally available in the Code Generation Options window. To make these
options visible, you must set Builder Engine resources and restart UIM/X.

Once you recompile UIM/X with the class definition, the new object
becomes available for use, and is indistinguishable from those provided
with UIM/X. You can drag and drop it from a palette, and make use of its
methods from within your callback code. In addition, Test Mode, run mode,
and code generation work just as expected.

In this section you will augment the UIM/X executable with the File object
created earlier. You will begin by restarting UIM/X, this time with Builder
Engine resources set. Next you will generate the class code for the File
object. Then you will compile the class code twice—once for use with the
UIM/X executable itself, and once for use with any project code generated
using UIM/X. Once added to the executable, you will add the File object to
the palette, and “polish” the augmented UIM/X to load the palette at start

up.
This section takes about 60 minutes to complete. It contains the following
steps:

Step #9: Restarting UIM/X with Builder Engine Resources

Step #10: Creating the New Class Code

Step #11: Compiling the New UIM/X Class Code

Step #12: Augmenting UIM/X

Step #13: Creating a New UIM/X Palette

Step #14: Polishing the Augmented UIM/X

WhereYou AreintheTutorial
Section |: Creating a Non-Visual File Object
Section I1: Using the File Object in the To Do List
=Section I11: Integrating the File Object into UIM/X
Section IV: Using the Integrated File Object

UIM/X Tutorial Guide 213

6

Integrating a Non-Visual Object
Sep #9: Restarting UIM/X with Builder Engine Resources

Sep #9: Restarting UIM/X with Builder Engine

Resour ces

UIM/X users are accustomed to setting code generation options prior to
generating project code. Integrating a new component, however, requires
options not normally available on the standard Code Generation Options
dialog. (Figure 6-10 shows both dialogs.) In order to display the options
required, you must merge two Builder Engine resources into the current X

resource database.

1= Code Generation]
L —Options Defaults ——
v K&RC 7 Include File Default cod
~¢—— Default code
Cont pport h
o e —— generation
X | Message Catalog options dialog
_JUIL Code Source file suffix (cc
Header file suffix [h
[~ Use Ux Convenience Library
[Fuseucc Library Co+ binding]
oK | Apply | Cancel |
= Code Generation [BiE
Advanced code Languag Options Default
i K&RC [Include File
generation , v
options dialog L ANSIC [~ Context Support
N C++ _1 Message Catalog
_IUIL Code [~ extern C Wrappers ~— Builder Engine

[~ Ux Integrstion Code ~«—— options

Source file suffix |cc
Header file suffix |h

[~ Use Ux Convenience Library
1 Use Ux C Library Ce+ binding

[ox]

Apply I Cancel]

Figure 6-10 Standard and Advanced UIM/X Code Generation Options Dialogs

As part of integrating the File object into UIM/X, you will use UIM/X to
generate C wrappers and Ux Integration Code. The C wrappers make a C++
class callable from a C program. The Ux Integration Code allows UIM/X to

manage the component.

These advanced C++ code generation options become available in the
UIM/X Code Generation Options dialog when two resources are set to true:

214 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
To Restart UIM/X With Builder Engine Resources

Uimx3 0*UxPrjOptionsCGenGenCWrappers.set:true
Uimx3 0*UxPrjOptionsCGenGenUxIntCode.set:true

It is simply a matter of merging the above resources into the current
X-resource database prior to starting UIM/X. This shall be done as part of
this step.

ToRestart UIM/X With Builder Engine Resources

Before you begin this section of the tutorial, load the required Builder
Engine resources and set up a new directory as follows:

1. Under the chapeédirectory, make a directory to store the files you will
create in this section of the tutorial:
mkdir sect3

2. Changeto the directory you just created:

cd sect3

3. Inaterminal window, copy the Fileinterface, File. i, fromthe
chapé/sect2 directory into your current directory:

cp ../sect2/File.i

4. Create adirectory to hold the Motif class definition you will generate, and
another to hold the augmented UIM/X:

mkdir motif augment
5. Add the required Builder Engine resources to the resource database:

xrdb -m
Uimx3 0*UxPrjOptionsCGenGenCWrappers.set:true

Uimx3 0*UxPrjOptionsCGenGenUxIntCode.set:true
When you are through typing, press Ctrl-d to end your xrdb session
6. Start UIM/X from your current directory:

uimx &
e If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx directory/bin/uimx &

After abrief pause, a copyright notice window appears on the screen, to
show that UIM/X is being initialized. When UIM/X is ready, the Project
Window and pal ette appear.

UIM/X Tutorial Guide 215

6

Integrating a Non-Visual Object
6 Sep #9: Restarting UIM/X with Builder Engine Resources

7. LoadtheFileobject, File. i, by choosing File=Open in the Project
Window.

8. lconify the terminal window.

Note: To restart this tutorial, begin again from Step 2 above.

216 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
To Restart UIM/X With Builder Engine Resources 6

Step #10: Creating the New Class Code

Before you can integrate a new component into UIM/X, you must create a
class definition for the component. The class definition must be in C++,
must contain C wrapper functions, and must contain integration code. For
components built in UIM/X, creating the C++ class for it is a simple matter
of generating the C++ code, as you would for any project. While creating
the class definition is automatic, you must be sure to select the correct code
generation options.

UIM/X recognizes component class definitions provided they meet certain
specifications. First, the class definition must be in C++. UIM/X can
integrate C++ class definitions only, but can generate C or C++ project code
using the code. Second, it must be “wrapped” in a C wrapper function. This
allows the C++ class code to be linked to a C language program. More
importantly, since UIM/X is a C program, it allows UIM/X itself to link
with the class definition.

UIM/X also requires that the class definition contain integration code, in a
specific format. This code enables UIM/X to manage the new class
throughout the design process. In addition to managing the component
during design-time, UIM/X must know what component-specific properties
and event callbacks to display in the Property Editor, for example. This
information is contained in the Ux Integration Code.

For components built using UIM/X, producing the correct class
definition—in C++, and including C wrappers and Ux Integration Code—is
a matter of selecting the correct code generation options and generating the
“project code” based on the actual component. For a component produced
outside UIM/X you must write the integration code by hand, as described in
UIM/X Advanced Topics.

In this step you will create the File object’s C++ class definition by
generating the project code using the File object just loaded. In the next
step, you will integrate the new class into UIM/X.

UIM/X Tutorial Guide 217

Integrating a Non-Visual Object
6 Sep #10: Creating the New Class Code

To CreatetheNew UIM/X ClassCode

Thefirst step in integrating a new class into UIM/X is to generate the class
code, containing wrapper code, and Ux Integration code.

1.

2.

218 UIM/X Tutorial Guide

Open the Code Generation Options dialog by choosing Options—=Code
Generation in the Project Window.

Ensure the following radio buttons and toggle buttons are selected:
e C++
e extern C Wrappers
e Ux Integration Code

Close the dialog by clicking OK.

Choose File=Generate Project Code on the Project Window menu. The
Generate Code window appears, as shown in Figure 6-11.

—i Generate Code Options
Project code directory

|:r/lo:f/tutorxaln/chnp&/:oct3 IDIndory

> Yirite All Interfaces
v Write Modified Interfaces

[~ Write Main Program |pnt.1nod.oc

[~ Write Makefile
Makefile Name |tmuuoa i
Executable Name I'Onutlod

] Run Makefile
Target [a11

_| Run Executable
A:gumml
OK | Cancel |

Figure 6-11 Generate Code Window

INTEGRATING A NON-VISUAL OBJECT
To Create the New UIM/X Class Code

5. Check that the following radio buttons and toggle buttons are selected:
* Write All Interfaces
e Write Main Program
* Write Makefile

6. Change the makefile name from its default to File . mk.

7. Click on OK.

UIM/X writes thefiles, displaying progress messages in the M essages
area of the Project Window.

8. When complete, exit UIM/X.

Sep #11: Compiling the New UIM/X Class Code

Once you have generated the C++ class definition for the File object you
can compile the code. Two compiled versions of the class definition are
required—one for linking with UIM/X, and one for linking with other
programs (such as those you create using UIM/X). To compile a specific
version, you edit the class definition makefile and set C++ compiler flags.

In order to link with UIM/X, you must inform the C++ compiler that the
class code contains C wrapper functions, Ux Integration Code, and that it
should be compiled with design-time management considerations.

To link with other applications you need to compile the code with the C
wrapper functions only. This will produce the object file for linking with C
or C++ applications, such as the project code you normally generate when
using UIM/X.

The CPLUS _CFLAGS macro in the makefile defines compiler flags that
control the object file produced. Table 6-4 explains the flags you should use
to produce the object file you want:

Table 6-4 Compiler Flags Required

ToLink With |Use These Flags

UIM/X -DEXTERN_C_WRAPPERS -DUX C -DDESIGN_TIME

C++ codeonly [No flagsrequired.

Cor C++code |-DEXTERN C WRAPPERS

The meaning of the flags is explained in Table 6-5:

UIM/X Tutorial Guide 219

Integrating a Non-Visual Object
6 Sep #11: Compiling the New UIM/X Class Code

Table 6-5 M eaning of Compiler Flags

Compiler Flag Meaning

I nforms the compiler that C++ code is being compiled, but

“DEXTERN_C_W that the C wrapper functionsfor the code should be used, so

RAPPERS i L

it can be called by both C and C++ applications.
-DUX C Compiles the Ux Integration Code required by UIM/X.
-DDESIGN_TIM (Compilesfor proper design-time control and presentation
E of the class.

In this step you will edit the File object class makefile and compile it
twice—once for use with UIM/X, and once for use with other
applications. In the next step you will augment UIM/X with the class
definition executable.

For Linkingwith C and C++ Applications
1. Using atext editor, open the File object makefile, File . mk.
2. Findthelinethat definesthe C++ compiler flags used:
CPLUS CFLAGS =
3. Changeit toread asfollows:
CPLUS CFLAGS = ... -DEXTERN C WRAPPERS

The three dots indicate the presence of platform-specific information.
Leave that information asis. Do not type three dots. The meaning of
-DEXTERN_C WRAPPERS isexplained in Table 6-5.

4. Saveyour changes and exit the text editor.

5. Compile the object code for linking with applications by typing the fol-
lowing at the UNIX command line:

make -f File.mk File.o
6. Move the object code produced to the mot i £ directory for later use.

mv File.o motif

7. If you plan on generating C code for your projects, compile aversion of
UxInterf.o forlinkingwithFile.oin C applications:

make -f File.mk UxInterf.o

220 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
For Linking with UIM/X 5)

8. Movethe object code produced to themot i f directory for later use.

mv UxInterf.o motif

For Linkingwith UIM/X

In this step you will edit the File makefile once again, to include the flags
reguired for linking with UIM/X itself. In addition, to compile the
integration code UIM/X requires header files located in the
/custom/include directory.

1. Using atext editor, open the File object makefile, File . mk.

2. Find theline that defines the C compiler flags used:
UX CFLAGS =
3. Changeit to read asfollows:
UX CFLAGS = ... -I$(UX DIR)/custom/include

Asin the earlier instruction, the three dots indicate you should |eave the
existing information asis.

4. Find the CPLUS_CFLAGS line, thistime changing it to read as follows:
CPLUS CFLAGS = ... -DEXTERN C WRAPPERS -DUX C
-DDESIGN TIME

The meaning of -DEXTERN_C_WRAPPERS, -DUX_C and
_DDESIGN TIME areexplainedin Table 6-5.

5. Compile the object code for augmenting UIM/X by typing the following
at the UNIX command line;

make -f File.mk File.o
6. Movethe object code to the augment directory for later use.

mv File.o augment

UIM/X Tutorial Guide 221

Integrating a Non-Visual Object
6 Sep #12: Augmenting UIM/X

Step #12: Augmenting UIM/X

Once you have compiled the UIM/X class code, you can augment the
UIM/X executable to include the new class. Augmenting UIM/X isasimple
matter of making a copy of the UIM/X main program file and its makefile,
then editing the makefile to include the class object file generated earlier.

When you compile the code, the new class code will be added to the UIM/X
executable. Since the object file contains the class definition, as well as
integration code, the resulting executable will contain all the information it
needs to manage the new class.

To Augment UIM/X

1.

222 UIM/X Tutorial Guide

Change to the directory containing the object code for augmenting
UIM/X:

cd augment

Copy the UIM/X main program file into the augment directory:

cp uimx directory/config/uimx _main.cc

Copy the UIM/X makefile into the augment directory

cp uimx directory/config/Makefile.uimx .

Using atext editor, open the UIM/X makefile, Makefile.uimx.
Find the line that defines the object files included in the executable:
APPL_CPLUSOBJS = $ (AUGMAINOBJ)

Change it so the executable includes the File object code, File. o:
APPL_CPLUSOBJS = $(AUGMAINOBJ) File.o

Create the augmented UIM/X by running the makefile;

make -f Makefile.uimx uimx aug

INTEGRATING A NON-VISUAL OBJECT
Making the File Object Subclass Visible 5)

Step #13: Creating a New UIM/X Palette

Now that you have created the UIM/X augmented executable with the new
File class, the File object is available for use. To make it easier to use, you
can add the object to the palette. To do so, you must run the augmented
executable, and create an empty subclass to hold the File object. Once
created, you populate the subclass with the object by setting its declaration
properties. Next, you add the component to the palette, then save the palette
for future use.

MakingtheFileObject SubclassVisible

In order to allow users to use the File object in projects, it must be made
visible. To create the File object you create an empty instance and add the
File object to it.

1. Run the augmented version of UIM/X:
uimx_aug &
2. Create aManager, such as Drawing Area as shown in Figure 6-12;

ST T

| 2 n ~

Figure 6-12 Temporary Top-Level Interface

UIM/X Tutorial Guide 223

Integrating a Non-Visual Object
6 Sep #13: Creating a New UIM/X Palette

224 UIM/X Tutorial Guide

The Drawing Area manager shall be used to temporarily hold the File
subclass.

Create an empty instance by choosing Selected Objects=Instance and
dragging and drawing it on the Manager, as shown in Figure 6-13:

[—] drawingAreal]

’ instancel "

Figure 6-13 The Empty Instance, instancel

Make the instance the size you want the File object’s outline to appear
when it is dragged and dropped from the Palette. The size is otherwise
unimportant, since a Non Visual object’s dimensions are not used.

Open the Interpreter window by choosing Tools=Interpreter in the
Project Window.

Choose Module= Selected Interface in the Interpreter or click on the cor-
responding icon .

The Interpreter title bar changes to reflect the new scope.

Enter the following code in the Interpreter window.

extern "C" swidget create File(swidget, char *);

When you generated the object file for linking with UIM/X, recall that
create File()wasdefined asaC function. Thiswasso it could be
used by UIM/X to generate C or C++ code. In thisstep theinterpreter isin
C++ Mode. The above declaration isrequired to inform UIM/X that the
create function isa C function.

10.

INTEGRATING A NON-VISUAL OBJECT
Making the File Object Subclass Visible

Triple-click the line of code to highlight it, then choose Inter-
pret=Declare.

The Interpreter evaluates the code, pops up the Command Line interface,
and prints the following to the Interpreter Messages Area:

Result: OK

Close the Interpreter by choosing File=Close.

To rename the instance to something more suitable, begin by loading the
empty instance into the Property Editor.

In the Declaration category, change the Name property to FileObj and
click on Apply.

The instance should now appear as shown in Figure 6-14.

[~ drawingAreal -l

~ - -

J FileObj .

Figure 6-14 The Empty Instance, Renamed

11. Locate the properties shown in Table 6-6, and give them the values indi-

6

cated.
Table 6-6 Declar ation Property Valuesfor File Object Subclass
Property Name New Value
ArgDefinition "swidget UxParent; char *filename;"
Component "File"

UIM/X Tutorial Guide 225

Integrating a Non-Visual Object
6 Sep #13: Creating a New UIM/X Palette

Table 6-6 Declaration Property Valuesfor File Object Subclass

Property Name New Value
Constructor "create File"
HeaderFile "File.h"

12. Click on Apply.

13.
14.

15.

The instance inherits its properties from the named component. Since it
stems from a Non-Visual object, the instance disappears.

Close the Property Editor by choosing File=Close.
Open the Browser by choosing Selected Objects= Tools=Browser.

Although the Non-Visual object isn't visiblein theinterface, itisvisiblein
the Browser. You will use the Browser in the next step.

Save your work.

Addingthe New Subclasstothe Palette

Adding the new subclass to the Palette is a simple matter of placing the
Palette in edit mode, creating a new category of components, and dragging
and dropping an instance of the subclass into a category. For the sake of
organization, it is helpful to create a new category to store the widgets or
objects you add.

1.

Make sure you are in Edit mode by choosing Mode=Edit from the
Palette.

Create anew category of widget by choosing Edit= Create Category from
the Palette.

In the dialog that appears, name the category “Other” and click on OK.
Display the new category by scrolling the Palette to the bottom.

Put an instance of the File interface into the Palette by dragging and drop-
ping it from the Browser.

Use the Adjust mouse button, as if you were moving the interface.

5.
6.

226 UIM/X Tutorial Guide

Switch back to create mode by choosing Mode= Create from the Pal ette.
Save the new Palette by choosing File=Save As from the Palette.

Namethe new Palette File.pal, and saveitin
thechap6/sect3/augment directory.

Your new Palette should now appear as shown in Figure 6-15 (some cate-
gories have been collapsed for display purposes):

INTEGRATING A NON-VISUAL OBJECT
Adding the New Subclass to the Palette 6

— Palette: Ux L1
File Edit View Mode Help

FACEE
EHEE
== B

AF- =k
EEEEN
S=E

¥ Menus

H8=

Dialogs

Shells

Gadgets
Compound Objects
CDE Widgets
Other

L] |

4]

K

4\V|Vv| VY |v|Y

Figure 6-15 The Palette Containing the New Category and Component

8. Exit the augmented UIM/X by selecting File=Exit from the Project Win-
dow. You will be asked to confirm your exit. Exit without saving.

UIM/X Tutorial Guide 227

Integrating a Non-Visual Object
6 Sep #14: Polishing the Augmented UIM/X

Sep #14: Polishing the Augmented UIM/X

Once UIM/X has been augmented with the new class definition and an
instance of the object has been added to the palette, the File object is ready
for use. Further refinements are possible. By adding a few lines of code to
the UIM/X main program source code, you will accelerate display of the
new object and ensure the interpreter recognizes its methods. Also, you can
have the palette containing the File object loaded automatically at start-up.
These simple changes are made by editing the UIM/X main program file,
and the UIM/X resource file.

To accelerate display of the new File object, you must preregister its class
with the interpreter. This is a matter of adding code to the UIM/X main
program

file. First, you add a declaration for the create function of the object’s
constructor. Thisisafunction of theform create object () . Thenyou
add a call to UxRegisterFunction, to preregister the create function.

To enable the interpreter to recognize the object’s methods you must load
the File header file at start-up. To do so, you edit the main program file,
adding a call to UxLoadGlobalInclude, the function that loads header
files into the interpreter.

To load the new Palette at start-up you must add information to the UIM/X
resource file, uimx_directory/app-defaults/Uimx3 0. The resource
file must also contain settings to ensure the interpreter knows the C++
compiler flags used when the class code was generated:
-DEXTERN C WRAPPERS and -DUX_C.

In this step you will edit the UIM/X main program file to preregister the
File create function, create File (), for quick access by the interpreter.
Before recompiling UIM/X, you will also rename the executable to avoid
overwriting the augmented executable already created. This step also
includes modifying the UIM/X resource file to load the new palette at
start-up.

228 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Editing the UIM/X Main Program File

EditingtheUIM/X Main Program File
In this step you add the preregistration code to the UIM/X main program

file.
1.

7.

Using a text editor, open the UIM/X main program file,
uimx main.cc (inthe augment directory).

Find the declaration for UxRegisterFunction():

void UxRegisterFunction UXPROTO ((char *, wvoid*
))

Just after it, add a declaration for the File create function,

create File:

swidget create File UXPROTO((swidget, char *));

Now locate the body of UxRegisterFunctions (), and add thefol-

lowing code, after the last call to UxRegisterFunction():

UxRegisterFunction("create File", create_ File);

Find the section containing initialization code:

/* Insert initialization code for your application
here *

Add acall to load the File object’s header file:

UxLoadGlobalInclude("File.h");
Save your changes and exit the editor.

EditingtheM akefileand Buildingthe New Executable

In this step you edit the makefile to rename the executable to newuimx.
Then you will run the makefile to compile the polished executable that
preregisters the File class.

1.
2.

4,

Using a text editor, edit the makefile, Makefile.uimx.
L ocate the line that defines the executable name:

AUGEXEC = uimx_aug

Rename it to newuimx, as follows:

AUGEXEC = newuimx

Renaming the executable is a safety precaution. If you have to go back a
few steps, the augmented UIM/X created earlier, uimx_aug, will still be
intact.

Save the makefile and exit the editor.

UIM/X Tutorial Guide 229

6

Integrating a Non-Visual Object
6 Sep #14: Polishing the Augmented UIM/X

5.

Build the augmented executable by running the makefile:

make -f Makefile.uimx newuimx

LoadingthePaletteat Sart-up

In this step you edit the UIM/X resource file to ensure the interpreter knows
what compiler flags the class code was compiled with, and which palette to
load at start-up.

1.

230 UIM/X Tutorial Guide

Copy the UIM/X resource file into the current directory (augment):
cp uimx directory/app-defaults/Uimx3 0

Change the permissions to make it writable:

chmod a+w *

Using atext editor, open the resourcefile, Uimx3 0.

Locate the lines that determine the palette loaded at start-up:

Uimx3 0*UxPalettePath.value:

uimx_directory/palettes
Uimx3 0*UxStartingPalettes.value: Uxcde.pal

Change start-up pal ette resources to the new palette in the current direc-
tory:
Uimx3 0*UxPalettePath.value: current directory

Uimx3 0*UxStartingPalettes.value: File.pal

Be sure to specify the path from the root directory, starting with aforward
slash (“/").

Locate the line that informs the interpreter of the CFLAGS used to com-
pile the code:

Uimx3 0.cflags:

Theédllipsis[...] indicates platform-specific information. Do not type three
dots or delete the information.

Add -DEXTERN_C_WRAPPERS-DUX C tothe CFLAGS macro:
Uimx3_0.cflags: -DEXTERN C_WRAPPERS-DUX C ...
Save and close the updated resourcefile.

INTEGRATING A NON-VISUAL OBJECT
Where You Arein the Tutorial 6

Section 1V: Using the Integrated File Object

In this section you will test the new executable to see that the File object
you added behaves as expected. As part of the test, you will use the To Do
List project, this time adding an instance of the new File object to it.

This section illustrates the advantages of augmenting the UIM/X executable
to include new objects. For example, adding a File object to the interface
can be done by dragging and dropping from the palette. While thisis the
case with objects provided as a start-up project (or loaded as an interface)
there is one important difference. Since the File object in the palette is
already an instance, it's methods are available for use, but cannot be
modified.
This section takes about 30 minutes to complete. It contains the following
steps:

Step #15: Starting the New Augmented UIM/X

Step #16: Adding a File Object to the To Do List Project

Step #17: Modifying the To Do List Menus

Step #18: Testing the Integrated Project

Step #19: Generating the Code and Running the Executable

WhereYou AreintheTutorial
Section I: Creating a Non-Visual File Object
Section I1: Using the File Object in the To Do List
Section I11: Integrating the File Object into UIM/X
=Section IV: Using the Integrated File Object

Sep #15: Sarting the New Augmented UIM/X

In this step you will start the new version of UIM/X to see that the palette
you created is loaded at start up. You will also load the start-up project.

1. Under the chapédirectory, make a directory to store the files you will
create in this section of the tutorial:
mkdir sect4

2. Changeto the directory you just created:

cd sect4

3. Copy theFile object’s header file from chapé/sect3 into your work
directory:

UIM/X Tutorial Guide 231

Integrating a Non-Visual Object
6 Sep #16: Adding a File Object to the To Do List Project

cp ../sect3/File.h .
Copy the To Do List project files into your work directory:

cp uimx_directory/contrib/ToDoList/*

Change the permissions on the project files you copied to make them writ-
able:

chmod a+w *

At the UNIX prompt, set the XAPPLRESDIR environment variableto the
directory containing UIM/X’s resource file (the one you copied and added
to):

setenv XAPPLRESDIR ../sect3/augment

By default, UIM/X searches for application defaults in a number of
directoriesin a specific order. Setting xAPPLRESDIR ensures the resource
file you created, uimx3_0, isthe one used.

Run the augmented UIM/X executabl e by typing the following in the ter-
minal window:

. ./sect3/augment /newuimx &

After abrief pause, a copyright notice window appears on the screen, to
show that UIM/X is being initialized. When UIM/X is ready, the Project
Window and your palette appear. Notice the pal ette contains the new
Other category, and the object you created.

| conify the terminal window.

Sep #16: Adding aFileObject tothe To Do List Project

In this step you will load the To Do List project, and add a FileObj from
the new palette.

1.

232 UIM/X Tutorial Guide

Choose File=Open in the Project Window and choose ToDo.prj (in
chap6/sect4).

Select OK.

Dialogs appear indicating that you are loading an interface originally
created in Novice Mode, and that compound objects will be converted to
widgets.

Dismiss each dialog as it appears by clicking Replace.

Add aFileObj fromthe Others category of the Palette to the To Do List
interface.

Open the Browser by choosing Selected Objects= Tools=Browser.

9.

10.
11.

INTEGRATING A NON-VISUAL OBJECT
Where You Arein the Tutorial

Load the File Object, Fi1eObj1, into the Property Editor by selecting it
in the Browser and choosing Selected Objects= Tools= Property Editor.

In the Core category locate the £ i1ename property, changing it from
NULL to "todo.out".

This property specifiesthe file that will be operated upon. It is passed into
the File Object viaits create function.

In the Declaration category locate the Name property, changing it from
FileObjltotodofile.

Apply your changes by clicking on Apply in the Property Editor.
Close the Property Editor by choosing File=Close.
Save your work asanew project, Integrated.prj.

Sep #17: Modifying the To Do List Menus

In this step you will change the callbacks for the File=Open and
File=Close items to use the methods defined for the File object instead.

1.

Select the menu bar and open the Menu Editor by choosing
Tools=Menu Editor.

The Menu Editor appears, as shown in Figure 6-16.

=] MenuBar Editor I-]
Create Edit Options Help
Menu Name Iappl.uonu.snzi I Parent appMainWin1t
Menu Accelerator l."ml’l»l' 0" Help Pane help_menurct
Panes tems
file_open
help_menurct file_save

file_separator
file_exit
rowColumn _1 Use As Help Pane
Name l file_menurcl
Label String I:“hlo" Mnemonic |:“P"
Accelerator I
Accelerator Text I
Callback I _,
oK | Apply | Cancel |

Figure 6-16 Menu Editor

UIM/X Tutorial Guide 233

6

Integrating a Non-Visual Object
6 Sep #17: Modifying the To Do List Menus

2. Selectthefile open item. The propertiesand callbacks arelistedinthe
display area.
3. Click on the Text Editor button (...) beside the Callback property.

A Text Editor appears, displaying the code included with the To Do List
project.

234 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Where You Arein the Tutorial 6

Delete the code provided, replacing it with the following code:

char *str;
Widget w;
XmString xms;

if (File Open(todofile, "r", &UxEnv))

{

w = UxGetWidget (scrolledListl) ;
XmListDeleteAllItems (w) ;

while (str = File Readline(todofile, &UxEnv))
{

/* remove trailing newline and add to the list */
strstrlen(str)-1] = '\0’;

xms = XmStringCreateSimple (str) ;
XmListAddItem(w, xms, O0);

XmStringFree (xms) ;

}

File Close(todofile, &UXEnv) ;

}

Close the Text Editor and copy the code to the callback by clicking on OK.
Apply the changes without closing the Menu Editor by clicking on Apply.
Similarly, enter the following callback for thefile save item.

UIM/X Tutorial Guide 235

Integrating a Non-Visual Object
6 Sep #17: Modifying the To Do List Menus

char *taskList;
char *processlList;

if (File Open(todofile, "w", &UxEnv))
{

taskList = UxGetItems (scrolledListl) ;
if (taskList)

{

/* Replace commas by newlines and write out to the
list */

processList = taskList;

while (*processList)

if (*processlList == ',")

{*

processList = ‘\n’;

processList++;

File Writeline(todofile, taskList, &UxEnv) ;
File Close(todofile, &UxEnv) ;

}

}
8. Apply the changes and close the Menu Editor by clicking on OK.

9. Saveyour work.

236 UIM/X Tutorial Guide

INTEGRATING A NON-VISUAL OBJECT
Editing the Makefile Template 5)

Sep #18: Testing the Integrated Project

Before generating the project code for the new To Do List project, test that
the interface operates as expected.

1. Asbefore, switch to Test Mode by clicking on the Test icon in the
Project Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. TesttheTo Do List interface:

* Toadd atask to the work area, type your text in the Task field,
and click on Add.

» Usethedlider to assign the task a priority level.
» Toeditanexisting task, highlight it in thework area, and click on
Edit. The task is copied to the Task area.
3. Test the File functionality:

* Choosing File=Save writes the contents of your to do list to the
filetodo.out.

» Choosing File=Open displays the contents of todo.out in
the work area.

4. You can verify that afile has been created by looking in your working
directory from the command line.

5. When you are through, switch back to Design Mode by clicking on the
Designicon

Sep #19: Generating the Code and Running the
Executable

The final step in creating your project is to edit its makefile template and
generate code for the integrated To Do List project.

EditingtheM akefile Template

When generating code, UIM/X uses a makefile template, replacing variables
in the template with the names of elements in your project. In this step you
will edit the makefile template, adding the pathto File .o (Motif version)
you created earlier. You must aso inform the compiler that the object file
was created with C wrappers. The instructions vary slightly, depending on
whether you will be generating K&R C, ANSI C, or C++.

UIM/X Tutorial Guide 237

Integrating a Non-Visual Object
6 Sep #19: Generating the Code and Running the Executable

1.

238 UIM/X Tutorial Guide

Open the Program Layout editor by choosing Tools=Program Layout
in the Project Window.

Click on the Text Editor button [...] next to the Ux Makefile field. The
Text Editor appears.

Locate thelinethat beginsAPPL._OBJS and, placing the cursor at the end,
add the following:
APPL OBJS =/sect3/motif/File.o

For clarity, the part you typeisindicated in bold. The three dots indicate
you should leave the rest of the text asis. Do not type the three dots.

If you will be generating C code, add the path to UxInterf . o (that you
created earlier) aswell:

APPL OBJS =/sect3/motif/File.o
../sect3/motif/UxInterf.o

If you will be generating C++, locate the line that begins

CPLUS_CFLAGS. Placing the cursor at the end, add the following:

CPLUS CFLAGS = ... -DEXTERN C WRAPPERS

Once again, the part you typeisindicated in bold. Leave therest asis.

If you will be generating K& R C, add the above information to the end of
the line that begins KR_CFLAGS instead. For ANSI C, add it to the line
that begins ANSI_C.

Thereis one last change for those who will be generating C code. Since
the Non-Visual Object you created is a C++ object, you must use the C++
linker. Locate the lines that define the linker used:

LD = \

@‘if ["$(LANGUAGE)" = "C++"]; then echo
$ (CPLUS_CC) ; £i' \

‘if ["S$(LANGUAGE)" = "ANSI C"]; then echo
$ (ANSI_CC); f£i'\

‘if ["S$(LANGUAGE)" = "KR-C"]; then echo

$(KR_CC); fi®

8.
9.

INTEGRATING A NON-VISUAL OBJECT
Generating the Code and Running the Executable

Change it to read as follows:

LD = \

@'if ["$(LANGUAGE)" = "C++"]; then echo
$(CPLUS_CC) ;£i \

‘if ["$(LANGUAGE)" = "ANSI C"]; then echo
$(CPLUS _CC); fi'\

‘if ["$(LANGUAGE)" = "KR-C"]; then echo
$(cPLUS ccC); fi°

The changes are indicated in bold.

Close the Text Editor by clicking OK.

Save your changes and close the Program Layout Editor by clicking OK.

10. Saveyour work.

Generatingthe Codeand Runningthe Executable

1.

2. Choose Options=Code Generation on the Project Window menu. The
Code Generation Options window appears, as shown in Figure 6-17.

Check that you are in Design Mode.

—| Code Generation -1
—Language——— —~Oplions Defaults
v K&RC [Include File
 ANSIC [~ Contest Support
A Ce+ I _I Message Catalog
_JUIL Code -] extern C Wrappers

o Ux Integration Code
Source file suffix |cc
Header file suffix |}|

[~ Use Ux Convenience Library
_1Use Ux Convenience Library Ce++ bindings

oK | Apply | Cancel |

Figure 6-17 Code Generation Options

6

UIM/X Tutorial Guide 239

Integrating a Non-Visual Object
6 Sep #19: Generating the Code and Running the Executable

3.

8.
9.

Ensure the following radio and options buttons are selected:
. C++
e IncludeFile
e Context Support

e UseUx Convenience Library

Since multiple copies of the dialogs can be created by the application,
context support is required. If you carried out the steps required for
generating K&R C or ANSIC, you can select those languages too.

Save your changes and close the dialog by clicking on OK.
Choose File=Generate Project Code As on the Project Window menu.
Check that the following radio buttons and toggle buttons are sel ected:
e Write All Interfaces
e Write Main Program
e Write Makefile
* RunMakefile

e Run Executable
Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

Test your program. Verify that it works asit did in Test Mode.
To stop the program choose File=Exit.

10. Save the changes to your program.

240 UIM/X Tutorial Guide

| ndex

Symbols

i filel17, 49
prj file17, 49

A

Adjust mouse button xii

Alt key xi

APPL_CPLUSOBJS 222
application defaults xiii
Application Window 44
application window behavior 105
arranging widgets 19

B

be.rf
See also Builder Engine resourcefile
behavior
adding callback 146
application window 105
See also Connection Editor
Browser 63
Builder Engine resource file 215
Bulletin Board widget 136

C

C Mode 169

C++ bindings 169

C++ compiler flags 219, 220
C++ Mode 169

callback accessor 37, 173
cancelling operations 83
category option menu 142
circlexpm 109

| ndex

classes
and inheritance 154
compiling class code 219
compiling for C and C++ 219, 220
compiling for UIM/X 221
creating class definition 217-219
creating empty 219
creating new 154
creating new widget class 168
defining C++ classin code 163
exposing behavior in class instances 155
exposing propertiesin classinstances 154
See also RGB Color Editor project
clientAutoPlace resource 6
code generation 71, 72, 150, 187
setting options 215
Color Database 90
Color Editor 89
Color Viewer 89
ColorBox project 2-35
adding callback behavior to Push Buttons 31
adding Push Buttons 16
changing labels 26
Connection Editor 31
Constraint Editor 2, 23
description of GUI 3
Novice Mode 3
Property Editor 2
running the application 34
Test Mode 3
testing 34
Command Line project 133-151
adding an option menu 139
adding behavior to option menu 146
adding behavior to Toggle Buttons 146
adding Declarations 143

UIM/X Tutorial Guide 241

| ndex

code generation 150
description of GUI 134
options menus 139, 146
Property Editor 141
testing 149
Toggle Button 146
Communication project 3774
adding behavior to menus 67
adding callbacks to dialogs 57
adding dialog instances 61
changing dialog properties 55
code generation 71
description of GUI 38
menus 65
popping up dialogs 73
testing 71
compound abjects
definition x
Connection Editor 31, 32, 67, 177, 184
and exposed callbacks 178
and interface methods 178
editing connections 184
loading widgets 33
reordering connections 181
Constraint Editor 2, 23
CPLUS CFLAGS
See also C++ compiler flags
create function
adding parameters 193

D

-DDESIGN_TIME 220
Declaration Editor 143, 165, 196
definition

compound object x

interface xi

Motif widget x

object x

project xi
DESIGN_TIME 198
-DEXTERN_C_WRAPPERS 219, 220
dialogs

242 UIM/X Tutorial Guide

centering over caling interface 57
Message Box 76
popping up 38, 73
setting display size 64
unmanaging Push Buttons 58
See also Communication project
See also Drawing Editor project
dragging and drawing widgets (detailed) 42
dragging and dropping widgets 47, 82
(detailed) 10
Drawing Areawidget 9, 157
Drawing Editor project 76-132
adding a pulldown menu 95
adding color-drawing behavior 92
adding dialogs 118-127

adding line-drawing functionality 105-118

application window behavior 76, 105
cascading menu 97
color-changing Push Buttons 86
description of interface 77
generating code 127-132
Menu Editor 76, 95
menus 94-105
Message Box widget 76
methods 76
property accessor methods 122
pulldown menus 95
testing color-changing Push Buttons 93
testing line-drawing Push Buttons 117
testing menus 104
Trandlation Table List 110
translation tables 76
UxPutTranslations() 117

duplicating widgets 19-22, 48

-DUX_C 220

E

editors
Browser 63
Color Editor 89
Color Viewer 89
Connection Editor 31, 67, 177, 184

Constraint Editor 2, 23
Declaration Editor 143, 165, 196
Event Editor 110
Icon Viewer 107
Interpreter 149, 185
Menu Editor 76, 94, 95, 139
Method Editor 37, 122, 167, 198
Option Menu 146
Property Editor 2, 54, 141, 142, 161, 173, 195
Trandation Table Editor 106, 110
ellipse.xpm 109
Enter key xi
See also Return key xi
Event Editor 110

F

File Selection Box widget
adding behavior 217
See also Communication project
files
117,49
prj 17, 49
Form widget 158
Frame widget 83

G

Gadgets 138
Generate Code Options 35, 72
generating code 71

H
Horizontal Scale widget 160

Icon Viewer 107
Installation Directories Xi
instances 37
adding dialogs to an interface 61
adding to an interface 168
and Novice Mode 61
and Standard Mode 61
exposing callbacks 37, 169, 173

| ndex

exposing properties 37, 169
novice mode and standard mode differences
73

setting display size 63

setting exposed properties 175
integrating objects

See also Non-Visual project
integration code

See also Ux Integration Code
interfaces

creating reusable 154

definition xi

Setting resizing constraints 2
Interpreter 149, 185

L

Label widget 159
line.xpm 108, 109
line-drawing Push Buttons 117

M

Makefile.uimx 222
Menu Editor 76, 94, 95, 139
Novice Mode differences 66
Menu mouse button xii
menus
adding behavior 67
built-in behavior 76
cascading 97
Option Menu Editor 140, 146
option menus 139
pulldown 95
Selected Objects 20, 48, 137
Message Box dialog 47, 76
See also Communication project
See also Drawing Editor project
Method Editor 37, 122, 167, 198
and Novice Mode 39
methods 76, 173
and Connection Editor 177
callback accessor 37, 173
creating 198

UIM/X Tutorial Guide 243

| ndex

for integrated objects 198
property accessor 37, 118, 122, 168
Motif widget
definition x
mouse
adjust button xii
cancelling operations 83
menu button xii
responding to general mouse activity 106
select button xii
usage Xii
See also Trandlation Tables
mouse buttons
naming conventions for xii
mouse pointer
compass shape 13
moving widgets 12-15, 47

N

naming conventions
menu options Xi
methods 198
Return key xi
shell prompts xi
widget labels 17

Non-Visual project 189-240
adding behavior to menus 208, 233
adding categories to Palette 223, 226
adding instance to interface 203
adding parameter to create function 193
C++ compiler flags 219
creating File Selection Box subclass 219
creating methods 198
description of GUI 190
generating code 211, 237
integrating into UIM/X 212-230
testing 211, 237

Non-Visua Shell widget 189

Novice Mode 3
and instances 61
and Method Editor 39
Menu Editor differences 66

244 UIM/X Tutorial Guide

Paettein 7
starting in 5, 39

@)
object
definition x
object class 212
Option Menu Editor 140, 146
Option Menus 139

P

Palette 2
adding categories 223, 226
adding items 226
category 7
expand arrow 7, 8
Novice Mode 7
using 7-8

Project Window
duplicating widgetsin 20
iconsin 11

projects
ColorBox project 2-35
Command Line project 133-151
Communication project 3774
definition xi
Drawing Editor project 76-132
Non-Visual project 189-240
RGB Color Editor project 154188
saving (detailed) 17, 49

Prompt widget 76

properties
adding to Property Editor 169, 212
Behavior 3, 145
changing at design-time 2, 87
changing at runtime 76
changing dialog 54
changing for several widgets at once 87
exposing in instances 169

property accessor 37

property accessor methods 118, 122, 168

Property Editor 2, 52, 54, 141, 142, 161, 173, 195

loading by name 30
loading into 52
Push Button widget 16
adding callback behavior 31, 92, 146

R

rectangle.xpm 109
resize grid 12
resizing interfaces 2
resizing widgets 12-15, 46
resources
setting xiii
setting for advanced Code Generation options
217
Return key xi
RGB Color Editor project 154-188
changing labels 161
code generation 187
Connection Editor 177
description of GUI 155
exposing behavior in classinstances 173
exposing properties in class instances 168
Property Editor 161
setting exposed properties 175
testing 185
using exposed behavior 178
Row Column widget 138

S

saving, detailed instructions 17, 49
Scrolled Window widget 81
Select mouse button xii
Selected Objects popup menu 20, 48, 137
selecting widgets 51, 87
selection handles 11
Standard Mode

and instances 61

gtarting in 79, 135, 157, 192
subclassing

See also classes

See also RGB Color Editor project
subprocess control

| ndex

See also Command Line project

T

Test Mode 3, 34, 71, 149, 185

testing

ColorBox project 34
color-changing Push Buttons 93
Command Line project 149
Communication project 71

Drawing Editor project 93, 104, 117
Non-Visual project 237

RGB Color Editor project 185

Text widget 15, 137
To Do List project

See also Non-Visual project

Toggle Button 146

Toggle Button gadget 138
Translation Table Editor 106, 110
Trandation Table List 110

trans ation tables 76

and application window behavior 106

and mouse activity 76, 106

assigning to awidget 116
Typographic Conventions xi

U

UIM/X
makefile 222

saving your work 49
starting in Novice Mode 5, 39
starting in Standard Mode 79, 135, 157, 192

uimx_aug 222

Uimx3_0* UxPrjOptions 215
CGenGenCWrappers 215
CGenGenUxIntCode 215

Ux Integration Code 217

UxCreateSubproc() 133, 145

UxExecSubproc() 133

UxGetBackground() 93

UxGetProperty() 76, 93

UxGetTextString() 58, 59

UxManage() 61

UIM/X Tutorial Guide 245

| ndex

UxPopuplnterface() 186
UxPutBackground() 93
UxPutDefaultPosition() 60
UxPutLabel String() 168, 179
UxPutProperty() 76, 93
UxPutTranslations() 117
UxSetSubprocClosure() 145
UxThisWidget() 58, 59
UxVisualInterface() 37

w

widget creation
adding resizing constraints 23
dragging and drawing (detailed) 10, 42
dragging and dropping 82
widget operations
and the Browser 64
cancelling 83
creating custom colors 91
duplicating in Project Window 20
duplication 19, 48
moving and resizing 12-15, 46
using window decorations 12
widget selection
marquee selection 87
selecting multiple widgets 87
selection handles 11
widgets
adding behavior 2
adding behavior to dialogs 57
Application Window 42, 44
arranging 21
built-in behavior 2
Bulletin Board 136
changing properties 2, 27, 141, 161
definition x
dialog 76
dragging and dropping 82
Drawing Area9, 157
File Selection Box 217
Form 158
Frame 83

246 UIM/X Tutorial Guide

X

Horizontal Scale 160
Label 159

Message Box dialog 47, 76
moving 47

naming conventions 17
Non-Visua Shell 189
Prompt 76

Push Button 17

resizing 46

Row Column 138
Scrolled Window 81
setting colors 89

Text 15, 137

Toggle Button gadget 138

XAPPLRESDIR 232
XmM essageBoxGetChild() 60
XtUnmanageChild() 60

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

