
�������	
��
����	
��

ii UIM/X Tutorial Guide

Copyright © 2005-2007 Integrated Computer Solutions, Inc.

The UIM/X Tutorial Guide™ manual is copyrighted by Integrated Computer Solutions, Inc., with all rights
reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system, or transmitted
in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the
prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 Middlesex Turnpike, Bedford, MA 01730

Tel: 617.621.0060

Fax: 617.621.9555

E-mail: info@ics.com

WWW: http://www.ics.com

UIM/X Trademarks
UIM/X, GUI Builder Engine, Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software
Development Kit, BX/Win SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak,
ViewKit ObjectPak, VKit, and ICS Motif are trademarks of Integrated Computer Solutions, Inc.

Motif is a trademark of Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/
Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

All other trademarks are properties of their respective owners.

Contents

UIM/X Tutorial Guide iii

Preface... vii
Part I: Novice Mode Tutorials

Chapter 1—Building a Simple User Interface
The GUI You Will Build ... 3

The Steps in this Tutorial ... 4

Step #1: Starting UIM/X in Novice Mode ... 5

Step #2: Using the Novice Palette ...7

Step #3: Creating the Main Window ... 8

Step #4: Moving and Resizing Widgets .. 12

Step #5: Adding the Remaining Widgets .. 15

Step #6: Saving Your Work ... 17

Step #7: Duplicating and Arranging Widgets .. 19

 Step #8: Adding Resizing Constraints .. 23

Step #9: Changing Labels and Names ... 26

Step #10: Adding Behavior to the Push Buttons ... 31

Step #11: Testing the Program .. 34

Step #12: Generating the Code and Running the Executable .. 34

Chapter 2—Communicating Between Interfaces
The GUI You Will Build ... 38

The Steps in This Tutorial ... 39

Step #1: Starting UIM/X in Novice Mode ... 39

Step #2: Laying Out the Interfaces .. 41

Step #3: Saving Your Work ... 49

Step #4: Changing Titles, Labels, and Other Properties .. 51

Step #5: Adding Callbacks to the File Selection Boxes .. 57

Step #6: Adding Instances of the Dialogs to the Application Window 61

Step #7: Adding Items to the Menus ... 65

Step #8: Adding Behavior to the Menus .. 67

Step #9: Testing the Program .. 71

Step #10: Generating the Code and Running the Executable .. 72

Part II: Standard Mode Tutorials

Chapter 3—Creating a Drawing Editor
The GUI You Will Build ... 77

The Sections in This Tutorial .. 78

iv UIM/X Tutorial Guide

Section I: Getting Started and Drawing the Interface ... 78

Step #1: Starting UIM/X in Standard Mode .. 79

Step #2: Loading the Start-Up Project .. 80

Step #3: Laying Out the Working Area .. 81

Step #4: Changing Labels and Other Properties ... 87

Step #5: Adding Behavior to the Push Buttons ... 92

Step #6: Testing the Color-Changing Push Buttons .. 93

Section II: Working with Menus ... 94

Step #7: Adding a Pulldown Menu ... 95

Step #8: Adding a Cascading Menu .. 97

Step #9: Adding Behavior to the Color Menu ... 100

Step #10: Testing the Menus ... 104

Section III: Adding Line-Drawing Functionality .. 105

Step #11: Creating the Line-Drawing Push Buttons ... 107

Step #12: Creating the Application Window Behavior ... 110

Step #13: Applying the Behavior to the Line-Drawing Push Buttons 116

Step #14: Testing the Line-Drawing Push Buttons ... 117

Section IV: Working with Message Box Dialogs ... 118

Step #15: Adding the Widgets .. 120

Step #16: Creating Property Accessor Methods for the Message Box 122

Step #17: Adding Behavior to the Popup Push Button ... 124

Step #18: Testing the Message Box and Text Box ... 127

Section V: Generating the Application Code .. 127

Step #19: Customizing the Main Program and Makefile .. 128

Step #20: Generating the Code and Running the Executable ... 130

Chapter 4—Building a GUI for a Command-Line Application
The GUI You Will Build ... 134

The Steps in This Tutorial ... 135

Step #1: Starting UIM/X in Standard Mode .. 135

Step #2: Laying Out the Interface ... 136

Step #3: Changing Labels and Other Properties ... 141

Step #4: Adding Declarations and Final Code .. 143

Step #5: Adding Behavior to the Interface .. 145

Step #6: Testing the Program .. 149

Step #7: Generating the Code and Running the Executable ... 150

Part III: Advanced Tutorials

UIM/X Tutorial Guide v

Chapter 5—Creating an RGB Color Editor in C++
The GUI You Will Build ... 155

Step #1: Starting UIM/X in Standard Mode .. 157

Step #2: Laying Out the Interface .. 157

Step #3: Changing LabelStrings and Other Properties .. 160

Step #4: Adding Declarations and Global Code .. 163

Step #5: Defining a Method to Update the Display ... 167

Step #6: Creating a Scale Class ... 168

Step #7: Exposing Properties in the Scale Class ...168

Step #8: Exposing Behavior in the Scale Class ... 173

Step #9: Setting Properties in the Instance .. 175

Step #10: Adding Behavior to the Instance ... 177

Reordering the Connections .. 181

Step #11: Completing the Interface ... 182

Step #12: Testing the Program .. 185

Step #13: Generating the C++ Code and Running the Executable .. 187

Chapter 6—Integrating a Non-Visual Object
About This Tutorial ... 190

The GUI You Will Build ... 190

The Sections in This Tutorial .. 191

Section I: Creating a Non-Visual File Object ..192

Step #1: Starting UIM/X in Standard Mode .. 192

Step #2: Creating the Non-Visual File Object ... 193

Step #3: Adding Functionality to the File Object .. 198

Section II: Using the File Object in the To Do List ... 203

Step #4: Loading the Start-Up Project ... 204

Step #5: Adding an Instance of the File Object to the Interface ..206

Step #6: Modifying the To Do List Menus .. 208

Step #7: Testing the To Do List ... 211

Step #8: Generating the Code and Running the Executable ..211

Section III: Integrating the File Object into UIM/X .. 212

Step #9: Restarting UIM/X with Builder Engine Resources ... 214

Step #10: Creating the New Class Code .. 217

Step #11: Compiling the New UIM/X Class Code .. 219

Step #12: Augmenting UIM/X .. 222

Step #13: Creating a New UIM/X Palette ... 223

Step #14: Polishing the Augmented UIM/X .. 228

Section IV: Using the Integrated File Object ..231

vi UIM/X Tutorial Guide

Step #15: Starting the New Augmented UIM/X ... 231

Step #16: Adding a File Object to the To Do List Project .. 232

Step #17: Modifying the To Do List Menus ... 233

Step #18: Testing the Integrated Project ... 237

Step #19: Generating the Code and Running the Executable ... 237

Index .. 241

UIM/X Tutorial Guide vii

Preface

Overview

Welcome to the UIM/X Tutorial Guide, the guide to learning how to use
UIM/X, the world’s most powerful user interface management system. This
guide introduces the basics of UIM/X in a series of step-by-step tutorials
teaching the tools and techniques that will greatly assist you in developing
your own applications. Whether you are new to GUI design and UIM/X, or
are an experienced Motif programmer, this guide will be of service.

This guide contains all the information you need to begin using UIM/X to
interactively create, modify, test, and generate code for applications with
Graphical User Interfaces (GUIs). It acts as a continuing introduction to
UIM/X, for those who have completed the tutorial in the UIM/X Beginner’s
Guide. It is also designed for experienced developers who want hands-on
experience with advanced topics.

Tutorials are provided at three levels of experience. The first two chapters
contain tutorials performed in Novice Mode, UIM/X’s simplified mode for
new users. The next two chapters contain more challenging tutorials in
Standard Mode. The final two chapters provide instruction in advanced
techniques for the experienced developer. Whatever your level of
experience, you will find a tutorial in this guide to suit your needs.

viii UIM/X Tutorial Guide

Who Should Use this Guide

The UIM/X Tutorial Guide is intended for the user who wants to learn how
to use UIM/X through hands-on experience. Though no programming skills
are required to perform any of the tutorials in this guide, for a more
complete understanding you should have some knowledge of C or C++, and
a general understanding of the X Window System. You should also know
how to use common items such as menus, Push Buttons, and Scroll Bars. If
you are not familiar with these items, you might find it useful to review the
UIM/X Beginner’s Guide.

The UIM/X Document Set and Related Books

This section lists the UIM/X document set, and provides a suggested list for
further reading. The following list is the complete UIM/X document set:

• UIM/X Installation Guide. Explains how to install and run UIM/X.
Includes information on the files provided with UIM/X, backwards
compatibility issues, and compiler considerations.

• UIM/X Beginner’s Guide. Introduces UIM/X by presenting Novice Mode,
the simplified Palette that enables new users to be productive immediately.
Includes information on a number of important features for creating,
testing and running applications.

• UIM/X Tutorial Guide. A series of step-by-step tutorials, teaching tools
and techniques that will greatly assist you in developing your own
applications. Features tutorials in Novice Mode, Standard Mode, and on
advanced topics.

• UIM/X User’s Guide. Explores the UIM/X features essential to GUI
development. Includes discussions of how to use UIM/X’s editors to set
properties, add behavior, etc.

• UIM/X Motif Developer’s Guide. An in-depth guide to the widgets,
features and capabilities of UIM/X as they relate specifically to Motif
development.

• UIM/X Advanced Topics. Describes how to customize UIM/X, including
integrating new widget and component classes into the executable.
Includes reference information of an advanced technical nature.

• UIM/X Reference Manual. A comprehensive list of properties, methods,
and events, plus more, for Motif development. Designed for the
experienced developer.

UIM/X Tutorial Guide ix

Suggested Reading

For more information on designing GUIs, see any of the following books:

• OSF/Motif Style Guide release 1.2 (Prentice Hall, 1993, ISBN
0-13-643123-2)

• Visual Design with OSF/Motif (by Shiz Kobara, Addison-Wesley, 1991,
ISBN 0-201-56320-7)

• New Windows Interface: An Application Guide (Microsoft Corporation,
1994, ISBN 1-55615-679-0)

• Human Interface Guidelines: The Apple Desktop Interface
(Addison-Wesley, 1987, ISBN 0-201-17753-6)

How This Guide Is Organized

Before continuing, take a moment to read the short overview that follows.
After reading it you will know where to turn for the information you need.

Part I: Novice Mode Tutorials

Chapter 1, “Building a Simple User Interface”, provides an introduction to
application development using UIM/X in Novice Mode. If you have never
used a GUI builder such as UIM/X before, or would like an introduction to
some new features, start here.

Chapter 2, “Communicating Between Interfaces”,�introduces an easy-to-use
technique for displaying popup dialogs such as Message Boxes and File
Selection Boxes. It also explains how to use the Menu Editor to add
behavior to pulldown menus.

Part II: Standard Mode Tutorials

Chapter 3, “Creating a Drawing Editor”, demonstrates how to respond to
mouse action in an Application Window, and how manipulate popup dialogs
using methods. As a Standard Mode tutorial, it takes advantage of the full
power of UIM/X while skipping the point-and-click details of the earlier
chapters. If you have previous experience with UIM/X, start here.

Chapter 4, “Building a GUI for a Command-Line Application”,
demonstrates how to create an interface for a previously existing
command-line application. You might want to try this tutorial, even if you
will use UIM/X to build your application from start to finish, since it
illustrates how to control UNIX sub-processes from within a user interface.

x UIM/X Tutorial Guide

Part III: Advanced Tutorials

Chapter 5, “Creating an RGB Color Editor in C++”,�demonstrates how to
build an application using C++ and object-oriented programming techniques
such as subclassing.

Chapter 6, “Integrating a Non-Visual Object”, shows how to create
interface objects such as files, servers, linked lists, that by their very nature
have no visual representation. It also demonstrates how to augment UIM/X,
adding a new object to the executable and the Palette.

Index, a comprehensive index.

Some Terms You Should Know

Certain basic terms recur throughout this guide, and it helps to understand
them from the outset.

An object is a building block you can use to build an interface with UIM/X.

A Motif widget is an object whose appearance and behavior precisely
follows the OSF/Motif Style Guide. The novice mode of UIM/X supports a
number of popular Motif widgets, including Push Button, Label, Text Field,
and more.

A compound object consists of several Motif widgets combined into one
object for your convenience. The novice mode of UIM/X supports a number
of compound objects, including Application Window and Group Box, that
save you the time you might otherwise spend creating them.

An interface is a window or dialog box that you build up from objects with
UIM/X. The novice mode of UIM/X supports four different types of
interfaces: Application Window, Secondary Window, Message dialog box,
and File Selection dialog box. Certain menu options refer to an interface,
such as Save Interface; these act only on your selected interface.

A project contains all the interfaces (i.e., windows and dialog boxes) and their
associated files for a certain GUI you are building with UIM/X. The program
can automatically save and generate code for an entire project in one step.
Certain menu options refer to a project, such as Save Project; these act on all
the windows and dialog boxes in your project.

UIM/X Tutorial Guide xi

Conventions Used in this Guide

Typographic
Conventions

The following table describes the typographic conventions used in this
guide.

Installation
Directories

Product installation directories can depend on the platform or the user’s
preferences. To keep things simple, this guide uses general names for
product installation directories. The following table lists the name and the
corresponding product installation directory:

Using the Mouse Before starting the tutorial, take a moment to review the location and usage
of your mouse buttons, as illustrated in the Figure P-1and the following
table:

Typeface or
Symbol Meaning Example

AaBbCc12 The names of commands, files, and
directories;
or onscreen output;
or user input.

Edit your .login file.

%You have mail. Use ls

-a to list all the files.

AaBbCc12 A placeholder you replace with your
actual value;
or words to be emphasized;
or book titles.

To delete a file, type rm

filename.
You must be root to do this.

See Chapter 6 in the User’s
Guide.

FileOpen The Open option in the File menu. Choose the FileOpen command.

Alt+F4 Press both Alt and F4 at once. Press Alt+F4 to exit.

Return The key on your keyboard marked

Enter, Return, or .

Press Return.

Name Description

uimx_directory The UIM/X installation directory

xii UIM/X Tutorial Guide

Throughout this book, you will use the mouse buttons along with the mouse
pointer to make selections, move the input pointer, or position the text
insertion point. You can perform any of the following mouse operations.

In general, instructions for mouse operations include the name of the mouse
button. The exceptions are Click, Double-click, and Drag. These common
operations may be described without specifying a mouse button. For
example:

• Click on the applWindow1 icon in the Interfaces Area of the Project
Window.

• Drag the Push Button icon from the Palette.

Button: Called: Is used for:

1 Select Selecting objects, menus, toggles, and options.

2 Adjust Resizing and moving objects.

3 Menu Displaying popup menus.

Operation Description

Point to Move the mouse to make the pointer go as directed.

Press Hold down a mouse button.

Release Release a mouse button after pressing it.

Click Quickly press and release a mouse button without moving the mouse.

Drag Move the mouse while pressing a mouse button.

Double-click
Click a mouse button twice in rapid succession without moving the
mouse pointer.

Triple-click
Click a mouse button three times in rapid succession without moving
the mouse pointer.

1: Select 2: Adjust 3: Menu

UIM/X Tutorial Guide xiii

In these cases, use the Select button to click and double-click, and the
Adjust button to drag.

Setting Application Defaults

Application Defaults configure the way UIM/X looks and set the default
preferences for many of its operations. You can set the Application Defaults
for all UIM/X users or for a single user. For more details on setting your
Application Defaults see UIM/X User’s Guide.

For optimum performance, set the following resources in your Application
Defaults.

Mwm*autoKeyFocus: false

Mwm*clientAutoPlace: false

Mwm*focusAutoRaise: false

Mwm*focusFollowsPointer: true

Mwm*keyboardFocusPolicy: pointer

Note: The resources above prefixed with Mwm are specific to the Motif
Window Manager. If you are using a different window manager consult your
Systems Administrator for the equivalent settings.

xiv UIM/X Tutorial Guide

UIM/X Tutorial Guide 1

��������	
��
���
���
���
�����

Overview

This section of the Tutorial Guide consists of novice-level tutorials:
Building a Simple User Interface and Communicating Between Interfaces.

UIM/X Tutorial Guide 2

Building a Simple User
Interface 1

Overview

Whether you are building a complex application or a simple user interface,
UIM/X dove-tails with the traditional patterns of software development:
you lay out the interface, add behavior, test, and generate the code. UIM/X
features powerful editors that streamline this development process for
maximum efficiency. Further, with Novice Mode, UIM/X makes it easier to
get started building interfaces right away, even if you have no programming
experience.

All the GUI building blocks you need—Push Buttons, Scrolled Windows,
and so on—are stored in a Palette displayed when you start UIM/X. To lay
out the interface you select the widgets you require. You simply click on the
widget in the Palette, and draw (or drop) it onto the work space.

Once the widgets are in place, you are ready to change their titles, labels
and other properties to customize the interface’s look. In UIM/X you
change properties at design time using the Property Editor. For properties
such as captions that vary from widget to widget you can load widgets into
the Property Editor individually. For others such as background colors, you
can load multiple widgets and change properties for several widgets at once.

UIM/X features a number of other editors that facilitate interface
development. The Constraint Editor, for example, allows you to add
resizing constraints to your interface graphically. You can anchor elements
in a fixed position, or specify their positions relative to other widgets. The
result is that at runtime elements remain in proportion when the interface is
resized, whether stretched by user action, or by system font changes.

In UIM/X widgets contain a great deal of built-in behavior. Menus drop
down, Push Buttons push in, and so on. You can easily add advanced
behavior by specifying callbacks. The callback code you write is
automatically executed when the user triggers its corresponding event. For

BUILDING A SIMPLE USER INTERFACE

UIM/X Tutorial Guide 3

1
example, a Push Button’s ActivateCallback is activated when the user
clicks on it. Other widgets have callbacks specific to their uses. Like other
properties, you specify callback code using the Property Editor.

By switching to Test Mode you can verify your application’s behavior
without the need to generate code or leave the development environment.
Once satisfied with the look and behavior of your interface, you can
generate the application code for your project, in just a few clicks of the
mouse.

In addition, UIM/X eases learning and lets you get started building
interfaces immediately with the introduction of Novice Mode. This mode
presents simplified menus and essential commands only, for a seamless
growth path from first prototype to production-quality interface. Once you
are familiar with the development environment you can tap into the full
power of UIM/X by starting in Standard Mode.

The GUI You Will Build

This chapter demonstrates how to use UIM/X in Novice Mode to create an
interface that changes colors when you click on its Push Buttons. You will
create widgets using the Palette, set resizing constraints using the Constraint
Editor, use the Property Editor to change properties, and add behavior using
the Connection Editor. Once tested you will generate the code, then
compile, link, and run the resulting application in one step.

The ColorBox interface, shown in Figure 1-1, consists of the following
elements:

• Secondary Window: A Secondary Window widget with constraints set to
allow it and its children (the other widgets in the interface) to resize
gracefully.

• Text Field: A widget that accepts text.

• Push Buttons: Push Buttons that change the background color of the Text
Field.

Building a Simple User Interface
The Steps in this Tutorial

4 UIM/X Tutorial Guide

1

Figure 1-1 The Completed ColorBox Interface

You don’t have to complete the whole tutorial in one sitting. You can stop at
any point, save your work, and continue later. You do not need to be a
programmer to understand and complete this tutorial.

The Steps in this Tutorial

This tutorial takes about 60 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Novice Mode

Step #2: Using the Novice Palette

Step #3: Creating the Main Window

Step #4: Moving and Resizing Widgets

Step #5: Adding the Remaining Widgets

Step #6: Saving Your Work

Step #7: Duplicating and Arranging Widgets

BUILDING A SIMPLE USER INTERFACE

UIM/X Tutorial Guide 5

1
Step #8: Adding Resizing Constraints

Step #9: Changing Labels and Names

Step #10: Adding Behavior to the Push Buttons

Step #11: Testing the Program

Step #12: Generating the Code and Running the Executable

Step #1: Starting UIM/X in Novice Mode

Before you begin this tutorial, set up a new directory called chap1, then
change to that directory, as follows:

1. Start the X Window System.

2. Open a terminal window.

3. Make a directory to store the files you will create in this tutorial:

mkdir chap1

4. Change to the directory you just created:

cd chap1

5. Start UIM/X from your new directory:

uimx -novice -language ansic &

Note: UIMX will attempt to save interfaces and project code in whatever
current working directory in which the tool is started, unless the user specifies
otherwise. It is easiest to begin the UIM/X session from within an existing
project directory.

Note: The -language options instructs UIM/X to use ANSI C mode. While
C++ mode accepts code written in C, for the purposes of the tutorial C mode is
sufficient. By default, UIM/X starts in ANSI C mode.

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx_directory/bin/uimx -novice -language ansic &

uimx_directory is the base directory where you installed UIM/X.

Building a Simple User Interface
Step #1: Starting UIM/X in Novice Mode

6 UIM/X Tutorial Guide

1

After a brief pause, a copyright notice window appears, to show that UIM/X
is being initialized. When UIM/X is ready, the Project Window and UIM/X
Palette appear, as shown in Figure 1-2.

6. Iconify the terminal window in which UIM/X was initially started.

Note: To restart this tutorial, begin again from step 4 above.

Figure 1-2 UIM/X Novice Mode Palette

Note: The project in this chapter was created using the Motif Window
Manager (mwm) and its default resource values, except for
clientAutoPlace, which was set to false. If you are using a different

BUILDING A SIMPLE USER INTERFACE

UIM/X Tutorial Guide 7

1
window manager, or have other than default values for window manager
resources, you may see slightly different object appearance and behavior from
that described in this chapter.

Step #2: Using the Novice Palette

The Palette contains all the objects you use to build an interface. To create
a Window or any other object in UIM/X you click on the appropriate icon
in the Palette and draw it in the desired location on your screen. You can
also create objects in their default size by dragging and dropping. In Novice
Mode UIM/X presents a simplified Palette with fewer interface objects. In
this step you will learn how to use the Novice Palette. In the next step you
will use it to create a window.

1. The default view of the Novice Palette shows names and icons for all
the elements on the Palette. Select View⇒By Name from the Palette
menu bar.

Notice the Palette’s appearance changes to show names without any icons.

2. Now select View⇒By Icon.

The Palette’s appearance changes to show icons without any names. If you
place the mouse cursor over an icon, bubble help appears that tells you the
icon’s name.

3. Finally, select View⇒By Name and Icon to show both icons and names,
which is probably the most useful view for learning the package.

4. Next, notice the expand arrows to the left of the Windows and Primitives
categories, as shown in Figure 1-3. Click on the expand arrow for Win-
dows.

The category collapses to a single line, with the expand arrow pointing
right to signify that it is collapsed.

5. Click on the expand arrow for Primitives to collapse both categories.

The Palette should now appear as shown in Figure 1-3.

Building a Simple User Interface
Step #3: Creating the Main Window

8 UIM/X Tutorial Guide

1

Figure 1-3 Novice Palette with Collapsed Categories

6. The Palette still takes up its original space. To save space on your desktop,
choose View⇒Adjust Height from the Palette.

The Palette shrinks.

7. Select File⇒Close from the Palette. Notice how the Palette disappears
from your screen.

8. Now select Tools⇒System Palette from the Project Window.The Novice
Palette reappears.

9. Click on the expand arrows for Primitives, then Windows, to make each
category full size again.

10. Select View:⇒Adjust Height from the Palette. The Palette returns to its
full size.

Note: You can use the expand arrows to help fit the Palette on to your screen.
With a few clicks of the mouse, you can collapse some categories and expand
others to access only the elements you need for your project.

Step #3: Creating the Main Window

The Windows category of the Novice Mode Palette contains two windows
that you use as containers for the other objects that make up your interface.
An Application Window includes a menu bar, while a Secondary Window
does not, and cannot. Otherwise these two windows are essentially the
same.

A Window object can contain other objects, such as Push Buttons,
Separators, and Scales. The Window object is referred to as the parent of
the objects it contains, while these objects are its children.

BUILDING A SIMPLE USER INTERFACE

UIM/X Tutorial Guide 9

1
To learn more about creating objects in UIM/X Novice Mode, see the
UIM/X Beginner’s Guide.

1. Check that the Design icon in the upper-right corner of the Project
Window is selected, as shown in Figure 1-4.

Figure 1-4 Design Icon Selected

2. In the Windows category of the Palette, click on Secondary Window with
the Select mouse button (the left one) as shown in Figure 1-5.

Figure 1-5 Selecting a Secondary Window from the Palette

The mouse pointer changes to a “corner” shape, representing the widget’s
upper-left corner.

Building a Simple User Interface
Step #3: Creating the Main Window

10 UIM/X Tutorial Guide

1

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and draw operations, for example.

3. Press and hold the Select mouse button where you want the top-left corner
of the Secondary Window to be located on your screen.

4. While holding down the Select button, drag the mouse down and to the
right to define the size of the new widget, as shown in Figure 1-6.

Figure 1-6 Creating a Secondary Window by Dragging and Drawing

5. Release the mouse button to complete the operation.

The Secondary Window, called secondWindow1, appears as shown in
Figure 1-7.

Figure 1-7 Your New Secondary Window

BUILDING A SIMPLE USER INTERFACE

UIM/X Tutorial Guide 11

1
6. Notice that the new Secondary Window is represented by an icon in the

Interfaces Area of the Project Window, as shown in Figure 1-8. Each stan-
dalone interface in a project is displayed this way, making it easy to select
an entire interface, and to keep track of the interfaces in your project.

Don’t worry if your Secondary Window is not the size or shape you want.
You will learn how to reposition and resize it in a moment.

Figure 1-8 Secondary Window Icon

7. Also notice the selection handles appearing in the Secondary Window, as
shown in Figure 1-9.

Figure 1-9 Handles Around a Selected Icon

Building a Simple User Interface
Step #4: Moving and Resizing Widgets

12 UIM/X Tutorial Guide

1

A widget must be selected before you can move it, resize it, or change its
properties. Newly drawn widgets are automatically selected.

Step #4: Moving and Resizing Widgets

It’s easy to move or resize the Secondary Window widget or any other
widget. When you move or resize a widget, the position of the mouse
pointer is important, because UIM/X divides each widget into nine invisible
regions, as shown in Figure 1-10.

Figure 1-10 Nine Regions of a Widget

To see the nine regions of a widget, point to any corner of the widget and
press the Adjust button (the middle one). The grid that appears is called the
“resize grid”. Depending on which region of the widget you point to when
you press the Adjust button, you will see a different resize pointer. Each
resize pointer enables you to perform a different function, as listed in Table
1-1.

You can use the central region (5) of the resize grid, which displays the
compass pointer, to move a selected widget to a new location. You can use
the other eight regions to stretch or shrink a selected widget to a new size.

Note: Do not move or resize an interface using its window decorations (the
box that appears around it). This communicates information to the window
manager only, and will result in the widget returning to its original size and
location at runtime.

BUILDING A SIMPLE USER INTERFACE
Moving the Secondary Window

UIM/X Tutorial Guide 13

1
�������	��Functions of the Resize Pointers

In this step you will gain some practice moving and resizing the Secondary
Window widget. First you will practice moving it. Next, you will resize it.
You can move and resize any selected widget the same way.

Moving the Secondary Window

In this step you will move the Secondary Window.

1. Point to the center of secondWindow1.

2. Press and hold down the Adjust mouse button.

Notice the mouse pointer changes to a compass shape. This means you can
now move the widget.

(If you see the resize grid, release the button and try again, closer to the
center of the widget.)

3. Drag secondWindow1 to a new location and then release the button.
The widget moves, as shown in Figure 1-11.

Figure 1-11 Moving a Widget

Pointer Shape Purpose

Moves the widget.

Changes the widget’s height and width.

Changes the widget’s height only.

Changes the widget’s width only.

Building a Simple User Interface
Step #5: Adding the Remaining Widgets

14 UIM/X Tutorial Guide

1

4. Repeat the process until you are comfortable moving objects around the
screen.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel move operations, for example.

Resizing the Secondary Window

In this step you will resize the Secondary Window.

1. Point to one of secondWindow1’s resize regions, such as the
lower-right corner.

2. Press and hold down the Adjust mouse button.

Notice the mouse pointer changes to a resize pointer, and the resize grid
appears. This means you can now resize the widget.

(If you see the compass pointer, release the button and press again, further
away from the center of the object.)

3. Drag the mouse to resize the outline of secondWindow1 to a larger size,
then release the button.

The widget reappears larger, as shown in Figure 1-12.

Figure 1-12 Resizing a Widget

4. Repeat the process, this time making secondWindow1 the size you
want for your interface.

Step #5: Adding the Remaining Widgets

Now that you have created the main window, you can add the remaining
widgets to the interface. Dragging and dropping is a convenient way to
create a widget in its default size. In this step you will add a Text Field to
the interface by dragging and dropping. Next you will add a Push Button by
dragging and drawing.

BUILDING A SIMPLE USER INTERFACE
Resizing the Secondary Window

UIM/X Tutorial Guide 15

1
1. From the Primitives category of the Palette, press and hold the Adjust

mouse button (the middle one) on Text Field.

The mouse pointer turns into the compass shape, and an outline of the
widget appears beneath it.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and drop operations, for example.

2. Place the Text Field widget in the upper half of the Secondary Window,
then release the mouse button.

The Text Field appears in its default size, as shown in Figure 1-13.

Figure 1-13 Secondary Window with Default Sized Text Field Added

Building a Simple User Interface
Step #5: Adding the Remaining Widgets

16 UIM/X Tutorial Guide

1

3. Size and position your Text Field widget as shown in Figure 1-14

Figure 1-14 Secondary Window with Text Field Resized.

4. In the Primitives category of the Palette, click on the Push Button icon
with the Select mouse button (the left one).

Notice the mouse pointer changes to a corner shape. This indicates you are
ready to drag and draw the widget.

BUILDING A SIMPLE USER INTERFACE
Resizing the Secondary Window

UIM/X Tutorial Guide 17

1
5. Move it to position the Push Button below the Text Field widget on the

left, as shown in Figure 1-15.

Figure 1-15 First Push Button on the Secondary Window

Note: These two widgets (automatically named textField1 and
pushButton1) do not appear as interface icons in the Project Window
because they are children of secondWindow1.

Primitive widgets (such as Push Buttons) that display labels use the widget
name as the default label until you change the label string using the
Property Editor. You will change the label later.

Step #6: Saving Your Work

As in any software development environment, in UIM/X it is a good idea to
save your work often. UIM/X facilitates the task of saving (and reloading)
your interface with the notion of a project.

A project is a set of text files containing general project information and
descriptions of each interface in the project. Project information is saved in
a file with a.prj extension. UIM/X creates one project file per project.
Interface information is saved in a file with a .i extension. UIM/X creates
one interface file for each stand-alone interface in the project. The format
for both of these types of files is similar to that of an X resource file.

Building a Simple User Interface
Step #6: Saving Your Work

18 UIM/X Tutorial Guide

1

Because this is the only format UIM/X reads, it is important to save your
interface as a project even if you build your application and generate its
code in one session. UIM/X loads projects by reading the project and
interface files, not by reading the generated code. You need the project and
interface files to make any changes to your project.

1. Select File⇒Save Project As… from the Project Window, or click on
the Save Project icon in the icon bar.

2. Check that the project name selection box shows the complete path to
your work directory, chap1, and the file name Untitled.prj.

Click in the project file name box and replace Untitled.prj
withColorBox.prj, as shown in Figure 1-16.

3. Click on OK to save your project.

4. You can save your work at any time, in one step, by selecting File⇒Save
Project or by clicking on the Save Project icon.

.

Figure 1-16 File Selection Box

BUILDING A SIMPLE USER INTERFACE
Resizing the Secondary Window

UIM/X Tutorial Guide 19

1

Note: If you started UIM/X from the chap1 directory as recommended, the
project is saved in that directory. In the file selection box, you can also provide
a complete or relative path to store the project in another directory.

Step #7: Duplicating and Arranging Widgets

In this step you will add the remaining three Push Buttons to the interface.
First, you will create the Push Buttons by duplication. This ensures that all
the Push Buttons are exactly the same size. Next you will arrange the Push
Buttons using UIM/X’s Arrange feature.

Building a Simple User Interface
Step #7: Duplicating and Arranging Widgets

20 UIM/X Tutorial Guide

1

Duplicating pushButton1

In this step you will add three more Push Buttons to the interface by
duplication.

1. Click on pushButton1 to select it.

2. Display the Selected Objects popup menu by pressing and holding the
Menu mouse button (the right-most one) while over the Push Button.

3. The Selected Objects popup menu appears, as shown in Figure 1-17.

Figure 1-17 Selected Objects Popup Menu

4. Choose Selected Objects⇒Duplicate.

A copy of pushButton1, named pushButton2, appears slightly
below and to the right of pushButton1.

Note: You can also duplicate a selected object by choosing the
Edit⇒Duplicate command from the Project Window, or by clicking on the
Duplicate icon in the Project Window’s icon bar.

BUILDING A SIMPLE USER INTERFACE
Arranging the Widgets

UIM/X Tutorial Guide 21

1
5. Drag and drop pushButton2 to its permanent location, as shown in Fig-

ure 1-18.

6. Repeat the process to create pushButton3 and pushButton4. Place
each of them as shown in Figure 1-18.

Figure 1-18 Secondary Window with all Four Push Buttons Added

7. Save your work by selecting File⇒Save Project or by clicking on the Save
Project icon .

Arranging the Widgets

In this step you will use the Arrange feature to distribute the widgets within
the interface. First you will select the widgets by Control-clicking. Next you
will select them by marquee selection.

1. Select the textField1, pushButton1, and pushButton3
widgets by holding down the Control key and clicking on each of the
widgets in turn.

2. Deselect pushButton4 by control-clicking it as well.

3. Press the Menu mouse button and choose Selected Objects⇒Arrange⇒
(vertical arranging).

The three widgets are redrawn with equal spacing above and below each.

4. Select the textField1, pushButton2, and pushButton4 widgets,
and choose Selected Objects⇒Arrange⇒vertical arranging once more.

Building a Simple User Interface
Step #7: Duplicating and Arranging Widgets

22 UIM/X Tutorial Guide

1

The widgets should now have equal vertical spacing.

5. To select the widgets by marquee selection, begin by pointing above and
to the left of the Push Buttons, (but not on a Push Button).

6. Press and hold down the Select mouse button.

As you drag the pointer, it changes to an “O” shape, and a marquee—a
dashed box—follows the pointer, as shown in Figure 1-19.

Figure 1-19 Marquee Selection

7. Continue dragging the pointer to surround pushButton1 and
pushButton2 with the marquee.

8. Release the mouse button. Notice that the Push Buttons inside the mar-
quee are now selected.

9. To arrange the selected widgets, press the Menu mouse button and choose
Selected Objects⇒Arrange⇒horizontal arranging.

10. Now select pushButton3 and pushButton4.

11. Choose Selected Objects⇒Arrange⇒horizontal arranging once more

12. Save your work.

BUILDING A SIMPLE USER INTERFACE
Arranging the Widgets

UIM/X Tutorial Guide 23

1

 Step #8: Adding Resizing Constraints

You can define and apply constraints to the objects in your interface using
the Constraint Editor. The Constraint Editor allows you to define constraints
without having to know the numerous Motif form constraint properties.
Using the Constraint Editor, you can create interfaces that maintain
proportion perfectly when resized, either manually or due to a font change.

1. Click on an object within your interface and choose Selected
Objects⇒Tools⇒Constraint Editor.

The Constraint Editor appears with a graphical representation of your
interface.

2. Click on the Dimension icon in the Constraint Editor’s icon bar.

3. Click on the bottom edge of the Text Field within the Constraint Editor.

This applies a Dimension constraint that makes the bottom of the Text
Field stay a proportionate distance below the upper edge of the interface.

4. Repeat step 3 for the top edge of all four Push Buttons.

5. Now click on the Bolt icon in the Constraint Editor’s icon bar.

6. Drag and draw a line from the top edge of the Text Field to the top edge of
the interface.

This applies a Bolt constraint that makes the Text Field stay a set length
away from the top edge of the interface. At this point all of your vertical
constraints are set. The Constraint Editor should now look as shown in
Figure 1-20.

Building a Simple User Interface
Step #8: Adding Resizing Constraints

24 UIM/X Tutorial Guide

1

Figure 1-20 Constraint Editor Showing Vertical Constraints

7. Repeat step 6 twice more, first bolting the right edge of the Text Field to
the right edge of the interface, then bolting the left edge of the Text Field
to the left edge of the interface.

8. Now click on the Dimension icon in the Constraint Editor’s icon bar.

9. In the same way that you did in step 3, attach a Dimension constraint to
the left edge of all four Push Buttons. Then attach a Dimension constraint
to the right edge of all four Push Buttons.

All of your constraints are now set. The Constraint Editor should look as
shown in Figure 1-21.

BUILDING A SIMPLE USER INTERFACE
Arranging the Widgets

UIM/X Tutorial Guide 25

1

Figure 1-21 Constraint Editor Showing All Constraints

10. Close the Constraint Editor by clicking on OK.

11. Save your work.

Building a Simple User Interface
Step #9: Changing Labels and Names

26 UIM/X Tutorial Guide

1

Step #9: Changing Labels and Names

Now that the widgets are in place on the desktop, you are ready to change
their labels and titles. In this step you will begin by changing each Push
Button’s label to match the color it will assign to the Text Field. You will
also change the Secondary Window’s title to something more user-friendly.
In UIM/X you change properties at design time using the Property Editor.

Changing the Push Buttons’ Labels

In this step you will open the Property Editor and load the first Push Button
into it in one step, by double-clicking on the Push Button.

1. Double-click on pushButton1 to open the Property Editor and load
the Push Button into it.

Notice that all properties are listed in alphabetical order.

2. Scroll down the list of properties to locate the LabelString property.

3. Click in the text field beside the LabelString property and delete the
default label, "pushButton1".

4. Give the Push Button a new LabelString by typing the following:

"RED"

Be sure to include quotation marks around the string.

5. Your entry should look as shown in Figure 1-22.

Figure 1-22 Changing the LabelString Property

6. Apply the change to the Push Button by clicking the Apply button at the
bottom of the Property Editor.

BUILDING A SIMPLE USER INTERFACE
Changing the Other Labels

UIM/X Tutorial Guide 27

1
7. Note the change in appearance of the Push Button, as shown in Figure

1-23.

Figure 1-23 pushButton1 With New LabelString, “RED”

8. Save your work.

Changing the Other Labels

You need to repeat the same process for the other Push Buttons to change
their LabelString properties. By dragging and dropping, you can load
widgets into the already open Property Editor. In this step you will drag and
drop the remaining Push Buttons into the Property Editor and change their
labelString properties.

1. Move the mouse pointer to the center of the second Push Button,
pushButton2.

2. Press and hold the Adjust mouse button, just as if you wanted to move the
widget.

The mouse pointer changes to the compass shape, and an outline of the
Push Button appears. If the resize grid appears, press Esc and try again,
closer to the center of the Push Button.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and drop operations, for example.

Building a Simple User Interface
Step #9: Changing Labels and Names

28 UIM/X Tutorial Guide

1

3. Drag the outline to the Widget List area of the Property Editor, as shown
in Figure 1-24, then release the mouse button.

Figure 1-24 Using Drag and Drop with the Property Editor

Since the widget is too large to “fit” in the List area, be sure to move the
compass shape within it.

4. Locate the labelString property, changing it from "pushButton2"
to "GREEN".

5. Apply the changes by clicking on Apply in the Property Editor. The inter-
face is updated to reflect the changes, as shown in Figure 1-25.

BUILDING A SIMPLE USER INTERFACE
Changing the Other Labels

UIM/X Tutorial Guide 29

1

Figure 1-25 New labelString Property for pushButton2

6. Similarly, load pushButton3 into the Property Editor by dragging and
dropping (using the Adjust mouse button).

Notice the new widget replaces the last one. This is the expected Novice
Mode behavior. In Standard Mode UIM/X you can set the Property Editor
to replace the current widget, or add the new one to the Property Editor at
the same time. You can also set the Property Editor to load widgets
automatically when you select them.

7. Locate the LabelString property, changing it from "pushButton3"
to "BLUE".

8. Apply the changes by clicking on Apply.

9. Finally, load the last Push Button, pushButton4, into the Property Edi-
tor.

10. Change its LabelString property to "YELLOW".

11. Apply the changes by clicking on Apply.

12. Save your work.

Building a Simple User Interface
Step #9: Changing Labels and Names

30 UIM/X Tutorial Guide

1

Changing the Secondary Window Name

One final touch is to change the name of your Secondary Window. It can be
difficult to double-click on a Secondary Window, since much of it is often
covered by other objects. Your Secondary Window is not covered in this
way, but for practice you will load it into the Property Editor using another
method: by typing its name into the Add Object area.

1. Click in the Add Object area, type secondWindow1, and press
Return.

Your Secondary Window is loaded into the Property Editor. You can load
any other widget the same way.

2. Scroll through the window’s properties, and notice that both Name and
Title default to secondWindow1.

3. Double-click in the text field for Title, and type in "ColorBox".

4. Click Apply. The interface is updated to reflect the changes, as shown in
Figure 1-26.

Figure 1-26 Your Interface with Labels Changed

5. Close the Property Editor.

6. Save your work.

BUILDING A SIMPLE USER INTERFACE
Changing the Secondary Window Name

UIM/X Tutorial Guide 31

1

Step #10: Adding Behavior to the Push Buttons

To simplify connecting interface elements together, UIM/X features a
Connection Editor. By loading both the source and target widgets into the
editor, you can view the available callbacks in the source, and the methods
in the target. You can then connect the source’s callback to the target’s
method visually.

In this step you will use the Connection Editor to add behavior to the four
Push Buttons.

1. Select the Red Push Button, pushButton1, by clicking on it.

2. Press the Shift key and hold down the Select mouse button, then drag the
cursor to the Text Field.

Notice a line follows the cursor, as shown in Figure 1-27. This indicates
the Connection Editor is available.

Figure 1-27 Opening the Connection Editor

3. Release the mouse button (and the Shift key) to pop up the Connection
Editor, loaded with the Push Button in the Source area and the Text Field
in the Target area, as shown in Figure 1-28.

Building a Simple User Interface
Step #10: Adding Behavior to the Push Buttons

32 UIM/X Tutorial Guide

1

Notice the Push Button’s callbacks are displayed in the Callback list, and
the Text Field’s methods are displayed in the Method list.

Figure 1-28 Connection Editor Loaded with pushButton1 and
textField1

4. Click on ActivateCallback in the list of callbacks, and on Set-
Background in the list of methods.

The Color argument appears in the Arguments area of the Connection
Editor, with a default value of "black".

5. Click between the quotes and replace "black" with "red", then click
on Create to complete the connection.

6. The new connection appears in the Connection Editor, as shown in Figure
1-29.

BUILDING A SIMPLE USER INTERFACE
Changing the Secondary Window Name

UIM/X Tutorial Guide 33

1

Figure 1-29 Connection Editor Showing First Connection

7. Load the Green Push Button, pushButton2, into the Source area in any
of the following ways:

• Click on the Green Push Button to select it, then click on the
Load Source icon (the left-most one).

• Click on the Green Push Button to select it, then choose
File⇒Load Source.

• Drag and drop the Green Push button into the Source area.

• Type the Push Button’s name, pushButton2, in the Source
area and press Return.

Green’s callbacks appear in the Callback area. Notice that textField1
remains in the target area, its SetBackground method still selected.

8. Change the Color argument from "red" to "green", then click on Create to
complete the connection.

9. In the same way, load the remaining Push Buttons into the Connection
Editor to connect them to textField1.

Table 1-2 lists all four Push Buttons, with the appropriate values for
Color: Table 1-2 Values for Color .

Building a Simple User Interface
Step #11: Testing the Program

34 UIM/X Tutorial Guide

1

�������	
 Values for Color

10. Close the Connection Editor.

11. Save your work.

Step #11: Testing the Program

Before generating code for the project in the next step, take a moment to
switch to Test Mode. Test Mode allows you to see how your interface
behaves, without the need to generate and compile code.

1. Click on the Test icon in the Project Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Test the interface:

• Clicking on any of the Push Buttons changes the Text widget’s
color.

• Resize the interface using the window decorations. Your Push
Buttons should resize and reposition elegantly.

3. When you are through, switch back to Design mode by clicking on the
Design icon

Step #12: Generating the Code and Running the
Executable

The final step in creating your project is to generate its code, and run the
executable. UIM/X provides a convenient Run mode that allows you to run
your compiled program without leaving the development environment.

In this step you will generate the code for your project, and run it, in one
step.

Object Color Value

pushButton1 "red"

pushButton2 "green"

pushButton3 "blue"

pushButton4 "yellow"

BUILDING A SIMPLE USER INTERFACE
Changing the Secondary Window Name

UIM/X Tutorial Guide 35

1
1. Click on the Run icon in the Project Window’s icon bar. The Generate

Code Options window appears, as shown in Figure 1-30.

Figure 1-30 Generate Code Options Window

2. Ensure that the following radio buttons and toggle buttons are selected:

• Run Makefile

• Run Executable

3. Click OK.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

4. Test the interface. Verify that it works as it did in Test Mode.

5. Switch back to Design mode by clicking on the Design icon

6. Save your work.

7. Exit UIM/X by choosing File⇒Exit.

Building a Simple User Interface
Step #12: Generating the Code and Running the Executable

36 UIM/X Tutorial Guide

1

UIM/X Tutorial Guide 37

Communicating Between
Interfaces 2

Overview

In general, an application consists of one main interface and many
interfaces that pop up as a result of application and user activity. File
Selection Boxes and Message Boxes are examples of commonly used
dialogs that appear temporarily and behave independently of the main
interface. In Novice Mode UIM/X simplifies popping up independent
interfaces using instances. In Standard Mode, the use of instances provides
even more benefits.

Instances allow you to create independent interfaces, then reuse them in
other interfaces. You create the original interface exactly as you would any
other, changing properties and adding behavior as desired. To reuse the
interface in another, you simply drag and draw an instance of it.

Instances inherit all the properties and behavior of the original. Instances
also inherit methods from the UxVisualInterface class, which are available
for use in the Connection Editor or in callback code.

Standard Mode further extends the functionality of instances. For example,
you can use the Method Editor to make properties available in the instance.
By defining property accessor methods, as they are known, you can use the
same instance in many interfaces, exposing properties as required. For
example, you can add an instance of a File Selection Box widget to the
calling interface, then use it as both the Open and Save File Selection
Boxes, simply by exposing its Title property via property accessor methods.

Similarly, in Standard Mode you can create a callback accessor method for
the original widget to make a customized callback available in the instance.
By combining property and callback accessor methods, you can create
interfaces with advanced built-in behavior. They can then be used as if they
were local to the calling interface.

Communicating Between Interfaces
The GUI You Will Build

38 UIM/X Tutorial Guide

2

The GUI You Will Build

This chapter demonstrates how to use UIM/X in Novice Mode to create an
Application Window interface that pops up dialogs. The Communication
project, shown in Figure 2-1, consists of the following elements:

• Application Window: An Application Window widget with additional
menu items added, and behavior to pop up instances of the dialogs.

• File Selection Boxes: Two File Selection Box widgets customized to write
“open” and “save” messages to stdout. These pop up when the user selects
File⇒Open and File⇒Save respectively.

• Message Box Dialog: A widget especially designed for presenting a
message to the user. It pops up with a custom message when the user
selects Help⇒About Application.

Figure 2-1 The Completed Communication
Project

COMMUNICATING BETWEEN INTERFACES

UIM/X Tutorial Guide 39

2

Note: This is a Novice Mode tutorial, designed to introduce the advantages of
instances in working with dialogs. Since the Method Editor is unavailable in
Novice Mode, exposing properties such as titles or message strings for use in
the instance is not presented. For a Standard Mode tutorial in which properties
are exposed in an instance, see Chapter 3, “Creating a Drawing Editor”. For an
advanced tutorial on the same subject, see Chapter 5, “Creating an RGB Color
Editor in C++”.

The Steps in This Tutorial

This tutorial takes about 60 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Novice Mode

Step #2: Laying Out the Interfaces

Step #3: Saving Your Work

Step #4: Changing Titles, Labels, and Other Properties

Step #5: Adding Callbacks to the File Selection Boxes

Step #6: Adding Instances of the Dialogs to the Application Window

Step #7: Adding Items to the Menus

Step #8: Adding Behavior to the Menus

Step #9: Testing the Program

Step #10: Generating the Code and Running the Executable

Step #1: Starting UIM/X in Novice Mode

Before you begin building the Communication Project, set up a new
directory as follows:

1. Start the X Window System.

2. Bring up a terminal window.

3. Make a directory to store the files you will create in this tutorial:

mkdir chap2

4. Change to the directory you just created:

cd chap2

Communicating Between Interfaces
Step #1: Starting UIM/X in Novice Mode

40 UIM/X Tutorial Guide

2

5. Start UIM/X from your new directory:

uimx -novice -language ansic &

Note: The -language options instructs UIM/X to use ANSI C mode.While
C++ mode accepts code written in C, for the purposes of the tutorial C mode is
sufficient. By default UIM/X starts in C++ mode.

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx_directory/bin/uimx -novice -language ansic &

After a brief pause, a copyright notice window appears, to show that UIM/X
is being initialized. When UIM/X is ready, the Project Window and the
Palette appear, as shown in Figure 2-2.

6. Iconify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

COMMUNICATING BETWEEN INTERFACES

UIM/X Tutorial Guide 41

2

Figure 2-2 UIM/X Novice Mode Palette and Project Window

Step #2: Laying Out the Interfaces

In this step you will lay out the visual elements that make up the
Communication Project interface. You will begin by drawing an Application
Window, moving and resizing it if necessary. You will then add two File
Selection Boxes and a Message Box to the project by drawing and
duplicating.

Communicating Between Interfaces
Step #2: Laying Out the Interfaces

42 UIM/X Tutorial Guide

2

Dragging and Drawing an Application Window

Dragging and drawing is a convenient way to create a widget of a custom
size. In this step you will create the application’s main interface, an
Application Window, by dragging and drawing.

1. Check that the Design Mode Push Button in the upper-right corner of
the Project Window is selected, as shown in Figure 2-3.

Figure 2-3 Design Mode Icon

2. In the Windows category of the Palette, click on the Application Window
icon with the Select mouse button (the left one), as shown in Figure 2-4.

Figure 2-4 Selecting an Application Window from the Palette

COMMUNICATING BETWEEN INTERFACES
Dragging and Drawing an Application Window

UIM/X Tutorial Guide 43

2
Notice the mouse pointer changes to a corner shape. This indicates you are
ready to drag and draw the widget.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and draw operations, for example.

3. Move the mouse pointer to where you want the upper left corner of the
Application Window to begin.

4. Press and hold the Select mouse button, then drag the mouse downwards
and to the right to create the new widget, as shown in Figure 2-5.

Figure 2-5 Creating an Application Window by Dragging and Drawing

Communicating Between Interfaces
Step #2: Laying Out the Interfaces

44 UIM/X Tutorial Guide

2

5. Release the mouse button to complete the operation.

The Application Window, called applWindow1, appears as shown in
Figure 2-6.

Figure 2-6 Your New Application Window Widget, applWindow1

COMMUNICATING BETWEEN INTERFACES
Dragging and Drawing an Application Window

UIM/X Tutorial Guide 45

2
6. Notice that the new Application Window is represented by an icon in the

Interfaces Area of the Project Window, as shown in Figure 2-7. Each stan-
dalone interface in a project is displayed this way, making it easy to select
an entire interface, and keep track of your project.

Figure 2-7 applWindow1’s Icon in the Project Window

Don’t worry if your Application Window is not the size or shape you
want. You will learn how to reposition and resize it in a moment.

7. Also notice the selection handles appearing in the Application Window, as
shown in Figure 2-8.

Communicating Between Interfaces
Step #2: Laying Out the Interfaces

46 UIM/X Tutorial Guide

2

Figure 2-8 Handles Around a Selected Widget

A widget must be selected before you can move it, resize it, or change its
properties. Newly drawn widgets are automatically selected.

Moving and Resizing Widgets

UIM/X simplifies moving and resizing widgets with the Resize grid. By
pressing the Adjust mouse button (the center one) over a selected widget
you cause the grid to appear, as shown in Figure 2-9. Depending on the
position of the mouse you can stretch the component horizontally or
vertically, or enlarge it in both directions at the same time. You don’t even
have to click on a selection handle itself, just in a region. By positioning the
mouse pointer in the center square, you can move the widget without
resizing it.

Figure 2-9 The Resize Grid

COMMUNICATING BETWEEN INTERFACES
Dragging and Dropping the Remaining Widgets

UIM/X Tutorial Guide 47

2
Each widget has nine invisible regions for moving and resizing

Note: Do not move or resize an interface using its window decorations (the
box that appears around it). This communicates information to the window
manager only, and will result in the widget returning to its original size and
location at runtime.

Dragging and Dropping the Remaining Widgets

Dragging and dropping allows you to create widgets in their default size. In
this step you will add a File Selection Box to your project, duplicate it, then
add a Message Box dialog. All widgets will be dragged and dropped from
the Palette.

1. Add a default-sized File Selection Box to the project by clicking and
holding on the icon in the Windows area of the Palette with the Adjust
mouse button (the middle one).

The mouse pointer turns into the compass shape, and an outline of the
widget appears beneath it.

2. Move the outline to the desktop, then release the mouse button.

The File Selection Box appears in its default size, as shown in Figure
2-10.

Figure 2-10 File Selection Box Added to Project

Communicating Between Interfaces
Step #2: Laying Out the Interfaces

48 UIM/X Tutorial Guide

2

3. To duplicate the File Selection Box, begin by displaying the Selected
Objects popup menu by pressing and holding the Menu mouse button (the
right-most one) while over the selected interface.

The Selected Objects popup menu appears, as shown in Figure 2-11.

Figure 2-11 Selected Objects Popup Menu

4. Select Duplicate from the Menu. UIM/X creates a new File Selection Box,
fileSelBoxDialog2.

5. Position the new widget beside the first by pressing and holding the
Adjust mouse button while near its center.

If a grid appears, release the mouse button, move closer to the center of
the component and try again.

6. Finally, add a Message Box dialog by clicking on the icon in the Windows
area of the Palette with the Adjust mouse button.

7. Drag the outline to the desktop then release the mouse button.

COMMUNICATING BETWEEN INTERFACES
Dragging and Dropping the Remaining Widgets

UIM/X Tutorial Guide 49

2
8. If necessary, use the resize grid to stretch the Message Box until it appears

as shown in Figure 2-12.

Figure 2-12 The Message Box Dialog, msgBoxDialog1

Step #3: Saving Your Work

As in any software development environment, in UIM/X it is a good idea to
save your work often. UIM/X facilitates the task of saving (and reloading)
your interface with the notion of a project.

A project is a set of text files containing general project information and
descriptions of each interface in the project. Project information is saved in
a file with a.prj extension. UIM/X creates one project file per project.
Interface information is saved in a file with a .i extension. UIM/X creates
one interface file for each stand-alone interface in the project. The format
for both of these types of files is similar to that of an X resource file.

Because these are the only formats UIM/X reads, it is important to save
your interface as a project even if you build your application and generate
its code in one session. UIM/X loads projects by reading the project and
interface files, not by reading the generated code. You need the project and
interface files to make any changes to your project.

1. Select File⇒Save Project As… from the Project Window, or click on
the Save Project icon in the icon bar.

2. Check that the project name selection box shows the complete path to
your work directory, chap2, and the file name Untitled.prj.

Communicating Between Interfaces
Step #3: Saving Your Work

50 UIM/X Tutorial Guide

2

Click in the selection box and replace Untitled.prj with
Communication.prj, as shown in Figure 2-13.

Figure 2-13 The File Selection Box

3. Click on OK to save your project.

4. You can save your work at any time, in one step, by selecting File⇒Save
Project or by clicking on the Save Project icon .

Note: If you started UIM/X from the chap2 directory as recommended, the
project is saved in that directory. In the file selection box, you can also provide
a complete or relative path to store the project in another directory.

COMMUNICATING BETWEEN INTERFACES
Changing the Application Window’s Title

UIM/X Tutorial Guide 51

2

Step #4: Changing Titles, Labels, and Other Properties

Now that the widgets are in place on the desktop, you are ready to change
their titles, labels and other properties. In this step you will begin by
changing the Application Window’s title to something more user-friendly.
Then you will change the default string displayed in the Message Box. In
UIM/X you change properties at design time using the Property Editor.

Changing the Application Window’s Title

In this step you will select the Application Window and load it into the
Property Editor to change its Title property.

1. Select the Application Window, applWindow1, by clicking on it with
the Select mouse button.

Selection handles appear, as shown in Figure 2-14.

Communicating Between Interfaces
Step #4: Changing Titles, Labels, and Other Properties

52 UIM/X Tutorial Guide

2

Figure 2-14 The Application Window, applWindow1, Selected

2. Open the Property Editor by clicking the menu mouse button (the
right-most one) and choosing Tools⇒Property Editor from the Selected
Objects popup menu.

The Property Editor appears loaded with the Application Window, as
shown in Figure 2-15.

COMMUNICATING BETWEEN INTERFACES
Changing the Application Window’s Title

UIM/X Tutorial Guide 53

2

Figure 2-15 Property Editor Loaded with applWindow1

3. Locate the Title property, and replace the title "applWindow1" with
the title "Main Interface".

Be sure to include quotation marks around the string.

4. Apply the change to the Application Window by clicking on the Apply
button at the bottom of the Property Editor.

5. Note the change in appearance of the Application Window, as shown in
Figure 2-16.

Communicating Between Interfaces
Step #4: Changing Titles, Labels, and Other Properties

54 UIM/X Tutorial Guide

2

Figure 2-16 Communication Project, applWindow1, with New Title

6. Save your work by choosing File⇒Save Project in the Project Window, or
by clicking on the Save Project icon .

Changing the Other Labels and Properties

You need to repeat the same process for the other widgets to change their
captions and other properties. By dragging and dropping, you can load
widgets into the already open Property Editor. In this step you will drag and
drop the File Selection Boxes and Message Box dialog into the Property
Editor and change their labelString properties.

1. Move the mouse pointer to the center of the first File Selection Box,
fileSelBoxDialog1.

2. Press and hold the Adjust mouse button, just as if you wanted to move the
widget.

The mouse pointer changes to the compass shape, and an outline of the
File Selection Box appears. If the resize grid appears, press Esc and try
again, closer to the center of the label.

Note: You can cancel any operation performed with the Select or Adjust
mouse button by pressing the Esc key. Pressing the Esc key is a convenient
way to cancel drag and drop operations, for example.

COMMUNICATING BETWEEN INTERFACES
Changing the Other Labels and Properties

UIM/X Tutorial Guide 55

2
3. Drag the outline to the Widget List area of the Property Editor, as shown

in Figure 2-17, then release the mouse button.

Figure 2-17 Using Drag and Drop with the Property Editor

Since the widget is too large to “fit” in the List area, be sure to move the
compass shape within it.

4. Locate the DialogTitle property, changing it from "" to "Open".

5. Apply the changes by clicking on Apply in the Property Editor. The inter-
face is updated to reflect the changes, as shown in Figure 2-18.

Communicating Between Interfaces
Step #4: Changing Titles, Labels, and Other Properties

56 UIM/X Tutorial Guide

2

Figure 2-18 New DialogTitle Property for fileSelBoxDialog1

6. Similarly, load fileSelBoxDialog2 into the Property Editor by drag-
ging and dropping (using the Adjust mouse button).

Notice the new widget replaces the last one. This is the expected Novice
Mode behavior. In Standard Mode UIM/X you can set the Property Editor
to replace the current widget, or add the new one to the Property Editor at
the same time. You can also set the Property Editor to load widgets
automatically when you select them.

7. Locate the DialogTitle property, changing it from "" to "Save".

8. Apply the changes by clicking on Apply.

9. Finally, load the Message Box, msgBoxDialog1, into the Property Edi-
tor.

10. Locate the dialogTitle property, changing it from "" to "About
Application".

11. Locate the MessageString property, changing it from "" to "Com-
munication Project\nVersion 1.0".

12. Apply the changes by clicking on Apply.

13. Table 2-1 summarizes the property changes.

COMMUNICATING BETWEEN INTERFACES
Changing the Other Labels and Properties

UIM/X Tutorial Guide 57

2
������
	��Property Changes for Remaining Widgets

14. Save your work by choosing File⇒Save Project from the Project Window,
or by clicking on the Save Project icon

Step #5: Adding Callbacks to the File Selection Boxes

In UIM/X widgets contain a great deal of built-in behavior. Menus drop
down, Push Buttons push in, and so on. You can easily add advanced
behavior by specifying callbacks.

The File Selection Boxes provided contain navigation and selection
behavior. At runtime (and in Test Mode) you can navigate directories by
clicking on directory names, set filter masks, etc. To return the name of the
selected file to the calling program, you must write callbacks for the widget.

Callback code you write is automatically executed when the user triggers its
corresponding event. For example, a File Selection Box’s OKCallback is
activated when the user clicks on the OK button. In a similar fashion, other
widgets have callbacks specific to their uses.

One callback all widgets have in common is the Create callback,
triggered when the widget is created. The Create callback is particularly
useful in hiding portions of a widget provided by default, and positioning
dialogs over the calling interface.

In this step you will add callback behavior to the two File Selection Boxes
in the Communication project. When the user selects a file and clicks on
OK the callback code will print a message to stdout. You will also add code

Widget Property Old Value New Value

applWindow1 Title
"applWindow1
"

"Main
Interface"

fileSelBoxDialog1 DialogTitle "" "Open"

fileSelBoxDialog2 DialogTitle "" "Save"

msgBoxDialog1 DialogTitle ""
"About
Application"

msgBoxDialog1 MessageString ""
"Communication
Project\nVersio
n 1.0"

Communicating Between Interfaces
Step #5: Adding Callbacks to the File Selection Boxes

58 UIM/X Tutorial Guide

2

to the Message Box’s Create callback. The code will “unmanage” the
dialog’s Cancel and Help Push Buttons, and position it to pop up centered
over the Application Window.

Adding Callback Code to the ���� File Selection Box

In this step you will add callback code to the Open File Selection Box’s OK
Push Button. When the user clicks on OK the callback writes a message to
stdout, including the selected file name. In Test Mode, UIM/X captures
messages to stdout and writes them to the Messages area of the Project
Window.

1. Load the Open File Selection Box into the Property Editor by dragging
and dropping, or by double-clicking on it with the Select mouse button.

Note: For most widgets you can open the Property Editor and load the widget
into it in one move, by double-clicking on the widget.

2. Open the Callback Editor by clicking on the Text Editor button (…) beside
OkCallback.

The Callback Editor appears, with an empty text window ready for your
callback, as shown in Figure 2-19.

Figure 2-19 Callback Editor Loaded with OkCallback

3. Click in the Text Field, and type the following code exactly as it appears:

printf("Opening %s\n",
UxGetTextString(UxThisWidget));

COMMUNICATING BETWEEN INTERFACES
Adding Callback Code to the Save File Selection Box

UIM/X Tutorial Guide 59

2
The code prints the selected file name to stdout. In Test Mode it writes to
the Messages Area of the Project Window. In another application you
would most likely call a routine to open the selected file.

4. Click on OK in the Callback Editor.

5. Click on Apply in the Property Editor.

If you have made any typing errors, an error dialog appears, an “X”
appears beside the property, and a message appears in the Messages Area
of the Project Window.

Note: When you click Apply in the Property Editor your callback code is
parsed and stored with the associated component, but it is not run. You use Test
Mode to test your callback code.

6. Clear up any error messages that appear by checking your code against the
sample provided.

After correcting errors, be sure to click Apply in the Property Editor.

7. Save your work by choosing File⇒Save in the Project Window, or by
clicking on the Save Project icon .

Adding Callback Code to the ����	File Selection Box

In this step you will add callback code to the Save File Selection Box’s
OKEvent callback. As with the Open File Selection Box, the callback
code writes a message to stdout.

1. Load the Save File Selection Box into the Property Editor in either of
two ways:

• Select the widget then drag and drop it into the already open
Property Editor.

• Double-click on the widget.

2. Open the Callback Editor by clicking on the Text Editor button (…) beside
OkCallback.

3. Click in the Callback Editor text field, and type the following code exactly
as it appears

printf("Saving %s\n",
UxGetTextString(UxThisWidget));

Similar to the code for the Open File Selection Box, the above code prints
the selected file name to stdout. In Test Mode it writes to the Messages
Area of the Project Window. In another application you would most likely
call a routine to actually save the selected file.

Communicating Between Interfaces
Step #5: Adding Callbacks to the File Selection Boxes

60 UIM/X Tutorial Guide

2

4. Click on OK in the Callback Editor.

5. Click on Apply in the Property Editor.

6. Save your work.

Adding Callback Code to the Message Box Dialog’s Create
Callback

By default Message Box dialogs contain OK, Cancel, and Help Push
Buttons, as shown in Figure 2-20. In this step you will hide the Cancel and
Help Push Buttons by adding callback code to the Message Box dialog’s
Create callback. At the same time you will add code to center the dialog
over the Application Window.

Figure 2-20 Default Message Box Dialog

1. Load the Message Box dialog into the Property Editor in either of two
ways:

• Select the widget then drag and drop it into the already open
Property Editor.

• Double-click on the widget.

2. Open the Callback Editor by clicking on the Text Editor button (…) beside
CreateCallback.

3. Click in the Callback Editor text field, and type the following code exactly
as it appears:

XtUnmanageChild(XmMessageBoxGetChild (UxWidget,
XmDIALOG_HELP_BUTTON));

XtUnmanageChild(XmMessageBoxGetChild (UxWidget,
XmDIALOG_CANCEL_BUTTON));

UxPutDefaultPosition(msgBoxDialog1, "true");

4. Click on OK in the Callback Editor.

5. Click on Apply in the Property Editor.

COMMUNICATING BETWEEN INTERFACES
Adding the Instances

UIM/X Tutorial Guide 61

2
Notice that the Help and Cancel Push Buttons still appear in the Message
Box. This is the expected behavior. The Push Buttons will be removed
when the widget is created, in Test Mode or at run time.

6. Save your work.

Step #6: Adding Instances of the Dialogs to the
Application Window

When you add an instance of a dialog to an interface, it is local to the
interface, and the calling interface can easily refer to it in callback code. For
example, to pop up the dialog you simply call the instance’s UxManage
method.

In Standard Mode UIM/X using instances has additional advantages. By
defining property accessor methods for the original, you can expose
properties in the instances. The property accessor methods and the
properties they make available become local to the calling interface.

In this step you will add instances of both File Selection Boxes and the
Message Box to the Application Window. Next you will verify the addition
using the Browser. The Browser displays an interface’s widget hierarchy in
a concise format, including widgets not visible at design time.

Adding the Instances

In this step you will add the instances to the Application Window.

1. Click on the Open File Selection Box, fileSelBoxDialog1, to
select it.

An interface must be selected to create an instance of it.

2. Point to the Main Interface, applWindow1.

3. Press and hold the Menu mouse button on the Main Window interface to
display the Selected Objects popup menu.

The Selected Object popup menu appears, as shown in Figure 2-21.
Notice that the bottom selection is “Instance of fileSelBoxDialog1”.

Communicating Between Interfaces
Step #6: Adding Instances of the Dialogs to the Application Window

62 UIM/X Tutorial Guide

2

. Figure 2-21 Selected Objects Popup Menu

4. Choose “Instance of fileSelBoxDialog1”. The mouse cursor changes into
the corner shape.

5. Drag and draw the instance of fileSelBoxDialog1 on the Applica-
tion Window, as shown in Figure 2-22.

COMMUNICATING BETWEEN INTERFACES
Verifying the Additions and Setting Display Sizes Using the Browser

UIM/X Tutorial Guide 63

2

Figure 2-22 Creating an Instance of fileSelBoxDialog1

Note: Normally, you should draw the instance the size you want it to pop up.
However, since you will be setting the sizes of the instances in the next step, it
does not matter what size you draw them.

Notice that the instance is not visible on the interface. This is expected
behavior for parented top-level widgets.

6. Repeat the above steps to add an instance of the Save File Selection Box,
fileSelBoxDialog2 to the Application Window.

7. Follow the same process to add an instance of the Message Box to the
Application Window.

8. Save your work.

Verifying the Additions and Setting Display Sizes Using the
Browser

UIM/X features a tool called the Browser that displays widgets in a
compact format. You can view widgets by name or icon, for example, but
other elements such as labels or titles, are not shown. Selecting a widget in
the Browser is exactly like selecting it in the interface. Other operations,
such as dragging and dropping from the Browser to an editor and

Communicating Between Interfaces
Step #6: Adding Instances of the Dialogs to the Application Window

64 UIM/X Tutorial Guide

2

duplicating widgets are equally possible. The Browser makes it easy to
work with widgets that are not visible at design time, such as instances of
dialogs.

By default, instances of dialogs will pop up in the size you drew them on
the interface. For precise control over an instance’s display size, you should
set the instance’s Height and Width properties.

In this step you will open the Browser to verify that the instances were
added to the Application Window. You will also use it to load the instances
into the Property Editor, to set their display sizes.

1. Select the Application Window by clicking on it with the Select mouse
button.

Selection handles indicate the interface is selected.

2. Open the Browser by selecting Selected Objects⇒Tools⇒Browser.

(Recall that to display the Selected Objects popup menu, you press and
hold the Menu mouse button while over the selected interface.)

The Browser appears, loaded with the Application Window, as shown in
Figure 2-23.

. Figure 2-23 Browser Loaded with the Application Window

3. Choose the view you prefer using the View menu.

• You can view the interface’s widgets by name, icon, or both
name and icon.

• You can display the structure of your interface in tree or outline
format.

COMMUNICATING BETWEEN INTERFACES
Verifying the Additions and Setting Display Sizes Using the Browser

UIM/X Tutorial Guide 65

2
4. Scroll the Browser window to locate the Open File Selection Box

instance, fileSelBoxDialog1Instance1.

Following the UIM/X naming conventions for widgets, the instances are
named fileSelBoxDialog1Instance1,
fileSelBoxDialog2Instance1, and
MsgBoxDialog1Instance1. In another application you might
rename the instances to something shorter. For the purposes of the tutorial
the default names will suffice.

5. Select the widget by clicking on representation in the Browser. Reverse
video indicates the widget is selected.

6. Load the widget into the Property Editor by choosing Selected
Objects⇒Tools⇒Property Editor.

7. Locate the Height property, changing it to 425.

8. Locate the Width property, changing it to 300.

9. Click on Apply.

10. Load the Save File Selection Box instance,
fileSelBoxDialog2Instance1, into the Property Editor by drag-
ging and dropping from the Browser.

11. Similarly, change its Height and Width properties to 425 and 300
respectively.

12. Click on Apply.

13. Finally, load the Message Box dialog instance,
MsgBoxDialog1Instance1, into the Property Editor, and change its
Height and Width properties to 150 and 285 respectively.

Be sure to apply your changes.

14. Close the Property Editor by choosing File⇒Close in the Property Editor.

15. Close the Browser by choosing File⇒Close from the Browser menu.

Step #7: Adding Items to the Menus

In UIM/X building menus is simplified for two main reasons. First, menu
elements contain built-in behavior including automatic resizing and
positioning. You never have to worry about the size of menu labels, or
pull-down behavior, for example. Second, UIM/X features an editor called
the Menu Editor that provides structured access to your menus.

Communicating Between Interfaces
Step #7: Adding Items to the Menus

66 UIM/X Tutorial Guide

2

By default Application Windows are provided with a menu bar and two
pulldown menus: a File menu and a Help menu. In this step you will use the
Menu Editor to add an Open and a Save item to the File menu.

1. Open the Menu Editor by selecting the main interface, applWindow1,
and choosing Selected Objects⇒Tools⇒Menu Editor.

The Menu Editor appears, as shown in Figure 2-24.

Figure 2-24 Menu Editor

2. Rename the File menu’s default item by clicking on file_close1 in
the Items list, and entering the values shown in Table 2-2.

������
	
�Property Values for ���
 Menu Item

In Novice Mode, items are always added after an existing item. Since this
project features an Exit item at the end of the menu, you must reassign the
default item provided. In Standard Mode you can add items before or after
existing ones.

3. Apply the change by clicking on Apply.

4. To add an item to the menu ensure openButton is selected in the Items
list, then choose Create⇒Item⇒Push Button.

5. Enter the values shown in Table 2-3 for the new Push Button:

Property Value
Name openButton
Label String "Open"
Mnemonic "O"

COMMUNICATING BETWEEN INTERFACES
Opening the Connection Editor and Making the First Connection

UIM/X Tutorial Guide 67

2
������
	��Property Values for ���� Menu Item

6. Apply the change.

7. Add another item to the menu by selecting Create⇒Item⇒Push Button.

8. Enter the values shown in Table 2-4:

������
	��Property Values for ����� Menu Item

9. Apply the change.

10. Save your work.

Step #8: Adding Behavior to the Menus

To simplify connecting interface elements together, UIM/X features a
Connection Editor. By loading both the source and target widgets into the
editor, you can view the available callbacks in the source, and the methods
in the target. You can then connect the source’s callback to the target’s
method visually, rather than via callback code.

In this step you will use the Connection Editor to add behavior to the File
menu’s Open, Save, and Exit items, and the Help menu’s About item using
the Connection Editor.

Opening the Connection Editor and Making the First
Connection

In this step you will load the File menu’s Open item into the Connection
Editor, and connect it to the Open File Selection Box instance using the
instance’s Manage method.

1. Select the Open menu item, openButton, by clicking on it in the
Menu Editor.

Property Value

Name saveButton

Label String "Save"

Mnemonic "S"

Property Value

Name exitButton

Label String "Exit"

Mnemonic "x"

Communicating Between Interfaces
Step #8: Adding Behavior to the Menus

68 UIM/X Tutorial Guide

2

2. Open the Connection Editor by selecting Edit⇒Connection From⇒Item
in the Menu Editor.

The Connection Editor appears loaded with openButton in the Source
area, as shown in Figure 2-25. Notice the openButton’s callbacks are
listed in the Callback area of the Connection Editor.

Figure 2-25 Connection Editor

3. Open the Browser by choosing Selected Objects⇒Tools⇒Browser while
over the Main Interface.

4. In the Browser, locate the instance of the Open File Selection Box,
fileSelBoxDialog1Instance1.

5. Drag and drop it from the Browser to the Target area of the Connection
Editor (using the Adjust mouse button). You can also load an object into
the Connection Editor by selecting it, then clicking on the Load Target
icon (the right-most one).

The instance’s default methods are listed in the Method area of the
Connection Editor, as shown in Figure 2-26.

COMMUNICATING BETWEEN INTERFACES
Opening the Connection Editor and Making the First Connection

UIM/X Tutorial Guide 69

2

Figure 2-26 Connection Editor Showing Open’s Methods

6. Click on ActivateCallback in list of callbacks, and on Manage in
the list of methods.

Any parameters or return values available appear in the parameters area.

7. Complete the connection by clicking on Create.

8. The new connection appears in the Connection Editor, as shown in Figure
2-27.

Figure 2-27 Connection Editor Showing New Connection

9. Save your work.

Communicating Between Interfaces
Step #8: Adding Behavior to the Menus

70 UIM/X Tutorial Guide

2

Making the Remaining File Menu Connections

In this step you will create the remaining File menu connections from menu
items to the dialogs they pop up. First you will connect the File menu’s
Save item to the Save File Selection Box. Then you will connect the File
menu’s Close item to the Application Window’s Exit method.

1. Click on the saveButton item in the Menu Editor, and choose
Edit⇒Connection From⇒Item.

The saveButton is loaded into the Connection Editor.

2. Drag and drop the instance of the Save File Selection Box,
fileSelBoxDialog2Instance1, from the Browser to the Target
area of the Connection Editor.

Notice that ActivateCallback and Manage remain selected in the
Connection Editor.

3. Complete the connection by clicking on Create. The new connection is
added to the list.

4. Click on the exitButton item in the Menu Editor, and choose
Edit⇒Connection From⇒Item.

The exitButton is loaded into the Connection Editor.

5. Drag and drop the Application Window itself, or its representation in the
Browser, to the Target area of the Connection Editor.

Note that ActivateCallback remains selected in the Source Callback
list.

6. Create the connection to exit the application by clicking on Exit in the
Target Method list.

7. Complete the connection by clicking on Create.

8. Save your work.

Making the Help Menu Connection

In this step you will connect the Help menu’s About item to the Message
Box dialog.

1. Click on the Help menu pane, help_menurc1, in the Menu Editor.

2. Select the About item, help_about1, by clicking on it.

3. Load it into the Connection Editor by choosing Edit⇒Connection
From⇒Item in the Menu Editor.

4. Drag and drop the Message Box dialog, msgBoxDialogInstance1,
from the Browser into the Target area of the Connection Editor.

COMMUNICATING BETWEEN INTERFACES
Making the Help Menu Connection

UIM/X Tutorial Guide 71

2
Note that ActivateCallback remains selected in the Source Callback list.

5. Click on Manage in the Method area.

6. Complete the connection by clicking on Create.

The new connection appears in the Connection Editor, as shown in Figure
2-28.

Figure 2-28 Connection Editor Showing Help Menu’s About Connection

7. Close the Connection Editor by choosing File⇒Close.

8. Close the Menu Editor (by choosing Cancel) and the Browser (by choos-
ing File⇒Close).

9. Save your work.

Step #9: Testing the Program

Before generating code for the project in the next step, take a moment to
switch to Test Mode. Test Mode allows you to see how your interface
behaves, without the need to generate and compile code.

1. Hide the Open, Save, and About Application interfaces by selecting
them in the Project Window and choosing Selected Interfaces⇒Hide.

2. Click on the Test icon in the Project Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

Communicating Between Interfaces
Step #10: Generating the Code and Running the Executable

72 UIM/X Tutorial Guide

2

3. Test the popup dialog behavior:

• Choosing File⇒Open or File⇒Save pops up the Open and Save
File Selection Boxes respectively.

• Choosing Help⇒About Application pops up the Message Box
dialog.

• Clicking on OK or Cancel in the dialogs pops down the interface.

4. Test the other added behavior:

• Clicking on OK in either File Selection Box writes a message to
the Messages Area of the Project Window. At runtime, it writes
the message to stdout.

• Choosing File⇒Exit causes a dialog to pop up stating that the
exit() function was called. At runtime it terminates the
application.

5. When you are through, switch back to Design Mode by clicking on the
Design icon

Step #10: Generating the Code and Running the
Executable

The final step in creating your project is to generate its code, and run the
executable. UIM/X provides a convenient Run Mode that allows you to run
your compiled program without leaving the development environment.

In this step you will generate the code for your project, and run it, in one
step.

1. Click on the Run icon in the Project Window’s icon bar.

2. The Generate Code Options window appears, as shown Figure 2-29.

COMMUNICATING BETWEEN INTERFACES
Where to Go From Here…

UIM/X Tutorial Guide 73

2

Figure 2-29 Generate Code Options Window

3. Ensure that the following radio buttons and toggle buttons are selected:

• Run Makefile

• Run Executable

4. Click OK.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

5. Test the interface. Verify that it works as it did in Test Mode.

6. To stop the program, choose File⇒Exit from the Application Window.

7. Switch back to Design mode by clicking on the Design icon

8. Save your work.

9. Exit UIM/X by choosing File⇒Exit in the Project Window.

Where to Go From Here…

As noted in the introduction, this tutorial presented some of the advantages
of using instances when working with dialogs. Since it was a Novice Mode
tutorial, however, it could not explore all the advantages Standard Mode has
to offer.

For example, this tutorial featured two File Selection Boxes with separate
titles (“Open” and “Save”) that printed custom messages to stdout. In
Standard Mode only one File Selection Box would have been required. By
defining property accessor methods via the Method Editor, you could
expose the related properties in the instance. Then, when popping up the
instance, you could set the title appropriately, via callbacks, or graphically

Communicating Between Interfaces
Step #10: Generating the Code and Running the Executable

74 UIM/X Tutorial Guide

2

using the Connection Editor. Similarly you could have created a method
associated with the File Selection Box’s OK Push Button. UIM/X presents
appropriately named methods in the Behavior category for the instance.

As noted, for a Standard Mode tutorial in which properties are exposed in
an instance, see Chapter 3, “Creating a Drawing Editor”. For an advanced
tutorial on the same subject, see Chapter 5, “Creating an RGB Color Editor
in C++”.

Note: Consult the Release Notes for information about the currently supported
C++ code development.

UIM/X Tutorial Guide 75

�������������������
���
���
�����

Overview

The tutorials in this section will be completed in Standard Mode of UIM/X.
These tutorials are Creating a Drawing Editor and Building a GUI for a
Command-Line Application.

UIM/X Tutorial Guide 76

Creating a Drawing
Editor 3

Overview

In most applications there are times when you want a user action to change
a property at runtime. For example, in a color editor, you might want to
allow users to click on a color chip and assign it to an object. In UIM/X you
can use callbacks to activate the runtime property change, and the
UxGetProperty and UxPutProperty functions to get and assign
property values respectively.

UIM/X simplifies the task of creating menus with an easy-to-use Menu
Editor, providing all the widgets you need and a consistent builder interface
whether you are designing pulldown, popup, or cascading menus. Built-in
behavior includes automatic resizing of menu panes to fit their captions,
positioning and pulldown behavior. Assigning keyboard accelerators and
mnemonics is a snap.

The working area of your interface is often referred to as the application
window, because user activities—such a mouse action or keyboard
clicks—call the functions in your underlying application. UIM/X lets you
quickly create application window behavior by providing structured access
to your application’s functionality via translation tables, where you pair
mouse or keyboard events with your application’s actions.

UIM/X provides a number of dialog widgets to support communication with
the user. The Message Box is the easiest way to present a simple message,
while the Prompt lets you obtain a yes or no answer, for example. While
their purposes differ, all dialog widgets share an ease of use, and the
potential for quick customizing. By writing an interface method for your
chosen dialog widget, you can customize it to pop up from any interface in
your project, with messages created on-the-fly.

CREATING A DRAWING EDITOR

UIM/X Tutorial Guide 77

3

The GUI You Will Build

In this chapter you will create an interface to function as a Drawing Editor.
The Drawing Editor illustrates how to change properties at runtime, change
mouse behavior in the application window, build menus, and pop up a
dialog.

The completed interface, shown in Figure 3-1, consists of the following
areas:

• Menu Bar: Contains pull-down menus with regular panes, mutually
exclusive panes, and panes for selecting options.

• Color-Changing Push Buttons: Push Buttons that change the background
color of the work area.

• Line-Drawing Push Buttons: Allow the user to select from a line,
rectangle, circle, or ellipse, then draw the shape in the work area.

• Work Area: Contains a Frame in a Scrolled Window where the user can
draw shapes using the mouse.

• Popup Dialog Area: Clicking on the Push Button pops up a Message Box
displaying any text entered in the Text field.

Figure 3-1 The Completed Drawing Editor Project

Creating a Drawing Editor
The Sections in This Tutorial

78 UIM/X Tutorial Guide

3

To allow the tutorial to focus on new skills while presenting as many
features as possible, a start-up project has been provided. It includes the
main window, with several working menus. Exploration of the callback
code provided is left to the reader.

The Sections in This Tutorial

This tutorial takes about 120 minutes to complete. It contains the following
sections:

Section I: Getting Started and Drawing the Interface

Section II: Working with Menus

Section III: Adding Line-Drawing Functionality

Section IV: Working with Message Box Dialogs

Section V: Generating the Application Code

Note: The sections in this tutorial are independent of one another. If you are
interested in learning about menus, for example, you can jump to Section II:
Working with Menus, and start there (once you have started UIM/X and loaded
the start-up project).

Section I: Getting Started and Drawing the Interface

In this section you will start UIM/X in Standard Mode and load the start-up
project. Next you will create the color-changing Push Buttons, change a few
properties, and add callback behavior to change properties at runtime.
Finally, you will test the color-changing portion of the interface before
proceeding to the next section.

CREATING A DRAWING EDITOR
The Steps in This Section

UIM/X Tutorial Guide 79

3

The Steps in This Section

This section takes about 20 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Loading the Start-Up Project

Step #3: Laying Out the Working Area

Step #4: Changing Labels and Other Properties

Step #5: Adding Behavior to the Push Buttons

Step #6: Testing the Color-Changing Push Buttons

Where You Are in the Tutorial
⇒Section I: Getting Started and Drawing the Interface

Section II: Working with Menus

Section III: Adding Line-Drawing Functionality

Section IV: Working with Message Box Dialogs

Section V: Generating the Application Code

Step #1: Starting UIM/X in Standard Mode

Before you begin building the Drawing Editor, set up a new directory and
copy the start-up project into it as follows:

1. Start the X Window System.

2. Bring up a terminal window.

3. Make a directory to store the files you will create in this tutorial:

mkdir chap3

4. Change to the directory you just created:

cd chap3

5. Copy the required Drawing Editor project files into your work directory:

cp $UIMXDIR/contrib/MotifMain/* .

cp $UIMXDIR/contrib/DrawDemo/graphics.c .

cp $UIMXDIR/contrib/DrawDemo/*.xpm .

6. Change the permissions on the project files you copied to make them writ-
able:

chmod a+w *

Creating a Drawing Editor
Step #2: Loading the Start-Up Project

80 UIM/X Tutorial Guide

3

7. Start UIM/X from your new directory:

uimx &

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx_directory/bin/uimx &

After a brief pause, a copyright notice window appears, to show that
UIM/X is being initialized. When UIM/X is ready, the Project Window
and the Palette appear.

8. Iconify the terminal window.

Note: To restart the tutorial, begin again from Step 7 above.

Step #2: Loading the Start-Up Project

To facilitate development of the Drawing Editor, a start-up project has been
provided. It contains the Drawing Editor primary interface with menus
already defined, plus a Message Box and a file selection box. It also
contains some source code in a separate file for creating application window
behavior.

To load the start-up project:

1. Choose File⇒Open in the Project Window, or click on the Open icon
in the Tool Bar.

2. Select draw_start.prj.

CREATING A DRAWING EDITOR
Drawing the Scrolled Window and Frame

UIM/X Tutorial Guide 81

3
3. Select OK. The Drawing Editor start-up interface appears, as shown in

Figure 3-2.

Figure 3-2 Drawing Editor Start-Up Project

The Message Box and File Selection Box provided are not visible by
default, though icons for them appear in the Project Window. (To display a
hidden interface double-click on its icon in the Project Window.) These
interfaces are popped up by callbacks provided in the menus. You will test
them later in Section II: Working with Menus.

Step #3: Laying Out the Working Area

In this step you will create the Drawing Editor’s working area—a Scrolled
Window containing a Frame. Next you will add the Push Buttons for
changing the background color of the scrollable Frame.

Drawing the Scrolled Window and Frame

In this step you will add a Scrolled Window to the Drawing Editor by
dragging and drawing. Then you will drag and drop a Frame into it, resizing
it to make it larger than the Scrolled Window (making the scroll bars
visible).

1. Make sure you are in Design Mode. If not, click on the Design icon in
the Project Window.

Creating a Drawing Editor
Step #3: Laying Out the Working Area

82 UIM/X Tutorial Guide

3

2. In the Managers area of the Palette, click on the Scrolled Window icon
with the Select mouse button (the left one), as shown in Figure 3-3.

Figure 3-3 Selecting a Scrolled Window from the Palette

3. Move the mouse pointer to where you want the upper-left corner of the
Scrolled Window to appear. Use Figure 3-4 as a guide.

4. Press and hold the Select mouse button, then drag the mouse downwards
and to the right to draw the Scrolled Window. To complete the operation,
release the mouse button.

The Scrolled Window appears as shown in Figure 3-4. Note that no scroll
bars are displayed. In order for scroll bars to appear, the Scrolled Window
must contain an object larger than its display area.

CREATING A DRAWING EDITOR
Drawing the Scrolled Window and Frame

UIM/X Tutorial Guide 83

3

Figure 3-4 Drawing Editor with Scrolled Window added

5. To add a Frame to the Scrolled Window by dragging and dropping, begin
by pointing to the Frame icon in the Managers area of the Palette.

6. Press and hold the Adjust mouse button (the middle one).

If you press the Select mouse button by mistake, press Escape to cancel
the operation. Most mouse operations can be cancelled in this way.

The pointer changes to the compass shape, and an outline of the widget
appears. This means the widget is ready for you to drag and drop it.

7. Drag the outline of the widget onto the main window, and release it over
the Scrolled Window.

8. The Frame appears in its default size in the upper left corner of the
Scrolled Window, as shown in Figure 3-5.

Creating a Drawing Editor
Step #3: Laying Out the Working Area

84 UIM/X Tutorial Guide

3

Figure 3-5 Drawing Editor with Frame Added to Scrolled Window

9. Resize the Frame until it is larger than the Scrolled Window using the
resize grid, as shown in Figure 3-6.

CREATING A DRAWING EDITOR
Drawing the Scrolled Window and Frame

UIM/X Tutorial Guide 85

3

Figure 3-6 Using the Resize Grid to Resize the Frame

Note that scroll bars appear when you release the mouse, as shown in
Figure 3-7.

Figure 3-7 Scrolled Window Showing Scroll Bars

Creating a Drawing Editor
Step #3: Laying Out the Working Area

86 UIM/X Tutorial Guide

3

Note: If you need to move the Scrolled Window, select it by clicking on a
scroll bar, then choose Selected Objects⇒Other⇒Move. If you try to move it
using the resize grid alone, you will move the Frame it contains instead.

10. Save your work as a new project, DrawingEditor.prj, by selecting
File⇒Save Project As.

Adding the Color-Changing Push Buttons

The Drawing Editor features four Push Buttons used to change the
background color of the drawing area (the Frame in the Scrolled Window).
In this step you will create a Push Button and duplicate it.

1. In the Primitives category of the Palette, click on the Push Button icon.

2. Drag and draw the Push Button, aligning it with the left edge of the
Scrolled Window, using Figure 3-8 as a model.

Figure 3-8 Primary Interface with First Push Button

Don’t worry if the Push Button is not large enough to contain its label.
You will remove the label later, when changing properties.

3. Duplicate the Push Button by choosing Selected Objects⇒Duplicate.

4. Create the final two Push Buttons (for a total of four) by duplication.

5. Align and distribute the Push Buttons, using Figure 3-9 as a model.

CREATING A DRAWING EDITOR
Removing the Push Buttons’ Default Labels

UIM/X Tutorial Guide 87

3

Figure 3-9 Primary Interface with All Four Push Buttons Added

6. Save your work.

Step #4: Changing Labels and Other Properties

Now that the drawing area and color-changing Push Buttons are in place on
the interface, you are ready to change their labels and other properties. In
this step you will begin by removing the Push Buttons’ default labels. Next,
you will change their background colors using the Color Editor.

Removing the Push Buttons’ Default Labels

UIM/X features the ability to edit the properties of several widgets at once.
In this step you will load the Push Buttons into the Property Editor together,
and remove their labels by setting all four Push Buttons’ LabelString
properties.

1. Select all four Push Buttons by marquee selection, or by Ctrl-clicking.

Press and hold the Select mouse button then drag the marquee around the
Push Buttons, or hold down the Control key and click on each widget in
turn.

2. Press the Menu mouse button, and choose Selected
Objects⇒Tools⇒Property Editor.

Creating a Drawing Editor
Step #4: Changing Labels and Other Properties

88 UIM/X Tutorial Guide

3

3. The Property Editor appears, loaded with the Push Buttons, as shown in
Figure 3-10.

Figure 3-10 Property Editor Loaded with the Push Buttons

4. In the Specific category of properties, locate the LabelString property,
changing it to the empty string ("").

Note that the initial value appears to be blank, and a “not-equals” icon
appears beside the property. When more than one widget is loaded into the
Property Editor, the “not-equals” icon indicates that the same property has
a different value in at least one of the widgets.

5. Apply the changes by clicking on Apply in the Property Editor.

The interface is updated to reflect the changes, as shown in Figure 3-11.

CREATING A DRAWING EDITOR
Changing the Push Buttons’ Background Colors

UIM/X Tutorial Guide 89

3

Figure 3-11 Drawing Editor with Empty Strings on Push Buttons

6. Save your work.

Changing the Push Buttons’ Background Colors

In the final step in laying out the color-changing Push Buttons, you will
change their background colors. To select a color you will use the Color
Viewer, which gives access to your system’s color database. You can
optionally mix a custom color using UIM/X’s Color Editor. The colors you
assign the Push Buttons will be used later, to set the background color of
the drawing area (the Frame in the Scrolled Window).

1. Load the first Push Button into the Property Editor by selecting it
individually and dragging and dropping.

Since you will give each Push Button a different color, you cannot change
them all at once.

2. In the Core set of properties, click on the Background property Push
Button to open the Color Viewer.

The Color Viewer appears, as shown in Figure 3-12.

Creating a Drawing Editor
Step #4: Changing Labels and Other Properties

90 UIM/X Tutorial Guide

3

Figure 3-12 Color Viewer

3. Choose a background color for the Push Button in one of three ways:

• Select a color from the Palette across the top of the Color Viewer.

• Scroll through the Color Database and select a color by name.

• Type an RGB value into the Background field.

Note: The color selections that you make should contrast with the foreground
color (by default, "black") so that lines, shapes, and text drawable later in this
tutorial will be visible.

4. Click OK to apply your choice to the Property Editor and close the Color
Viewer, or Apply to apply your choice without closing it.

CREATING A DRAWING EDITOR
Changing the Push Buttons’ Background Colors

UIM/X Tutorial Guide 91

3
5. To create a custom color, open the Color Editor by selecting Edit⇒Edit

Color from the Color Viewer menu bar.

The Color Editor appears as shown in Figure 3-13.

Figure 3-13 Color Editor

6. Create a custom color using the sliders:

• Use the sliders to edit the Hue-Saturation-Intensity (HSI),
Red-Green-Blue (RGB), or Cyan-Magenta-Yellow (CMY) color
balance.

• The colors at the end of each slider show the color obtained by
moving the slider all the way to that end.

• The working color on the left changes as you mix the new color.

7. Once you are satisfied with your color, click OK in the Color Editor. The
color is copied to the Background area of the Color Viewer.

8. Click OK in the Color Viewer to apply the color to the Property Editor.

The hexadecimal value for the color is displayed in the Background
property. For colors chosen from the Color Database, the name is
displayed.

Creating a Drawing Editor
Step #5: Adding Behavior to the Push Buttons

92 UIM/X Tutorial Guide

3

9. Apply your change to the Push Button by clicking Apply in the Property
Editor.

10. Repeat the above steps for the remaining Push Buttons. Select from the
Color Database using the Color Viewer, or compose new colors using the
Color Editor. Don’t forget to apply your changes at each step. For the final
Push Button, close the Color Editor and Color Viewer by clicking on OK.

11. Save your work.

Step #5: Adding Behavior to the Push Buttons

Now that you have laid out the working area of the interface, changed
captions and background colors, the next step is to add behavior to the Push
Buttons. While UIM/X components contain a great deal of built-in
behavior—clicking on a Push Button changes its graphical representation,
for example—advanced behavior must be added by writing callback code.

Callback code is automatically executed when the user triggers its
corresponding event. A Push Button’s ActivateCallback, for example,
is triggered when the user clicks on the Push Button. Other widgets contain
callbacks particular to their special uses.

Since each color-changing Push Button performs the same task using the
same callback code, in this step you will load all four Push Buttons into the
Property Editor at once. You will then use a Ux Convenience Library
function, UxPutBackground, to set the background color of the Frame.

To add behavior to the Push Buttons:

1. Select all four Push Buttons and load them into the Property Editor.

2. Open the Callback Editor by clicking on the Push Button [...] beside
ActivateCallback (in the Behavior category).

The Callback Editor appears as shown in Figure 3-14.

CREATING A DRAWING EDITOR
Changing the Push Buttons’ Background Colors

UIM/X Tutorial Guide 93

3

Figure 3-14 Callback Editor

3. Click in the Callback Editor Text Field, and type the following callback
code:

UxPutBackground(frame1,UxGetBackground(UxThisWidg
et));

4. Click on OK on the Callback Editor to update the Property Editor with
your entry.

5. Click on Apply in the Property Editor to save your changes and update all
four Push Buttons at once.

6. Close the Property Editor by selecting File⇒Close from the Property Edi-
tor menu.

7. Save your work. You are now ready to test this portion of the interface.

Step #6: Testing the Color-Changing Push Buttons

Before beginning to work with the menus in the next part of this tutorial,
take a moment to switch to Test Mode. Test Mode allows you to see how
your interface will behave at runtime, without the need to compile code or
exit the development environment.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

Creating a Drawing Editor
Section II: Working with Menus

94 UIM/X Tutorial Guide

3

2. Test the color-changing Push Buttons:

• Clicking on a Push Button changes the color of the Frame.

• Use the scroll bars in the Scrolled Window.

3. When you are through, switch back to Design Mode by clicking on the
Design icon

Section II: Working with Menus

In UIM/X working with menus is simplified for two main reasons. First,
menu elements contain built-in behavior including automatic sizing and
positioning. You never have to worry about the size of menu labels, or
pull-down behavior, for example. Second, UIM/X features a Menu Editor
that provides a structured means to build your menu bar and add items to
the menus.

In this section you will work with the menu bar already provided with the
start-up project, adding a pulldown menu to it. You will also add a
cascading menu, illustrating how to create an additional level of structured
access to your application’s commands. At runtime choosing an item in the
menu will change the background color of the Frame. You will then test the
menus.

The Steps in This Section

This section takes about 30 minutes to complete. It contains the following
steps:

Step #7: Adding a Pulldown Menu

Step #8: Adding a Cascading Menu

Step #9: Adding Behavior to the Color Menu

Step #10: Testing the Menus

Where You Are in the Tutorial
Section I: Getting Started and Drawing the Interface

⇒Section II: Working with Menus

Section III: Adding Line-Drawing Functionality

Section IV: Working with Message Box Dialogs

Section V: Generating the Application Code

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 95

3

Step #7: Adding a Pulldown Menu

In this step you will add a new pulldown menu to the menu bar provided,
and populate it with items. At runtime choosing an item from the new Color
menu will change the background color of the Frame.

To Add a Pulldown
Menu:

1. Select any widget in the menu bar, and open the Menu Editor by
choosing Selected Objects⇒Tools⇒Menu Editor.

The Menu Editor appears as shown in Figure 3-15.

Figure 3-15 Menu Editor

2. Add a new pane by choosing Create⇒Pane from the Menu Editor.

3. Enter the values shown in Table 3-1 for the new pane,
pullDownMenu_p6:

�������	��Property Values for ����� Menu Pane

4. Add an item to the new pane by selecting Create⇒Item After⇒Push But-
ton.

5. Enter the values shown in Table 3-2 for the new Push Button:

Property Value

Name colorPane

Label String "Color"

Mnemonic "C"

Creating a Drawing Editor
Step #7: Adding a Pulldown Menu

96 UIM/X Tutorial Guide

3

�������	
�Property Values for ����� Menu Item

6. Add a second Push Button with the values shown in Table 3-3:

�������	��Property Values for ����
 Menu Item

7. Add a third Push Button with the values shown in Table 3-4:

�������	��Property Values for ���� Menu Item

8. Add a fourth (and final) Push Button with the values shown in Table 3-5:

�������	��Property Values for ������
 �Menu Item

9. Click on Apply to apply your changes.

Note the new menu, Color, is added to the menu bar, as shown in Figure
3-16. The mnemonic you specified for the Color menu, “C”, is underlined.

Property Value

Name colorWhite
LabelString "White"
Mnemonic “W”

Property Value
Name colorGreen
LabelString "Green"
Mnemonic "G"

Property Value

Name colorBlue
LabelString "Blue"
Mnemonic "B"

Property Value
Name colorHotPink
LabelString "Hot Pink"
Mnemonic "P"

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 97

3

Figure 3-16 Drawing Editor with Color Menu Added

10. Save your work, leaving the Menu Editor open for the next step, adding a
cascading menu.

Step #8: Adding a Cascading Menu

Cascading menus are a convenient way to provide choices without taking
up too much room. When the user clicks on a pane designated as a
cascading menu (indicated by a right-arrow), the submenu is presented. As
with other elements of a menu, UIM/X takes care of positioning the
cascading menu, providing the right-arrow graphics, and the cascading
behavior itself.

In this step you will add a cascading menu to the Color menu just created.
The cascading menu will be called Grayscale, and will contain three items:
Light Gray, Medium Gray, and Dark Gray. First you will create the
submenu, then you will add the cascade button and connect it to the
submenu. All work will be performed in the Menu Editor.

Creating a Drawing Editor
Step #8: Adding a Cascading Menu

98 UIM/X Tutorial Guide

3

To add a cascading menu:

1. Create the new submenu by choosing Create⇒Pane from the Menu
Editor.

A new pane, pullDownMenu_p7, is added to the end of the Panes list.

2. Add an item to the submenu by choosing Create⇒Item After⇒Push But-
ton in the Menu Editor.

3. Enter the values shown in Table 3-6 for the new Push Button:

�������	!�Property Values for "�#������$�Menu Item

4. Add a second Push Button with the values shown in Table 3-7:

�������	%�Property Values for &�'��(����$�Menu Item

5. Add the third and final Push Button with the values shown in Table 3-8:

�������)�Property Values for *�� ����$�Menu Item

6. To create the Cascading menu, begin by selecting the Color menu by
scrolling through the list of panes in the Menu Editor, and selecting col-
orPane.

The list of items contained in the Color menu appear in the Items area, as
shown in Figure 3-17.

Property Value
Name lightGray
LabelString "Light Gray"
Mnemonic "L"

Property Value
Name mediumGray
LabelString "Medium Gray"
Mnemonic "M"

Property Value
Name darkGray
LabelString "Dark Gray"
Mnemonic "D"

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 99

3

Figure 3-17 Menu Editor Showing colorPane’s Items

7. In the Items list, select colorHotPink.

8. Add a cascading menu after the Hot Pink item by choosing Create⇒Item
After⇒Cascade Button in the Menu Editor.

A new item, colorPane_b5, is added to the end of the Items list.

9. Enter the values shown in Table 3-9 for the cascading menu:

�������	+�Property Values for Cascade Menu Pane

The value for Next Pane links the Cascade Button to the pulldown menu
you created earlier.

10. Click on OK to apply your changes and close the Menu Editor.

11. Save your work.

Property Value
Name grayCascade
LabelString "Grayscale"
Mnemonic "g"
Next Pane pullDownMenu_p7

Creating a Drawing Editor
Step #9: Adding Behavior to the Color Menu

100 UIM/X Tutorial Guide

3

Step #9: Adding Behavior to the Color Menu

To simplify connecting interface elements together, UIM/X features a
Connection Editor. By loading both the source and target widgets into the
editor, you can view the available callbacks in the source, and the methods
in the target. You can then connect the source’s callback to the target’s
method visually, rather than via callback code.

In this step you will load the Color menu’s items into the Connection
Editor, connecting their ActivateCallback callbacks to the Frame’s
SetBackground method. First you will open the editor and make the
first connection. Next you will load the remaining menu items into the
editor, one by one, and connect them. Since menu items are not visible in
the interface at design time, you will use the Browser to view and select the
items for loading.

Opening the Connection Editor and Making the First
Connection

In this step you will load the Color menu’s White item into the Connection
Editor and create a connection to change the Frame’s background color.

1. Open the Browser by choosing Selected Objects⇒Tools⇒Browser
while over the Main Interface.

Since menus contain many widgets, you might find it convenient to view
the widgets by Name only.

2. In the Browser click on the colorWhite menu item (under color-
Pane), as shown in Figure 3-18.

Figure 3-18 Browser Showing colorWhite Menu Item Selected

3. Open the Connection Editor by choosing Selected Objects⇒Tools⇒Con-
nection Editor while over the Browser.

CREATING A DRAWING EDITOR
Opening the Connection Editor and Making the First Connection

UIM/X Tutorial Guide 101

3
The Connection Editor appears loaded with colorWhite item in the
Source area, as shown in Figure 3-19. Notice colorWhite’s callbacks
are listed in the Callback area of the Connection Editor.

Figure 3-19 Connection Editor Showing colorWhite’s Callbacks

4. Load the Frame into the Target area of the Connection Editor in one of two
ways:

• Click on it with the Adjust mouse button, then drag and drop it
into the Target area of the Connection Editor.

• Click on it with the Select mouse button and click on the Load
Target icon (the right-most one) in the Connection Editor.

The instance’s default methods are listed in the Method area of the
Connection Editor, as shown in Figure 3-20.

Creating a Drawing Editor
Step #9: Adding Behavior to the Color Menu

102 UIM/X Tutorial Guide

3

Figure 3-20 Connection Editor Showing frame1’s Methods

5. Click on ActivateCallback in list of callbacks, and on SetBack-
ground in the list of methods.

The Color parameter appears in the parameters area.

6. Replace the default value, "black", with the desired value, "white".

7. Complete the connection by clicking on Create.

If your system’s color database does not contain a definition for “white”,
you will receive an error message. Edit the connection, substituting the
color white’s hexadecimal value, "#fafafafafafa", instead. Be sure
to enclose the hexadecimal value in quotation marks.

To see the colors for which strings are defined, use UIM/X’s Color
Viewer.

8. The new connection appears in the Connection Editor, as shown in Figure
3-21.

CREATING A DRAWING EDITOR
Making the Remaining Connections

UIM/X Tutorial Guide 103

3

Figure 3-21 Connection Editor Showing New Connection

9. Save your work.

Making the Remaining Connections

In this step you will create the remaining Color menu connections, selecting
menu items in the Browser and loading them into the already open
Connection Editor.

1. Select the colorGreen menu item in the Browser.

2. Load it into the Source area of the Connection Editor by clicking on the
Load Source icon (the left one) or choosing File⇒Load Source in the
Connection Editor.

Note that the Color parameter retains the previous setting, for
convenience.

3. Replace "white" with "green" then complete the connection by
clicking on Create.

As before, if “green” is not defined on your system, you will have to enter
the hexadecimal value instead (or an equivalent string).

4. Repeat the process for the remaining menu items. Table 3-10 list all the
menu items and the values you should assign the Color parameter. For
convenience the table lists the hexadecimal values as well.

Creating a Drawing Editor
Step #10: Testing the Menus

104 UIM/X Tutorial Guide

3

�������	�,�Values for Color Parameter for All Menu Items

5. When complete close the Connection Editor by choosing File⇒Close.

6. Save your work.

Step #10: Testing the Menus

Before adding the drawing functionality in the next section, take a moment
to test the menus.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Test the pulldown behavior:

• To display a pulldown menu, click on the menu bar.

• Dragging the cursor highlights the menu items.

3. Test the menu you added:

• Change the drawing area’s color by choosing an item from the
Color menu.

• Choose Color⇒Grayscale to display the cascading menu.

Menu Item Value for Color Hexadecimal Value

colorWhite "white" "#fafafafafafa"

colorGreen "green" "#0000ffff0000"

colorBlue "blue" "#51005100fb00"

colorHotPink "hot pink" "#ffff6969b4b4"

lightGray "light gray" "#d3d3d3d3d3d3"

mediumGray "gray" "#bebebebebebe"

darkGray "dark slate gray" "#2f2f4f4f4f4f"

CREATING A DRAWING EDITOR
Making the Remaining Connections

UIM/X Tutorial Guide 105

3
4. Test the functionality provided with the start-up project:

• File⇒Open and File⇒Save As pop up the File Selection Box
provided with the project. Selecting a file prints a message to the
Project Window message area.

• File⇒Exit pops up the Message Box provided. UIM/X traps any
exit command, printing a message instead.

• Selecting an item on the Edit menu prints a corresponding
message to the message area.

• Items on the View menu change the background color of the
Main Window, printing a message in the message area.

• The Options menu contains multiply-selectable options (the
general options) and mutually exclusive options (the radio
options).

5. Test the keyboard control:

• To open a menu using the keyboard, press Alt and the menu’s
mnemonic (the underlined letter).

• Use the arrow keys to move between menus and menu items, or
simply press the next mnemonic.

• To choose a menu item without opening the menu use its
keyboard accelerator. For example, pressing Shift-Del prints
“Cut!” to the message area.

6. When you are through, switch back to Design Mode by clicking on the
Design icon

You are now ready to add the line-drawing functionality, in the next
section.

Section III: Adding Line-Drawing Functionality

In UIM/X widgets are provided with a great deal of built-in behavior, and
more complex behavior is easily added via callbacks. To respond to events
such as mouse clicks and mouse motion, a more general technique is
required. For example, dragging the cursor through the working area of a
Text Editor application would most likely select text. In a Drawing Editor
application, you would expect different behavior. This third kind of
response is most often provided by the underlying application, rather than
the interface. In UIM/X this is referred to as application window behavior.

Creating a Drawing Editor
Section III: Adding Line-Drawing Functionality

106 UIM/X Tutorial Guide

3

Specifying application window behavior is done via translation tables,
structures that link application window events to application actions. Using
the Translation Table List and its associated editors, you can graphically
specify the mouse and keyboard events to which you want to respond, and
create links to your application libraries.

The advantages of translation tables are two-fold. First, translation tables
are shared by the project as a whole. This makes it easy for two separate
portions of the interface to initiate the same kind of behavior. Second, you
can easily activate and deactivate translation tables, substituting behavior as
required. In this way the same mouse event can trigger different responses,
depending on the state of your application.

In this section you will use translation tables to add line-drawing
functionality to the Drawing Editor. You will begin by drawing the new
Push Buttons. Next you will use the Translation Table Editor to create
different application window behavior for each Push Button, linking mouse
events to the library of graphics commands provided with the start-up
project. You will then use the Push Button’s ActivateCallback to
activate the appropriate translation table. Finally, you will test the
line-drawing functionality.

The Steps in This Section

This section takes about 30 minutes to complete. It contains the following
steps:

Step #11: Creating the Line-Drawing Push Buttons

Step #12: Creating the Application Window Behavior

Step #13: Applying the Behavior to the Line-Drawing Push Buttons

Step #14: Testing the Line-Drawing Push Buttons

Where You Are in the Tutorial
 Section I: Getting Started and Drawing the Interface

Section II: Working with Menus

⇒Section III: Adding Line-Drawing Functionality

Section IV: Working with Message Box Dialogs

Section V: Generating the Application Code

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 107

3

Step #11: Creating the Line-Drawing Push Buttons

In this step you will draw the Push Buttons, and use the Icon Viewer to
preview and load bitmaps into each one.

To add the line-drawing Push Buttons:

1. Drag and drop a Push Button from the Primitives area of the Palette to
your main window interface.

Position it to the left of the Scrolled Window, as shown in Figure 3-22.

Figure 3-22 Drawing Editor with First Line-Drawing Push Button Added

2. Create three more Push Buttons by dragging and drawing, dragging and
dropping, or duplication.

Position the new Push Buttons under the first one. Don’t worry if they are
not all the same size. They will resize automatically when you add their
pixmaps.

3. To add a pixmap to the first Push Button, pushButton5, begin by load-
ing it into the Property Editor.

Double click on it, or select it (by clicking once) and choose Selected
Objects⇒Tools⇒Property Editor.

4. Locate the LabelType property in the Specific category, changing it
from string to pixmap.

5. Locate the LabelPixmap property in the Specific category and open the
Icon Viewer by clicking on the LabelPixmap button.

Creating a Drawing Editor
Step #11: Creating the Line-Drawing Push Buttons

108 UIM/X Tutorial Guide

3

The Icon Viewer appears, as shown in Figure 3-23.

Figure 2-23 Icon Viewer

6. Find the line pixmap, line.xpm:

• To list only the bitmaps in your current directory, enter *.xpm in
the Filter area, then click on the Filter button.

• To preview a bitmap, highlight the file name. It will appear
automatically in the Pixmap area of the Icon Viewer.

7. Load the line icon into the Property Editor by clicking OK in the Icon
Viewer.

8. Click on Apply in the Property Editor.

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 109

3
9. The line icon is loaded into the Push Button, which resizes to fit it. Your

application should now look similar to Figure 3-24.

Figure 3-24 Line-Drawing Push Button, pushButton5, with Pixmap Added

10. Repeat the process, adding pixmaps to the remaining three Push Buttons.
Table 3-11 lists all the Push Buttons and the pixmaps they should contain:

�������	���List of Pixmaps for the Push Buttons

11. When you are done, close the Property Editor by choosing File⇒Close.

Widget Name Pixmap
pushButton5 line.xpm
pushButton6 circle.xpm
pushButton7 rectangle.xpm
pushButton8 ellipse.xpm

Creating a Drawing Editor
Step #12: Creating the Application Window Behavior

110 UIM/X Tutorial Guide

3

12. Align and arrange the line-drawing Push Buttons. When complete, the
interface should look as shown in Figure 3-25.

Figure 3-25 Drawing Editor with Pixmaps Added

13. Save your work.

Step #12: Creating the Application Window Behavior

UIM/X provides two editors to facilitate the specification of application
window behavior: the Translation Table Editor and the Event Editor. It also
provides a structured access to the translation tables in your project, via the
Translation Table List.

The Translation Table List lets you pair user-generated events with
application generated actions. You can also set the table policy to override,
augment, or replace the current application window behavior.

While you can enter any X Toolkit event into the Translation Table Editor,
you can also specify events graphically via the Event Editor. By simply
pointing and clicking, you can define events for most mouse activity, as
well as keyboard events.

In this step you begin by opening the editors associated with translation
tables. Next you will initialize the interpreter with the graphics library
provided with the start-up project. You will then create a translation table
for each line-drawing Push Button.

CREATING A DRAWING EDITOR
Opening the Editors

UIM/X Tutorial Guide 111

3

Opening the Editors

In this step you will open the editors.

1. To begin, open the list of translation tables for the interface by
choosing Selected Objects⇒Tools⇒Translation Table List.

The Translation Table List appears, as shown in Figure 3-26.

Figure 3-26 Translation Table List

2. Click <Select> the mainWS interface from the “Interfaces” area of the
UIM/X Project window.

3. Add a translation table to the project and open the Translation Table Editor
by choosing Edit⇒Add in the Translation Table List.

The Translation Table Editor appears, as shown in Figure 3-27.

Figure 3-27 Translation Table Editor

4. Next, open the Event Editor by choosing Edit⇒Event Editor in the Trans-
lation Table Editor.

Creating a Drawing Editor
Step #12: Creating the Application Window Behavior

112 UIM/X Tutorial Guide

3

The Event Editor appears, as shown in Figure 3-28.

Figure 3-28 Event Editor

5. Position the three dialogs so you can work with them conveniently.

Initializing the Interpreter with the Action Code

Before specifying the actions that will occur in response to mouse events,
you must initialize the interpreter with the action code. That way, when you
specify responses in the translation table, UIM/X will accept the function
calls without error.

1. Choose Tools⇒Interpreter in the Project Window. The interpreter
appears, as shown in Figure 3-29.

Figure 3-29 Interpreter

2. Choose File⇒Load Source Code in the interpreter.

Loading source code into the interpreter makes the code module’s
functions available to the development environment. It is similar to
compiling code for run-time execution.

CREATING A DRAWING EDITOR
Defining a Translation Table for the Line-Drawing Push Buttons

UIM/X Tutorial Guide 113

3
3. In the file selection box that appears, select graphics.c and click OK.

The following message appears in the Messages Area of the Interpreter:

Result: OK

4. Initialize the graphics code by typing the following line:

UxInitGraphics();

UxInitGraphics is defined in graphics.c. It initializes the
graphics code and registers the actions you will use later.

5. To execute the function, double-click to highlight it and choose Inter-
pret⇒Evaluate in the Interpreter, or click on the Evaluate icon.

The Messages Area now shows:

Result: 0

6. Choose File⇒Close in the Interpreter.

Defining a Translation Table for the Line-Drawing Push
Buttons

In this step you will define three events to match mouse clicks and motion
in the application window. Using the Event Editor you will graphically
define events, copying them to the translation table editor. Since the
translation tables for the line, circle, rectangle, and ellipse Push Buttons are
almost the same, you will then duplicate the translation table for the other
Push Buttons.

1. In the Translation Table Editor, replace the default table name,
transTable1, with Line, and set the Table Policy to replace.

2. In the Event Editor, click on the Btn1 and Down radio buttons in the
Mouse Events area.

<Btn1Down> appears in the Event String area, as shown in Figure 3-30.

Figure 3-30 Event Editor Showing <Btn1Down> Event

3. Copy the event to the Translation Table Editor by clicking on Apply.

Creating a Drawing Editor
Step #12: Creating the Application Window Behavior

114 UIM/X Tutorial Guide

3

The <Btn1Down> event appears in the Translation Table Editor, as
shown in Figure 3-31.

Figure 3-31 Translation Table Editor Showing <Btn1Down> Event

4. In the Actions area, add the following action:

first_point

The first_point function is defined in the graphics.c file
loadedearlier.

5. Apply the change by clicking on Apply in the Translation Table Editor.
UIM/X automatically adds any missing parentheses to the function call.

6. Add a new event-action pair by choosing Edit⇒Add in the Translation
Table Editor.

An empty pair is added.

7. Repeat the process, creating new event strings in the Event Editor, copy-
ing them to the Translation Table Editor, and adding the appropriate
actions. Table 3-12 lists all the event-action pairs required by the Line
translation table.

�������	�
�Event-Action Pairs for "�
� Translation Table

Events Actions

<Btn1Down> first_point

<Btn1Motion> draw_line

<Btn1Up> last_point

CREATING A DRAWING EDITOR
Creating Translation Tables for the Other Push Buttons

UIM/X Tutorial Guide 115

3
When complete the Translation Table Editor should appear as shown in
Figure 3-32.

Figure 3-32 Translation Table Editor Showing All Events Needed

8. Click on OK to apply your changes and close the Translation Table Editor.

Creating Translation Tables for the Other Push Buttons

In this step you will duplicate the translation table just created for each of
the remaining Push Buttons. You will change the action for the
<Btn1Motion> event to a more appropriate function call.

1. To duplicate the translation table, begin by selecting the line translation
table by clicking on it in the Translation Table List.

2. Choose Edit⇒Duplicate in the Translation Table List.

A new translation table is created, transTable1, and its icon is added
to the list.

3. Double-click on the new icon to open its Translation Table Editor.

4. Replace the existing Table Name transTable1 with Circle.

5. Since the circle Push Button should draw a circle and not a line, replace
the <Btn1Motion> action, draw_line, with a more appropriate
action, draw_circle.

6. Apply your changes and close the editor by clicking on OK in the Transla-
tion Table Editor.

7. Repeat the process, creating two more translation tables, for the rectan-
gle-drawing and ellipse-drawing Push Buttons respectively.

Table 3-13 lists the translation tables for all four Push Buttons, with the
appropriate actions for the <Btn1Motion> events:

Creating a Drawing Editor
Step #13: Applying the Behavior to the Line-Drawing Push Buttons

116 UIM/X Tutorial Guide

3

�������	���<Btn1Motion> Actions for the Four Translation Tables

After your entries, the Translation Table List should now look as shown in
Figure 3-33.

Figure 3-33 Translation Table List with All Four Icons

8. Click on OK to close the Translation Table List.

9. Save your work.

Step #13: Applying the Behavior to the Line-Drawing
Push Buttons

With the translation tables created, it now remains to apply each one to the
Frame in the Scrolled Window at the appropriate moment. In UIM/X you
can attach a translation table to an object at design time using the
Translations property, or dynamically at runtime using
UxPutTranslations.

In this step you will add behavior to each of the Push Buttons to apply its
translation table to the Frame inside the scrolled window.

1. Double-click on the line-drawing Push Button, pushButton5 to open
the Property Editor.

Push Button Name Translation Table <Btn1Motion> Action

pushButton5 Line draw_line

pushButton6 Circle draw_circle

pushButton7 Rectangle draw_rectangle

pushButton8 Ellipse draw_ellipse

CREATING A DRAWING EDITOR
Creating Translation Tables for the Other Push Buttons

UIM/X Tutorial Guide 117

3
2. In the Behavior category, locate the ActivateCallbackevent, and

type the following callback code into it:

UxPutTranslations(frame1,Line);

1. Apply the change by clicking on Apply in the Property Editor.

1. Repeat the process for each of the remaining Push Buttons, substituting
the appropriate translation tables.

Table 3-14 lists the ActivateCallback code for all four Push
Buttons:

�������	���ActivateCallback Code for the Four Push Buttons

2. Close the Property Editor by selecting File⇒Close from the Property Edi-
tor menu.

3. Save your work. You are now ready to test this portion of the interface.

Step #14: Testing the Line-Drawing Push Buttons

Before continuing with the tutorial, take a moment to test the work you
have done in this section.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window

The Palette and any other open editors disappear. The UIM/X main
window and your interface remain.

2. Test the line-drawing functions:

• Draw a line, circle, rectangle, or ellipse by clicking on the
appropriate Push Button, then dragging and drawing in the
Scrolled Window.

• If it is difficult to see the drawn object, change the background
color of the frame to increase the contrast.

Push Button
Name

TranslationTable ActivateCallback Codes

pushButton5 Line
UxPutTranslations(frame1,
Line);

pushButton6 Circle
UxPutTranslations(frame1,
Circle);

pushButton7 Rectangle
UxPutTranslations(frame1,
Rectangle);

pushButton8 Ellipse
UxPutTranslations(frame1,
Ellipse);

Creating a Drawing Editor
Section IV: Working with Message Box Dialogs

118 UIM/X Tutorial Guide

3

3. When you are through, switch back to Design Mode by clicking on the
Design icon

Section IV: Working with Message Box Dialogs

UIM/X features a number of dialog widgets designed to convey information
to users, and simplifies working with dialogs in several ways. By using an
instance of a dialog in your calling interface, for example, you protect it
from unwanted changes. In addition, you can create property accessor
methods to greatly simplify reading or writing a custom message to the
dialog. Finally, the instance and accessor method combination simplify
popping up the interface.

Some dialog widgets are well-suited to displaying simple messages, others
to asking a question and obtaining a yes or no answer. Still others contain
graphics conveying the degree of urgency of the message. In UIM/X all
dialogs share a convenience of use, and the ease with you can display
custom messages dynamically.

Placing an instance of the dialog in the interface where you will call it
protects the dialog from modification. As with other widgets, creating an
instance of it renders most of its properties unavailable in the instance. This
is ideal for distributing a modified dialog throughout your design team, or
simply for maintaining a consistent look when the dialog is used in different
interfaces. Changes to the original dialog are of course possible, and are
automatically reflected in all the instances.

To make the message area—or any property—available for reading or
writing in the instance you create property accessor methods for the original
dialog. Property accessor methods are pairs of methods following a specific
naming convention: ObjectName_get_MethodName and
ObjectName_set_MethodName. You provide the method names, while
UIM/X provides the prefixes. In the body of the method, you “expose” the
property using the UxGetProperty and UxSetProperty functions.

When UIM/X identifies a pair of get and set accessor methods in an
instance, it presents a MethodName property in the Property Editor. Setting
the new property calls the underlying method for the instance. Since the
new property behaves like any other, you can provide it with a default value
using the Property Editor, or set it at run time in callback code. You can
also make a connection to it using the Connection Editor.

CREATING A DRAWING EDITOR
The Steps in This Section

UIM/X Tutorial Guide 119

3
There is a final advantage to using instances and property accessor methods
for dialogs. The property accessor methods and the properties they make
available become local to the calling interface. Therefore, there is no need
to declare global variables for the dialog, or the interface from which it is
called.

In this section you will add a Message Box dialog to the Drawing Editor
interface. To facilitate displaying a message, you will create an interface
method for the dialog, and add an instance of the dialog to the main
interface. Next you will use the Connection Editor to pop up the dialog
from the Push Button, and write the contents of the Text Field to the
message area. As in the other sections, you will end by testing the dialog
functionality.

The Steps in This Section

This section takes about 20 minutes to complete. It contains the following
steps:

Step #15: Adding the Widgets

Step #16: Creating Property Accessor Methods for the Message Box

Step #17: Adding Behavior to the Popup Push Button

Step #18: Testing the Message Box and Text Box

Where You Are in the Tutorial
Section I: Getting Started and Drawing the Interface

Section II: Working with Menus

Section III: Adding Line-Drawing Functionality

⇒Section IV: Working with Message Box Dialogs

Section V: Generating the Application Code

Creating a Drawing Editor
Step #15: Adding the Widgets

120 UIM/X Tutorial Guide

3

Step #15: Adding the Widgets

In this step you will add the widgets associated with the dialog: a Push
Button, Text Field, and the Message Box dialog itself. At run time clicking
on the Push Button will pop up the Message Box. Any text you have typed
in the Text Field will appear as its message.

1. Add a Push Button to the lower-left area of the Drawing Editor, as
shown in Figure 3-34.

Figure 3-34 Drawing Editor with Push Button Added

2. Load the Push Button into the Property Editor, and change its Label-
String property (in the Specific category) from "pushButton9" to
"Popup...".

3. Apply your changes.

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 121

3
4. Next, add a Text Field to the interface, placing it beside the Push Button,

as shown in Figure 3-35.

Figure 3-35 Drawing Editor with Text Field Added

5. Finally, add a Message Box dialog by clicking on it in the Dialogs area of
the Palette and dragging and drawing outside the Drawing Editor inter-
face.

6. Load the Message Box into the Property Editor, and change its Dialog-
Title property (in the Specific category) to "Popup Message".

7. Apply your changes.

8. Save your work.

Creating a Drawing Editor
Step #16: Creating Property Accessor Methods for the Message Box

122 UIM/X Tutorial Guide

3

Step #16: Creating Property Accessor Methods for the
Message Box

In this step you will use the Method Editor to create a pair of get and set
accessor methods for the Message Box. These methods will operate on the
Message Box’s MessageString property. You will also add an instance
of the Message Box to the Drawing Editor interface, making the methods
easily available to callbacks in the Drawing Editor.

To create property accessor methods for the message box:

1. Select the Message Box dialog, then open the Method Editor for the
interface by choosing Selected Objects⇒Tools⇒Method Editor.

2. The Method Editor appears, as shown in Figure 3-36.

Figure 3-36 Method Editor for the Message Box Dialog,
messageBoxDialog1

3. Change the method type from Method to GetProperty.

Notice the method prototype changes to reflect the required naming
convention. For example, the method name prefix changes from
messageBoxDialog1 to messageBoxDialog1_get.

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 123

3
4. Edit a get method for the interface by entering the values shown in Table

3-15.

�������	������ Method Definition

5. Create the new method by clicking on Create Method.

The get method appears in the Interface Methods area, as shown in
Figure 3-37.

Figure 3-37 Method Editor Showing New Method

6. Similarly, create a set method by changing to the Set Property
method type.

Notice the method prototype changes once again. For convenience, the
Method Editor retains much of the code you entered for the get method. A
variable called value is automatically declared for the set method.

7. Edit a set method for the interface by entering the values shown in Table
3-16.

In This Area Type the Following Code

Return Type char *

Name MsgStrng

Arguments none.

Code return UxGetMessageString(UxThis);

Creating a Drawing Editor
Step #17: Adding Behavior to the Popup Push Button

124 UIM/X Tutorial Guide

3

�������	�!���� Method Definition

8. Create the new method by clicking on Create Method.The set method is
added to the Interface Methods area.

9. Close the Method Editor by selecting File⇒Close.

10. To add an instance of the Message Box to the Drawing Editor interface,
begin by selecting the Message Box and choosing Selected
Objects⇒Instance.

11. Point to the Drawing Editor interface then click the Adjust mouse button.

This adds a default-sized instance of the Message Box to the interface.
While instances of dialogs are visible in the Browser, they are not visible
in the interface itself.

12. Save your work.

Step #17: Adding Behavior to the ����� Push Button

In this step you will use the Connection Editor to add behavior to the Popup
Push Button. First you will use the Connection Editor to attach the Push
Button’s ActivateCallback event—the event that takes place when it
is clicked—to the method you created for the Message Box. You will use
the method to copy text from the Text Field to the Message Box’s Message
String. Similarly, you will connect the ActivateCallback event to the
UxManage() method.

1. Select the Popup… Push Button just added to the interface.

2. Open the Connections Editor by selecting Selected Objects⇒Tools⇒Con-
nection Editor.

The Connection Editor appears loaded with pushButton9, as shown in
Figure 3-38.

In This Area Type the Following Code
Return Type void
Name MsgStrng

Arguments
char *value;

(Be sure to change int to char *,)
Code UxPutMessageString(UxThis, value);

CREATING A DRAWING EDITOR
Where You Are in the Tutorial

UIM/X Tutorial Guide 125

3

Figure 3-38 Connection Editor

3. Open the Browser by selecting Selected Objects⇒Tools⇒Browser.

Since the instance of the Message Box is not visible, you must select it
using the Browser.

4. In the Browser, locate the instance of the Message Box,
messageBoxDialog1Instance1, and load it into the Target area of
the Connection Editor by dragging and dropping.

The _set_MsgStrng and _get_MsgStrng methods you created are
displayed in the Method area of the Connection Editor, along with the
instance’s default methods, as shown in Figure 3-39.

Creating a Drawing Editor
Step #17: Adding Behavior to the Popup Push Button

126 UIM/X Tutorial Guide

3

Figure 3-39 Connection Editor Showing Instance’s Method

5. Click on ActivateCallback in list of callbacks, and on
_set_MsgStrng in the list of methods.

The list of arguments appears in the arguments area.

6. Type the following in the value property:

UxGetText(textField1)

7. Complete the connection by clicking on Create.

8. The new connection appears, as shown in Figure 3-40.

Figure 3-40 Connection Editor Showing New Connection

CREATING A DRAWING EDITOR
The Steps in This Section

UIM/X Tutorial Guide 127

3
9. Next, create the connection to pop up the Message Box Dialog by select-

ing ActivateCallback in the Source Callback list, and on Manage
in the Target Method list.

10. Complete the connection by clicking on Create. The new connection is
added to the list.

11. Close the Connection Editor and the Browser.

12. Save your work.

Step #18: Testing the Message Box and Text Box

Before generating code for the entire project in the next step, switch to Test
Mode to verify the behavior of the portions just added.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

2. Test the Message Box functions:

• Pop up the Message Box by clicking on the Popup… button.

• Click on OK to pop down the Message Box.

• Any message you type in the Text Field appears in the Message
Box when it pops up.

3. When you are through, switch back to Design Mode by clicking on the
Design icon .

Section V: Generating the Application Code

The final step in the Drawing Editor is to generate the application code for
the project. Before you can generate the code, you must edit main program
to initialize the Drawing Editor draw functions included with the start-up
project. You must also edit the Makefile template, to include the object file
for the graphics code.

The Steps in This Section

This section take about 15 minutes to complete. It contains the following
steps:

Step #19: Customizing the Main Program and Makefile

Step #20: Generating the Code and Running the Executable

Creating a Drawing Editor
Step #19: Customizing the Main Program and Makefile

128 UIM/X Tutorial Guide

3

Where You Are in the Tutorial
Section I: Getting Started and Drawing the Interface

Section II: Working with Menus

Section III: Adding Line-Drawing Functionality

Section IV: Working with Message Box Dialogs

⇒Section V: Generating the Application Code

Step #19: Customizing the Main Program and Makefile

In this step you will modify the main program to initialize the graphics code
in graphics.c, the file containing the code for the line-drawing Push
Button. You will also edit the makefile template for the project, so that
running make generates the object file for the code.

Editing the Main Program

In this step you add initialization code to the main program file.

1. Open the Program Layout Editor by choosing Tools⇒Program Layout
from the Project Window.

The Program Layout Editor appears, as shown in Figure 3-41.

Figure 3-41 Program Layout Editor

2. Open a Text Editor on the main program by clicking on the button next to
the Ux Main Program area.

CREATING A DRAWING EDITOR
Editing the Makefile Template

UIM/X Tutorial Guide 129

3
The Text Editor appears as shown in Figure 3-42.

Figure 3-42 Main Program Text Editor

3. Locate the section for global declarations:

/*---

* Insert application global declarations
here---*/

4. Just after it, add a declaration for UxInitGraphics:

extern int UxInitGraphics();

5. Next, locate the section for initialization code:

/*---

* Insert initialization code for your application
here---*/

6. Add the following call to UxInitGraphics:

UxInitGraphics();

7. Click on OK in the Text Editor to complete the change. The Text Editor
disappears from view.

Editing the Makefile Template

When generating code, UIM/X uses a makefile template, replacing variables
in the template with the names of elements in your project. Since UIM/X
cannot know about the code file graphics.c used by your project, you
must edit the makefile and add names of object files you want produced.

In this step you will edit the makefile template for your project, adding the
name of the object file, graphics.o.

Creating a Drawing Editor
Step #20: Generating the Code and Running the Executable

130 UIM/X Tutorial Guide

3

1. Click on the Text Editor button […] next to the Ux Makefile field. The
Text Editor appears, as shown in Figure 3-43.

Figure 3-43 Makefile Text Editor

2. Locate the line that begins APPL_OBJS and, placing the cursor at the end,
add the following:

APPL_OBJS = ... graphics.o

For clarity, the part you type is indicated in bold. The three dots indicate
you should leave the rest of the text as is. Do not type the three dots.

3. Close the Text Editor by clicking OK.

4. Save your changes and close the Program Layout Editor by clicking OK.

5. Save your work.

Step #20: Generating the Code and Running the
Executable

The final step in creating your project is to generate code for the Drawing
Editor.

1. Check that you are in Design Mode.

CREATING A DRAWING EDITOR
Editing the Makefile Template

UIM/X Tutorial Guide 131

3
2. Choose Options⇒Code Generation in the Project Window. The Code

Generation Options window appears, as shown in Figure 3-44.

Figure 3-44 Code Generation Options

3. Check that the language selected is ANSI C.

If you wish to generate C++ code, copy or rename graphics.c to
graphics.cc in a terminal window.

4. Save your changes and close the dialog by clicking on OK.

5. Click on the Run icon in the Project Window’s icon bar.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

6. Test your program. Verify that it works as it did in Test Mode.

7. To stop the program choose File⇒Exit.

8. Switch back to Design mode by clicking on the Design icon

9. Save the changes to your program.

Now when you modify the Drawing Editor, you can simply click on the
Run Mode toggle to generate the code, compile it, and run the executable
in one step.

Creating a Drawing Editor
Step #20: Generating the Code and Running the Executable

132 UIM/X Tutorial Guide

3

Where to Go From Here…

Congratulations on having completed the Drawing Editor tutorial! If you
wish to continue to develop the Drawing Editor, additional functionality can
easily be added. The start-up project contains action routines not yet used in
your project. Table 3-17 lists the functionality you can add, along with the
icons and action routines required.
�������	�%�Additional Functionality You Can Add

For other ideas, two project files have been included. The
draw_final.prj project file contains the completed Drawing Editor.
The draw_full.prj project file contains a Drawing Editor tutorial with
the additional freehand and text functionality.

Functionality Icon Action Routine

Drawing Freehand freehand.xpm freehand

Writing Text draw_text.xpm draw_text

UIM/X Tutorial Guide 133

Building a GUI for a
Command-Line
Application 4

Overview

Building a GUI for a command-line application is a three-step process. First
you lay out the interface. Next you add subprocess control code to the
interface using the Declaration Editor. Finally, you add callback behavior to
execute the subprocess on the appropriate user action.

The UIM/X Convenience Library features a number of functions especially
designed for subprocess control. UxCreateSubproc(), for example,
creates the subprocess, returning a handle to it. You can then run the
subprocess by calling UxExecSubproc().

More often than not, command line applications permit (or require) that you
specify options at the command line. UIM/X provides a number of ways to
present and submit any arguments that might be expected. Options menus
are convenient for presenting mutually exclusive options, with only the
currently active option visible. Toggle Buttons can be used to display all
available options, and can be mutually exclusive or permit multiple
selection. The simplest way to build the command is to append the selected
options to a string defined globally for the interface.

Building a GUI for a Command-Line Application
The GUI You Will Build

134 UIM/X Tutorial Guide

4

The GUI You Will Build

This chapter demonstrates how to use UIM/X in Standard Mode to create an
interface for a command-line application, illustrating subprocess control.
The Command Line interface, shown in Figure 4-1, executes the UNIX ls
command as a subprocess to list the contents of directories. You select
arguments for the command graphically, using Toggle Buttons and an
Option menu.

The interface consists of the following elements:

• Text Field: A Text Field where the user can enter the directory to be listed.

• Toggle Buttons: Mutually exclusive Toggle Buttons for selecting the file
attributes listed.

• Option Menu: An Option menu for listing files alphabetically, reverse
alphabetically, by latest date, or earliest date.

• Scrolled Text: A scrollable window showing the results of the ls
subprocess.

• OK Push Button: The Push Button that spawns the subprocess.

Figure 4-1 The Completed Command Line Project

BUILDING A GUI FOR A COMMAND-LINE APPLICATION

UIM/X Tutorial Guide 135

4

The Steps in This Tutorial

This tutorial takes about 45 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Laying Out the Interface

Step #3: Changing Labels and Other Properties

Step #4: Adding Declarations and Final Code

Step #5: Adding Behavior to the Interface

Step #6: Testing the Program

Step #7: Generating the Code and Running the Executable

Step #1: Starting UIM/X in Standard Mode

Before you begin this tutorial, set up a new directory as follows:

1. Start the X Window System.

2. Bring up a terminal window.

3. Make a directory to store the files you will create in this tutorial:

mkdir chap4

4. Change to the directory you just created:

cd chap4

5. Start UIM/X from your new directory:

uimx &

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx_directory/bin/uimx &

After a brief pause, a copyright notice window appears, to show that
UIM/X is being initialized. When UIM/X is ready, the Project Window
and the Palette appear.

6. Iconify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

Building a GUI for a Command-Line Application
Step #2: Laying Out the Interface

136 UIM/X Tutorial Guide

4

Step #2: Laying Out the Interface

In this step you will lay out the interface for the Command Line project.
First, you will create a Bulletin Board to contain the other widgets. Then,
you will add a Text Field where the files will be displayed, a Text widget
for entering the directory to be listed, and Labels to identify the areas, and a
Push Button. Next you will add Toggle Buttons for selecting the
information displayed in the Text Field. Finally, you will add an Option
menu for ordering the files.

Drawing the Bulletin Board

In this step you will drag and draw a Bulletin Board widget.

1. Make sure you are in Design Mode. If not, click on the Design toggle
button.

2. In the Managers area of the Palette, click on the Bulletin Board icon.

3. Move the mouse pointer to where you want the upper-left corner of the
Bulletin Board to appear.

4. Press and hold the Select mouse button, then drag the mouse downwards
and to the right to draw the Bulletin Board. To complete the operation,
release the mouse button.

The Bulletin Board widget appears as shown in Figure 4-2.

Figure 4-2 The Bulletin Board Widget

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding the Text, Push Button, and Label Widgets

UIM/X Tutorial Guide 137

4

Adding the Text, Push Button, and Label Widgets

In this step you will add the remaining widgets that make up the Command
Line project’s interface. You will add a Text, a Scrolled Text, Push Button,
and Label. You will also duplicate the Label. At the end of this step the
interface should look similar to Figure 4-3.

1. In the Primitives category of the Palette, click on the Text icon with the
Adjust mouse button.

Be sure to select the Text icon, and not the Text Field icon.

2. Drag the outline of the widget onto the Bulletin Board, and release it in the
upper left corner.

3. Similarly, in the Primitives category click on the Scrolled Text icon, then
drag and drop the widget, placing it on the right side of the Bulletin Board.

4. Resize the Scrolled Text until it fills most of the right hand side of the
interface, using Figure 4-3 as a model.

5. Add a Push Button by dragging and dropping, placing it below the
Scrolled Text.

6. Add a Label to the interface, placing it above the Text widget.

7. To duplicate the Label, begin by pressing the Menu mouse button to dis-
play the Selected Objects popup menu.

8. Choose Duplicate to make a copy of the first Label, then drag and drop it
below the Text widget.

9. Save your work as a new project, CommandLine.prj.

Figure 4-3 The Text, Push Button, Scrolled Text, and Label Widgets Added

Building a GUI for a Command-Line Application
Step #2: Laying Out the Interface

138 UIM/X Tutorial Guide

4

Creating the Row Column and Toggle Buttons

The Command Line project features Toggle Button gadgets used to change
the file attributes displayed in the Scrolled Text. In this step you will add
the Toggle Buttons, placing them inside a Row Column. Row Columns
make excellent containers for several widgets of the same type, since they
can position the widgets in a grid.

1. In the Managers category, click on the Row Column icon.

2. Place the Row Column below the second Label, label2, as shown in
Figure 4-4.

Figure 4-4 Bulletin Board with Row Column Added

3. In the Gadgets category of the Ux Palette, click on Toggle Button Gadget.

4. Position the toggle button on the top part of the Row Column widget.

Notice how the Row Column automatically shrinks to fit the Toggle
Button. This is the expected behavior.

5. Duplicate the Toggle Button by choosing Selected Objects⇒Duplicate. To
display the Selected Objects popup menu, press the Menu mouse button.

6. In the same way, create a third Toggle Button by duplication.

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Creating the Option Menu

UIM/X Tutorial Guide 139

4
Note the new Toggle Buttons are automatically placed below the first one,
as shown in Figure 4-5.

Figure 4-5 Bulletin Board with All Three Toggle Buttons Added

7. Save your work.

Creating the Option Menu

Like Toggle Buttons, Option Menus are a convenient way to present a
limited number of choices to the user. Unlike toggle buttons, only the
current option is displayed by the Option Menu.

In this step you will add an Option Menu to the interface. The menu will be
used to specify the order in which files are displayed: alphabetical, reverse
alphabetical, latest first, or earliest first.

1. In the Menus category, click on the Option Menu icon.

2. Position the menu below the third toggle button, but outside the Row Col-
umn.

Notice it appears with an option button already in place.

3. Double-click on the Option Menu to open the Option Menu Editor.

4. Select optionMenu_p1 in the Panes list, then type "ORDER" in its
LabelString property.

5. Display the properties for the first item in the menu,
optionMenu_p_b1, by clicking on it in the Items list.

6. Change its Label String property to "alphabetical".

Building a GUI for a Command-Line Application
Step #2: Laying Out the Interface

140 UIM/X Tutorial Guide

4

7. To add an item to the menu ensure optionMenu_p_b1 is selected in the
Items list, then choose Create⇒Item After⇒Push Button.

8. Change its Label String property to "reverse alpha".

9. Repeat the process to add another Push Button item to the menu, this time
with Label String property set to "latest first".

10. Create one last Push Button item, with LabelString property set to
"earliest first".

When complete, the Option Menu Editor should appear as shown in
Figure 4-6.

Figure 4-6 Option Menu Editor Showing All Four Items

11. Click on OK in the Option Menu Editor to apply the changes to the inter-
face.

The interface is updated to reflect the changes, as shown in Figure 4-7.

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Creating the Option Menu

UIM/X Tutorial Guide 141

4

Figure 4-7 All the Widgets in Position

12. Save your work.

Step #3: Changing Labels and Other Properties

Now that the widgets are in place, you are ready to change their titles,
labels and other properties. In this step you will begin by changing the
Scrolled Text to display multiple lines of information (by default it scrolls
horizontally). Then you will change the default string displayed in the
Message Box. In UIM/X you change properties at design time using the
Property Editor.

1. Double-click on the Scrolled Text to open the Property Editor and load
the widget into it in one step.

2. Locate the EditMode property in the Specific category.

3. Click on the EditMode option menu, changing it to
multi_line_edit, as shown in Figure 4-8.

Building a GUI for a Command-Line Application
Step #3: Changing Labels and Other Properties

142 UIM/X Tutorial Guide

4

Figure 4-8 Property Editor Loaded with the Scrolled Text Widget

4. Apply the change by clicking on Apply.

5. Set the Property Editor to load widgets automatically by choosing Options
⇒Automatic Load.

Now you can load a widget into the Property Editor simply by selecting it.

6. Click on pushButton1 to load it into the Property Editor.

7. Locate the LabelString property in the Specific category, and
replace "pushButton1" with "OK".

8. Apply the change by clicking on Apply in the Property Editor.

9. Continue loading widgets into the Property Editor (using automatic load-
ing), and changing their LabelString properties.

Table 4-1 lists all the widgets whose LabelStrings must be changed,
and the values you should give them.

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Creating the Option Menu

UIM/X Tutorial Guide 143

4
�������	��Widgets and New LabelString Properties

When you have made the changes, your interface should appear as shown
in Figure 4-9.

Figure 4-9 Bulletin Board with LabelStrings Changed

10. Save your work.

Step #4: Adding Declarations and Final Code

In this step you will open the Declaration Editor for the Bulletin Board and
define a few global constants. These will be shared by the interface’s
callbacks that you will add later.

1. Click on the Bulletin Board to select it.

2. Open the Declaration Editor by pressing the Menu mouse button while
over the interface, and choosing Selected Objects⇒Tools⇒Declaration
Editor.

3. The Declaration Editor appears, as shown in Figure 4-10.

Widget Name New LabelString Property
label1 "Directory"
label2 "Attributes"
toggleButtonGadget1 "owner"
toggleButtonGadget2 "group"
toggleButtonGadget3 "inode"

Building a GUI for a Command-Line Application
Step #4: Adding Declarations and Final Code

144 UIM/X Tutorial Guide

4

Figure 4-10 Declaration Editor

4. Open the Text Editor by clicking on the […] button next to the /*
Includes, defines, global variables */ area, and add the
following constants:

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Creating the Option Menu

UIM/X Tutorial Guide 145

4
#include "UxSubproc.h"
#include "UxLib.h"

int Owner = False,
Group = False,
Inode = False;

char Attribute[10] = "-a ";
handle h;

Make sure to enter a space for the character definition ("-a "). During
the subprocess this is passed to UNIX, which requires the space to run the
command line properly.

5. Click on OK to close the Text Editor.

6. Open the Text Editor for the /* Final Code */ area and add the fol-
lowing code, just before the return call (the return call is shown below, for
reference).

/* create subprocess object */

h=UxCreateSubproc("/bin/ls ","",UxAppendTo);

if (UxSetSubprocClosure(h,(char *) UxGetWidget
(scrolledText1))==-1)

{

printf("Can’t set subproc closure\n");
}
return(rtrn);

As above, make sure to include the space indicated ("/bin/ls ").

7. Click on OK in the Text Editor.

8. Click on OK in the Declaration Editor.

9. Save your work.

Step #5: Adding Behavior to the Interface

Now that you have defined global variables and added final code to the
interface you are ready to add behavior to the widgets by specifying
callbacks. First you will add behavior to the Toggle Buttons using the
Property Editor. Next you will add behavior to the Option menu using the
Option Menu Editor. Finally, you will add behavior to the OK Push Button.

Building a GUI for a Command-Line Application
Step #5: Adding Behavior to the Interface

146 UIM/X Tutorial Guide

4

Adding Behavior to the Toggle Buttons

In this step you will add callback code to the Toggle Buttons. Since all three
Toggle Buttons contain similar callback code, you will load them all into
the Property Editor at the same time, write the callback, then customize it
for each Toggle Button.

1. Click on the owner Toggle Button to load it into the Property Editor.

2. Load the group and inode Toggle Buttons into the Property Editor with the
first, by holding down the Control key and clicking each one in turn.

3. Locate the ValueChangedCallback property in the Behavior cate-
gory, and open the Callback Editor by clicking on the Text Editor button
(…) beside it.

4. Click in the Text Field, and type the following code exactly as it appears:

XmToggleButtonCallbackStruct *s
=(XmToggleButtonCallbackStruct *)
UxCallbackArg;

Owner = s->set;

5. Click on OK in the Callback Editor.

6. Click on Apply in the Property Editor.

7. Click on the group Toggle Button to load it alone into the Property Editor.

8. Open the Callback Editor for ValueChangedCallback, changing
Ownerto Group.

9. Click on OK in the Callback Editor, then click on Apply in the Property
Editor.

10. Repeat the process for the inode Toggle Button, replacing Owner with
Inode.

11. Save your work.

Adding Behavior to the Option Menu Buttons

In this step you will use the Option Menu Editor to add behavior to the
Option Menu buttons.

1. Double-click the Option menu button (labelled alphabetical) to
pop up the Option Menu Editor.

2. Click on the first Push Button in the Items list, optionMenu_p_b1, and
enter the following callback for it:

strcpy(Attribute," -a ");

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding Behavior to the Option Menu Buttons

UIM/X Tutorial Guide 147

4
3. Click on each of the remaining Push Buttons on the Items list and enter the

Callbacks listed in Table 4-2:

�������	
�Callback Code for Option Menu Items

Make sure to enter a space before and after each parameter to be passed to
UNIX, i.e. " -ar ", " -t ", and " -tr ". After making your
entries, the Option Menu Editor should look as shown in Figure 4-11.

4. Apply your changes and close the Option Menu Editor by clicking on OK.

Figure 4-11 Option Menu Editor with the New Callbacks

5. Save your work.

Item Callback Code

optionMenu_p1_b2 strcpy(Attribute," -ar ");

optionMenu_p1_b3 strcpy(Attribute," -t ");

optionMenu_p1_b4 strcpy(Attribute," -tr ");

Building a GUI for a Command-Line Application
Step #5: Adding Behavior to the Interface

148 UIM/X Tutorial Guide

4

Adding Behavior to the OK Push Button

In this step you will add behavior to the OK Push Button.

1. Load the OK Push Button into the Property Editor.

2. Open the Callback Editor by clicking on the Text Editor button (…) beside
ActivateCallback (in the Behavior category).

3. Click in the Text Field, and type the following code:

char arglist[128];

UxClearText(scrolledText1);

arglist[0] = ’\0’;

/* owner, group & inode flags */

if (Owner)

strcat(arglist," -o ");

if (Group)

strcat(arglist," -g ");

if (Inode)

strcat(arglist," -i ");

/* alphabetically, ... */

strcat(arglist, Attribute);

/* directory name */

strcat(arglist, UxGetText(text1));

if (UxExecSubproc(h,arglist) == -1)

{

printf("Can’t start the application\n");
return;

}

As before, don’t forget to a space before and after each parameter passed
to UNIX, as indicated.

4. Click on OK in the Callback Editor.

5. Click on Apply in the Property Editor.

6. Save your work.

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding Behavior to the OK Push Button

UIM/X Tutorial Guide 149

4

Step #6: Testing the Program

Before generating code for the project in the next section, take a moment to
switch to Test Mode.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Hide the Command Line interface by choosing View⇒Hide Project.

Note: This will cause the “CommandLine” application’s GUI to disappear in
Test Mode. This is the desired response, as the subsequent steps will re-launch
the application through the Interpreter. The more conventional Test Mode
interface lacks the needed subproc support, but loading the module into the
Interpreter will take care of this detail while in Test Mode.

3. Choose Tools⇒Interpreter in the Project Window.

4. Select the Bulletin Board interface by clicking on its icon in the Project
Window.

5. Choose Module⇒Selected Interface in the Interpreter or click on the cor-
responding icon .

The Interpreter title bar changes to reflect the new scope.

6. Enter the following code in the Interpreter window.

UxPopupInterface(create_bulletinBoard1(NO_PARENT)
, no_grab);

7. Triple-click the line of code to highlight it, then choose Interpret⇒Evalu-
ate.

The Interpreter evaluates the code, pops up the Command Line interface,
and prints the following to the Interpreter Messages Area:

Result: 0

8. Close the Interpreter by choosing File⇒Close.

Building a GUI for a Command-Line Application
Step #7: Generating the Code and Running the Executable

150 UIM/X Tutorial Guide

4

9. Test the interface:

• Type a directory name in the Directory Text widget.

• Click on a Toggle Button to view files listed by owner, group, or
inode.

• Order the files alphabetically, reverse alphabetically, earliest
first, or latest first.

• Click on OK to display the files.

10. When you are through, switch back to Design Mode by clicking the
Design icon

When prompted to do so, discard the duplicate interfaces.

Step #7: Generating the Code and Running the
Executable

You have now successfully constructed and tested the Command Line
project. In this step you will generate the code for the application, and run
it, without leaving the development environment.

1. Check that you are in Design Mode. If not, click on the Design icon

2. Choose Options⇒Code Generation on the Project Window menu.

3. In the Code Generation options window that appears, check that the lan-
guage selected is ANSI C, and that Context Support is deselected.

More economical code is produced with context support disabled, for
applications using only single copies of an interface.

4. Save your changes and close the dialog by clicking on OK.

5. Click on the Run icon in the Project Window’s icon bar.

6. Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

7. Test your program. Verify that it works as it did in Test Mode.

8. To stop the program select Close from the window control box.

9. Save the changes to your program.

Now when you modify the Command Line project, you can simply click
on the Run Mode icon to generate the code, compile it, and run the
executable in one step.

BUILDING A GUI FOR A COMMAND-LINE APPLICATION
Adding Behavior to the OK Push Button

UIM/X Tutorial Guide 151

4

Building a GUI for a Command-Line Application
Step #7: Generating the Code and Running the Executable

152 UIM/X Tutorial Guide

4

UIM/X Tutorial Guide 153

���������������
���
���
�����

Overview

The tutorials of this section are of an advanced nature. These tutorials are
Creating an RGB Color Editor in C++ and Integrating a Non-Visual Object.

UIM/X Tutorial Guide 154

Creating an RGB Color
Editor in C++ 5

Overview

In a sophisticated application it is possible to spend a great deal of time
perfecting a small portion of the interface. In such cases it might be
desirable to reuse that portion in other areas, at the same time protecting it
from unwanted changes. As an interface management system that
encourages object-oriented development, UIM/X provides a simple yet
robust mechanism for doing so. You create a new class for the portion to be
reused, then add an instance of the class to the interface.

In UIM/X each stand-alone interface is its own class. To create a new class,
you simply turn the widget into a stand-alone interface by dragging and
dropping it onto the desktop. To reuse it in another interface, UIM/X lets
you drag and draw (or drag and drop) an instance of the class on the target
interface.

Since they inherit all their properties and behavior from their class,
instances are exact duplicates of the originating class. Properties and
behavior are by default uneditable in the instance, providing the desired
protection from unwanted changes. Should you want to, it is a simple matter
to expose properties or behavior in the instances.

To expose properties in an instance you define property accessor methods
for the class. These are paired get and set methods following a specific
naming convention. In the body of the methods, you write code that acts on
the property you want to expose. UIM/X recognizes pairs of property
accessor methods, and presents the new property in the Specific category of
the Property Editor.

Similarly, you can create behavior accessor methods to present callbacks in
the Property Editor. A behavior accessor method is a single method
following a specific naming convention. In this case, the body of the
method contains code that adds the desired Xt callback to the callback list.
UIM/X presents the new callback in the Behavior category of the Property
Editor.

CREATING AN RGB COLOR EDITOR IN C++

UIM/X Tutorial Guide 155

5
Exposed properties and new callbacks behave just like those provided by
default. As noted, they show up in the Property Editor in the appropriate
category. You can provide a new property with a default value at design
time, and write callback code for new callbacks. In addition, you can set
properties at runtime in callback code, or connect callbacks to properties
graphically using the Connection Editor.

The GUI You Will Build

Note: If you have installed UIM/X in its C-only configuration, do not attempt
the tutorial in this chapter. The tutorial assumes that UIM/X is running in C++
mode, and that you have a C++ compiler.

In this chapter you will create an interface to function as an RGB Color
Editor. The Color Editor illustrates how to create a new class, expose
properties and behavior in instances of the class, and how to call interface
methods to update a display (in this case, a sample color). In addition, it
provides an example of programming in C++. The completed interface,
shown in Figure 5-1, consists of the following areas:

• Color-Changing Scales: Horizontal Scales with a range from 0 to 255.
One each for the red, green, and blue component of an RGB color
definition. Each scale is an instance of a Scale class with properties and
behavior exposed.

• Color Display Area: A Drawing Area widget whose
BackgroundColor property is updated by the Scales, using a shared
interface method.

• Information Display Area: Two Labels, one of which is updated by the
above interface method.

Figure 5-1 The Completed RGB Color Editor Project

Creating an RGB Color Editor in C++
Step #1: Starting UIM/X in Standard Mode

156 UIM/X Tutorial Guide

5

The Steps in This Tutorial

This tutorial takes about 60 minute to complete. It contains the following
steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Laying Out the Interface

Step #3: Changing LabelStrings and Other Properties

Step #4: Adding Declarations and Global Code

Step #5: Defining a Method to Update the Display

Step #6: Creating a Scale Class

Step #7: Exposing Properties in the Scale Class

Step #8: Exposing Behavior in the Scale Class

Step #9: Setting Properties in the Instance

Step #10: Adding Behavior to the Instance

Step #11: Completing the Interface

Step #12: Testing the Program

Step #13: Generating the C++ Code and Running the Executable

Step #1: Starting UIM/X in Standard Mode

Before you begin building the RGB Color Editor project, set up a new
directory as follows:

1. Start the X Window System.

2. Bring up a terminal window.

3. Make a base directory for this tutorial:

mkdir chap5

4. Change to the directory you just created:

cd chap5

5. Start UIM/X from your new directory:

uimx &

Note: Since this tutorial features C++ code in its declarations and callbacks, do
not specify any language options at the command line. UIM/X starts in C++
mode by default.

CREATING AN RGB COLOR EDITOR IN C++
The Steps in This Tutorial

UIM/X Tutorial Guide 157

5
If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx_directory/bin/uimx &

After a brief pause, a copyright notice window appears, to show that
UIM/X is being initialized. When UIM/X is ready, the Project Window
and UIM/X palette appear.

6. Iconify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

Step #2: Laying Out the Interface

In this step you will lay out the interface for the Color Editor. First, you will
create a Form to contain the other widgets. Then, you will add a Drawing
Area, a Scale, and Labels to identify the areas and display color
information.

To lay out the interface:

1. Drag and draw (or drag and drop) a Form from the Managers category
of the Palette to your desktop, as shown in Figure 5-2.

Figure 5-2 The Form Widget

Creating an RGB Color Editor in C++
Step #2: Laying Out the Interface

158 UIM/X Tutorial Guide

5

2. Add a Drawing Area (from the Managers category) to the Form, making it
large enough to almost fill the upper-right corner of the Form, as shown in
Figure 5-3.

Figure 5-3 Form Widget with Drawing Area Added

3. Add a Label to the interface, placing it in the upper left corner of the
Form, as shown in Figure 5-4.

Figure 5-4 Form with Label Added

CREATING AN RGB COLOR EDITOR IN C++
The Steps in This Tutorial

UIM/X Tutorial Guide 159

5
4. Create two more Labels by dragging and dropping, dragging and drawing,

or duplication, positioning them as shown in Figure 5-5.

Figure 5-5 Form with All Three Labels Added

5. Finally, add a Horizontal Scale to the interface, positioning it under the
first Label.

You will add the other two Horizontal Scales once you have created the
Scale class, exposed properties and behavior, and connected it to the
interface elements, later.

Creating an RGB Color Editor in C++
Step #3: Changing LabelStrings and Other Properties

160 UIM/X Tutorial Guide

5

6. Your interface should look similar to Figure 5-6. (The widgets are shown
selected, for display purposes.)

Figure 5-6 Form with All Necessary Widgets

7. Save your work as a project, calling it ColorEditor.prj.

Step #3: Changing LabelStrings and Other Properties

Now that the widgets are in place, you are ready to change their
LabelStrings and other properties.

1. Double-click on the label1 to open the Property Editor and load the
widget into it in one step.

2. Locate the LabelString property in the Specific category, chang-
ing it from "label1" to "RGB Color Editor"

3. Apply the change by clicking on Apply. The interface is updated to reflect
the change, as shown in Figure 5-7.

CREATING AN RGB COLOR EDITOR IN C++
The Steps in This Tutorial

UIM/X Tutorial Guide 161

5

Figure 5-7 RGB Color Editor with New Label

4. Set the Property Editor to load widgets automatically by choosing
Options⇒ Automatic Load.

Now you can load a widget into the Property Editor simply by selecting it.

5. Click on label2 to load it into the Property Editor.

6. Locate the LabelString property in the Specific category, chang-
ing it from "label2" to "RGB Value".

7. Apply the change by clicking on Apply.

8. Continue loading widgets into the Property Editor (using automatic load-
ing) and changing properties.

Table 5-1 lists all the widgets with properties to be changed, and the
values you should give them.

�������	��Property Changes for the Color Editor

Widget Name Category Property Name New Value

label1 Specific LabelString "RGB Color Editor"

label2 Specific LabelString "RGB Value"

label3 Specific LabelString "#000000"

drawingArea1 Core Background "black"

Creating an RGB Color Editor in C++
Step #3: Changing LabelStrings and Other Properties

162 UIM/X Tutorial Guide

5

Note: In order for the Scale’s title to be shown, you must set the source of it’s
Height property to Default. (When drawn, the source is automatically set
to Private.) To show a widget’s property sources, choose View⇒Hide
Source in the Property Editor.

When you have made the changes, your interface should appear as shown in
Figure 5-8.

Figure 5-8 Form with LabelStrings and Other Properties Changed

9. Close the Property Editor by choosing File⇒Close.

10. Save your work.

scaleH1 Core
Height (set the
source—see note below)

Default

scaleH1 Specific Maximum 255

scaleH1 Specific
Processing
Direction

max_on_left

scaleH1 Specific ShowValue true

scaleH1 Specific TitleString "Color"

Widget Name Category Property Name New Value

CREATING AN RGB COLOR EDITOR IN C++
Defining Global Variables and the rgbcolor Class

UIM/X Tutorial Guide 163

5

Step #4: Adding Declarations and Global Code

In this step you will enter code to be used by multiple elements in your
interface. First you will declare some global variables, and a class called
rgbcolor. Next you will define interface-specific variables and set initial and
final code. Finally you will define the body for the rgbcolor class. All work
will be performed in the Declaration Editor.

Defining Global Variables and the rgbcolor Class

In this step you will declare the rgbcolor class, a class containing two public
member functions to initialize and update an RGB value respectively. You
will also declare a few global variables for use in the interface.

1. Click on the Form to select it.

2. Open the Declaration Editor by pressing the Menu mouse button while
over the interface, and choosing Selected Objects⇒Tools⇒Declaration
Editor.

3. The Declaration Editor appears, as shown in Figure 5-9.

Figure 5-9 The Declaration Editor

4. Click on the Text Editor button (...) beside the

/* Includes, defines, global variables */.

Creating an RGB Color Editor in C++
Step #4: Adding Declarations and Global Code

164 UIM/X Tutorial Guide

5

5. Add the following declarations, just after the #endif statement (shown
below for reference):

#include <stdio.h>

#include <stdlib.h>

#ifdef __cplusplus

#include <iostream.h>

#endif /* __cplusplus */

#include <X11/Xutil.h>

class rgbcolor
{
private:

Display *display;

Colormap cmap;

int screen;

XColor newcolor;

public:
void InitColor(swidget, unsigned short,
unsigned short,

unsigned short);

void UpdateColor(unsigned short, unsigned
short, unsigned

short);
};

6. Close the Text Editor and copy the code to the Declaration Editor by click-
ing on OK.

7. Apply your changes to the interface without closing the Declaration Editor
by clicking on Apply.

8. Save your work.

CREATING AN RGB COLOR EDITOR IN C++
Defining Interface-Specific Variables and Initial and Final Code

UIM/X Tutorial Guide 165

5

Defining Interface-Specific Variables and Initial and Final
Code

The Declaration Editor allows you to define interface-specific variables, as
well as to set initial code and final code. Initial code is executed when the
interface is created. Final code is executed just before the interface is
popped up. In this step you will add code to these areas of the Declaration
Editor, initializing the Drawing Area’s background color to black.

1. Click on the Text Editor button (...) beside the /* Interface
specific variables */ area.

2. Add the following declarations:

rgbcolor current_color;

unsigned short v1, v2, v3;

3. Click OK in the Text Editor.

4. Add the following code to the /* Initial Code */ area.

v1 = v2 = v3 = 0;

5. Add the following code to the /* Final Code */ area, just before the
return call (the return call is shown below, for reference).

current_color.InitColor(drawingArea1, v1, v2,
v3);
return(rtrn);

6. Click on Apply in the Declaration Editor.

7. Save your work.

Defining Auxiliary Functions

In this step you will define rgbcolor’s two public functions:
InitColor() and UpdateColor().

1. Click on the Text Editor button (...) beside the /* Auxiliary
functions */ area.

Creating an RGB Color Editor in C++
Step #4: Adding Declarations and Global Code

166 UIM/X Tutorial Guide

5

2. Add the following definitions:

void rgbcolor::InitColor(swidget sw, unsigned
short red, unsigned short green, unsigned short
blue)

{

Arg arglist[20];

unsigned long planes[1], pixels[1];

display = XtDisplay(UxGetWidget(sw));

screen = DefaultScreen(display);

cmap = DefaultColormap(display, screen);

XAllocColorCells(display, cmap, False,
planes, (int) 0, pixels, (int) 1);

newcolor.flags = DoRed | DoGreen | DoBlue;

newcolor.pixel = pixels[0];

newcolor.red = red;

newcolor.green = green;

newcolor.blue = blue;

XStoreColor(display, cmap, &newcolor);

XtSetArg(arglist[0], XmNbackground,
pixels[0]);

XtSetValues(UxGetWidget(sw), arglist, 1);

}

void rgbcolor::UpdateColor(unsigned short red,

unsigned short green,

unsigned short blue)

{

newcolor.red = red * 65535 / 256;

newcolor.green = green * 65535 / 256;

newcolor.blue = blue * 65535 / 256;

XStoreColor(display, cmap, &newcolor);

}

CREATING AN RGB COLOR EDITOR IN C++
Defining Auxiliary Functions

UIM/X Tutorial Guide 167

5
3. Click on OK in the Text Editor.

4. Apply your changes and close the Declaration Editor by clicking on OK.

5. Save your work.

Step #5: Defining a Method to Update the Display

In this step you will add a method to the Color Editor interface to update
the display. The UpdateDisplay() method calls rgbcolor’s
UpdateColor() public member function (which in turn sets the
Background color of the Drawing Area). The UpdateDisplay()
method also sets the third Label’s LabelString value to the current RGB
value. It will be invoked later, when adding behavior to the Scales.

1. Click on the Color Editor interface to select it.

2. Open the Method Editor by choosing Selected Objects⇒Tools⇒Method
Editor.

The Method Editor appears, as shown in Figure 5-10.

Figure 5-10 Method Editor

3. In the Return Type area, type the following:

void

4. In the Name area, type the following:

UpdateDisplay

Creating an RGB Color Editor in C++
Step #6: Creating a Scale Class

168 UIM/X Tutorial Guide

5

5. In the Code area, type the following:

char vstring[20];

current_color.UpdateColor(v1, v2, v3);

sprintf(vstring, "#%02x%02x%02x", v1, v2, v3);

UxPutLabelString(label3, vstring);

6. Click on Create Method. The method appears in the Interface Methods
list.

7. Choose File⇒Close to close the Method Editor.

8. Save your work.

Step #6: Creating a Scale Class

In UIM/X each stand-alone interface is its own class. To create a class for a
widget already embedded in an interface, you simply drag and drop the
widget onto the desktop. In this step you will turn the Horizontal Scale into
a class. In the next, you will enhance the class definition with new
properties and behavior.

1. Click on the Horizontal Scale to select it.

2. Press and hold the Adjust mouse button, then drag and drop the Horizontal
Scale onto the desktop.

A dialog appears, asking if you want to replace the Horizontal Scale just
removed from the interface with an instance of it.

3. Click Yes.

UIM/X creates the component class and places an instance of it in the
interface.

4. Save your work.

Step #7: Exposing Properties in the Scale Class

By default, an instance has no editable properties. However, by defining
property accessor methods for the class you can make properties available
in the instance. In UIM/X, creating property accessor methods is simplified
using the Method Editor. Once created, the properties exposed can be used
like any other.

Instances inherit all their properties from the class of which they are an
instance. This allows you to create complex objects with built-in behavior
then use exact replicas of them (including the behavior) in other interfaces.

CREATING AN RGB COLOR EDITOR IN C++
Creating the TitleString Property Accessor Methods

UIM/X Tutorial Guide 169

5
For example, you could create an About-type Dialog Box with your
company logo and standard copyright notice in it, and reuse it in all your
projects without any risk of it being modified inadvertently.

To make a property available for reading or writing in an instance you
create property accessor methods for the class. Property accessor methods
are pairs of get and set methods. In the body of each method you specify
code that operates on the desired property, usually getting or setting it.
When UIM/X identifies a pair of get and set accessor methods in an
instance, it presents a new property in the Property Editor.

The Method Editor provides a convenient mechanism for defining property
accessor methods. Property accessor method names are of the form
ObjectName_get_MethodName and
ObjectName_set_MethodName. You provide the method names, while
UIM/X provides the prefixes. In the body of method, you “expose” the
property. In C++ Mode you can use bindings of the form
class.GetProperty and class.SetProperty. In C Mode you can
use the UxGetProperty and UxPutProperty functions.

Once created, the exposed property behaves like any other editable
property. You can edit it by loading the instance into the Property Editor,
where it shows up in the Specific category. You can provide it with a default
value using the Property Editor, or set it at run time in callback code. You
can also make a connection to it using the Connection Editor.

In this step you will create two pairs of get and set accessor methods for the
Scale class. First you will create a pair of methods to expose the Scale’s
TitleString property. Next you will create a pair to expose the Scale’s
Value property. All work will be done in the Method Editor.

Creating the
��
������� Property Accessor Methods

In this step you will create a pair of property accessor methods to expose
the Scale’s TitleString property. In another step you will set this in the
instances using the Property Editor.

To create the TitleString property accessor methods for the Scale:

1. Select the Scale class (the stand-alone interface), then open the Method
Editor for the interface by choosing Selected Objects⇒Tools⇒Method
Editor.

The Method Editor appears.

2. Change the method type from Method to GetProperty.

Creating an RGB Color Editor in C++
Step #7: Exposing Properties in the Scale Class

170 UIM/X Tutorial Guide

5

Notice the method prototype changes to reflect the required naming
convention. For example, the method name prefix changes from
scaleH1to scaleH1_get.

3. Edit a get method for the class by entering the values shown in Table 5-2

�������	
���� Method Definition

4. Create the new method by clicking on Create Method.

The get method appears in the Interface Methods area, as shown in
Figure 5-11.

Figure 5-11 Method Editor Showing New Method

In This Area Type the Following Code

Return Type char *

Name TitleString

Arguments none.

Code return scaleH1.GetTitleString();

CREATING AN RGB COLOR EDITOR IN C++
Creating the Value Property Accessor Methods

UIM/X Tutorial Guide 171

5
5. Similarly, create a set method by changing to the SetProperty method

function prototype.

Notice the method prototype changes once again. For convenience, the
Method Editor retains much of the code you entered for the get method. A
variable called value is automatically declared for the set method.

6. Edit a set method for the interface by entering the values shown in Table
5-3.

�������	����� Method Definition

7. Create the new method by clicking on Create Method. The set method is
added to the Interface Methods area.

8. Save your work.

Creating the -���� Property Accessor Methods

In this step you will create a pair of property accessor methods to expose
the Scale’s Value property. The get method will return the Scale’s current
value. The set method will write the current value to the Value property.

1. Change the method type to GetProperty.

2. Edit a get method for the class by entering the values shown in Table 5-4.

�������	����� Method Definition

3. Create the new method by clicking on Create Method.

4. Similarly, create a set method by changing to the SetProperty method
function prototype.

In This Area Type the Following Code
Return Type void
Name TitleString

Arguments
char *value;

(Be sure to change int to char *.)
Code scaleH1.SetTitleString(value);

In This Area Type the Following Code

Return Type int

Name Value

Arguments none.

Code return scaleH1.GetValue();

Creating an RGB Color Editor in C++
Step #7: Exposing Properties in the Scale Class

172 UIM/X Tutorial Guide

5

Enter the values shown in Table 5-5

�������	����� Method Definition

5. Create the new method by clicking on Create Method.

6. Save your work.

In This Area Type the Following Code

Return Type void

Name Value

Arguments int value;

Code scaleH1.SetValue(value);

CREATING AN RGB COLOR EDITOR IN C++
Creating the Value Property Accessor Methods

UIM/X Tutorial Guide 173

5

Step #8: Exposing Behavior in the Scale Class

In the last step you created methods to expose properties in an instance.
Making behavior properties—normally called callbacks—available is
equally possible. To do so you simply create a callback accessor method for
the class. This is a method that follows a specific naming convention,
class.AddCallbackNameProc(), where class is the widget class
name, and CallbackName is the name you want appearing in the
Property Editor. The body of the method calls AddCallback(),
specifying the Xt callback to be used.

Since Scales return their current value during a drag and their final value
when the dragging has stopped, in this step you will define two callback
accessor methods for the Scale class. DragCallback() will return the
Scale’s current value. ValueChanged() will return the Scale’s final
value. All work will be performed in the Method Editor.

To create callback accessor methods for the Scale:

1. Change the method type to Method.

2. Edit a Drag callback accessor method for the class by entering the values
shown in Table 5-6.

�������	!�.'' Method Definition

3. Click on Create Method.

The AddDragCallbackProc callback accessor method appears in the
Interface Methods area, as shown in Figure 5-12.

In This Area Type the Following Code

Return Type void

Name AddDragCallbackProc

Arguments
XtCallbackProc cb;
XtPointer client_data;

Code
scaleH1.AddCallback(XmNdragCallback,
cb,
client_data);

Creating an RGB Color Editor in C++
Step #8: Exposing Behavior in the Scale Class

174 UIM/X Tutorial Guide

5

Figure 5-12 Method Editor Showing AddDragCallbackProc Method

4. Similarly edit a ValueChanged callback accessor method for the class
by entering the values shown in Table 5-7.

 �������	%�.'' Method Definition

5. Create the new method by clicking on Create Method.

The AddValueChangedProc callback accessor method appears in the
Interface Methods area, as shown in Figure 5-13.

In This Area Type the Following Code

Return Type void

Name AddValueChangedCallbackProc

Arguments
XtCallbackProc cb;
XtPointer client_data;

Code
scaleH1.AddCallback(XmNvalueChangedCallback,
cb, client_data);

CREATING AN RGB COLOR EDITOR IN C++
Creating the Value Property Accessor Methods

UIM/X Tutorial Guide 175

5

Figure 5-13 Method Editor Showing AddValueChangedProc Method

6. Close the Method Editor by choosing File⇒Close.

7. Save your work.

Step #9: Setting Properties in the Instance

In this step you will set the TitleString property you exposed earlier.

1. Double-click on the scaleH1Instance1 to open the Property Editor
and load the instance into it in one step.

2. Switch to the Specific category of Properties.

Notice the Specific category contains the two properties you exposed in
the class, namely TitleString and Value, as shown in Figure 5-14.

Creating an RGB Color Editor in C++
Step #9: Setting Properties in the Instance

176 UIM/X Tutorial Guide

5

Figure 5-14 Property Editor Showing Exposed Properties

3. Change the TitleString property from "Color" to "RED".

4. Apply your changes by clicking on Apply. The interface is updated, as
shown in Figure 5-15.

CREATING AN RGB COLOR EDITOR IN C++
Making the Scale’s Connections to the Form

UIM/X Tutorial Guide 177

5

Figure 5-15 Color Editor with TitleString Property Updated

5. Close the Property Editor.

6. Save your work.

Step #10: Adding Behavior to the Instance

In this step you will add behavior to the Scale instance. First you will
connect the Scale’s callbacks to the Form’s UpdateDisplay method.
Next you will connect them to the Scale’s own _get_Value method, to
retrieve the color component value required by UpdateDisplay. Finally,
you will re-order the connections. All work will be performed graphically,
using the Connection Editor.

Making the Scale’s Connections to the Form

In this step you will load the Scale instance and the Form into the
Connection Editor. Then you will connect its DragCallback and
ValueChangedCallback to UpdateDisplay. It is important to make
both connections. When a Scale stops moving its final value is returned via
ValueChanged only. This is a Motif convention.

1. Select the RED Scale instance by clicking on it.

Creating an RGB Color Editor in C++
Step #10: Adding Behavior to the Instance

178 UIM/X Tutorial Guide

5

2. Press the Shift key and hold down the Select mouse button, then drag the
cursor to the Form.

Notice a line follows the cursor. This indicates the Connection Editor is
available.

3. Release the mouse button (and the Shift key) to pop up the Connection
Editor, loaded with the Scale in the Source area and the Form in the Target
area, as shown in Figure 5-16.

Notice the Slider’s callbacks you exposed in the class,
DragCallback and ValueChangedCallback, are listed in the
Callback area of the Connection Editor. The method you create for the
Form, UpdateDisplay, is listed in the Methods area.

Figure 5-16 Connection Editor

4. Click on DragCallback in list of callbacks, and on UpdateDis-
play in the list of methods.

The Method’s default parameter appears in the Parameters list.

5. Complete the connection by clicking on Create.

The new connection appears in the Connection Editor, as shown in Figure
5-17.

CREATING AN RGB COLOR EDITOR IN C++
Making the Scale Instance’s Connections to Itself

UIM/X Tutorial Guide 179

5

Figure 5-17 Connection Editor Showing Scale’s First Connection

6. Click on ValueChangedCallback in list of callbacks (keeping
UpdateDisplay highlighted in the Methods list).

7. Complete the connection by clicking on Create. Again, the display is
updated to show the new connection.

8. Save your work.

Making the Scale Instance’s Connections to Itself

Recall that UpdateDisplay calls rgbcolor’s UpdateColor public
member function, passing in three values, one each for the red, green, and
blue components of a color. The function is shown below, for reference:

char vstring[20];

current_color.UpdateColor(v1, v2, v3);

sprintf(vstring, "#%02x%02x%02x", v1, v2, v3);

UxPutLabelString(label3, vstring);

In this step you will retrieve a value for v1 from the Scale instance’s own
_get_Value method that you created earlier to expose its Value
property. As before, you will connect both the Dragcallback and
ValueChangedcallback to _get_Value.

Creating an RGB Color Editor in C++
Step #10: Adding Behavior to the Instance

180 UIM/X Tutorial Guide

5

1. Load the Scale instance itself into the Target area of the Connection
Editor:

• Select the Scale instance, scaleH1Instance1, then click on
the Load Target icon (the right-most one).

• Or, drag and drop the Scale instance into the Target area.

The instance’s methods are displayed in the Methods list, including those
you defined for it, _get_Value, and _set_Value.

2. Click on DragCallback in the Callback list, and _get_Value in the
Method list.

3. For the Return parameter, enter the following value:

v1

The variable v1 will hold the red RGB value.

4. Complete the connection by clicking on Create.

The new connection appears in the Connection Editor, as shown in Figure
5-18.

Figure 5-18 Connection Editor Showing Three or Four Connections for Scale

5. Next, click on ValueChangedCallback in the Callback list (keeping
_get_Value highlighted in the Methods list.

6. Ensure the Return parameter has the following value:

v1

7. Complete the Connection by clicking on Create.

CREATING AN RGB COLOR EDITOR IN C++
Making the Scale Instance’s Connections to Itself

UIM/X Tutorial Guide 181

5
The Connection Editor now shows four connections for the Scale instance,
as shown in Figure 5-19.

Figure 5-19 Connection Editor Showing All Four Connections for Scale

8. Save your work.

Reordering the Connections

Connection event-action pairs are executed in the order in which they
appear in the Connection Editor. In this step you will reorder the
connections so UpdateDisplay receives the most recent value from the
Scale.

1. Highlight the following line in the connections list

DragCallback --->
scaleH1Instance1::_get_Value(&UxEnv)

2. Click on the up-arrow to move the DragCallbackget_Value con-
nection to the top of the list.

3. In the same way, highlight the following connection:

ValueChangedCallback --->
scaleH1Instance1::_get_Value(&UxEnv)

Creating an RGB Color Editor in C++
Step #11: Completing the Interface

182 UIM/X Tutorial Guide

5

4. Move it until it is just above the ValueChangedCallbackUpdate-
Display connection.

When complete the connections should appear in the following order:

DragCallback --->
scaleH1Instance1::_get_Value(&UxEnv)

DragCallback ---> form1::UpdateDisplay(&UxEnv)

ValueChangedCallback --->
scaleH1Instance1::_get_Value(&UxEnv)

ValueChangedCallback --->
form1::UpdateDisplay(&UxEnv)

5. Close the Connection Editor by choosing File⇒Close.

6. Save your work.

Step #11: Completing the Interface

With the Scale class defined and behavior added you are now ready to
complete the interface. First you will duplicate the Scale instance and
update its TitleString property. Next you will update the connections
for the duplicate Scales, setting their Return values to write to the global
variables v2 and v3, the green and blue components of a color.

Duplicating the Scale and Updating Properties

In this step you will duplicate the Scale instance and set the
TitleString properties.

1. Click on the Scale instance to select it then choose Selected
Objects⇒Duplicate.

2. Position the new instance under the first.

3. Duplicate the Scale instance once again, positioning the third instance
under the first two.

The interface should now appear as shown in Figure 5-20.

CREATING AN RGB COLOR EDITOR IN C++
Duplicating the Scale and Updating Properties

UIM/X Tutorial Guide 183

5

Figure 5-20 Color Editor with All Three Scale Instances

4. Double-click on the second Scale instance, scaleH1Instance2 to
load it into the Property Editor.

5. Locate the TitleString property in the Specific category, chang-
ing it from "RED" to "GREEN".

6. Apply your changes.

7. Similarly, load the third Scale instance, scaleH1Instance3 into the
already open Property Editor by dragging and dropping, or selecting it and
clicking on the Load icon.

8. In this case, change the TitleString property from "RED" to
"BLUE" and apply your changes.

The interface should now appear as shown in Figure 5-21.

Creating an RGB Color Editor in C++
Step #11: Completing the Interface

184 UIM/X Tutorial Guide

5

Figure 5-21 Color Editor with Scale TitleString Properties Updated

Updating the Connections

In this step you will set the Return values for the duplicate scales to write
to the global variables v2 and v3, the green and blue components of a
color.

1. Load the second Scale instance, scaleH1Instance2, into the
Connection Editor by selecting it and choosing Selected
Objects⇒Tools⇒Connection Editor.

2. Highlight the following connection in the Connections list:

DragCallback --->
scaleH1Instance2::_get_Value(&UxEnv)

3. Click on Edit.

Notice the Scale instance is loaded into the Target area, and its
_get_Value method is automatically highlighted.

4. Change the Return parameter from v1 to v2. v2 is the variable used to
set the green value.

5. Update the connection by clicking on Update.

CREATING AN RGB COLOR EDITOR IN C++
Updating the Connections

UIM/X Tutorial Guide 185

5
6. Similarly, begin updating ValueChangeCallback by highlighting the

following connection in the Connections list:

ValueChangedCallback --->
scaleH1Instance2::_get_Value(&UxEnv)

7. Click on Edit.

8. Change the Return parameter from v1 to v2, and click on Update.

9. Repeat the process for the BLUE scale instance, scaleH1Instance3,
changing the Return parameters from v1 to v3.

10. When complete, close the Connection Editor by choosing File⇒Close.

11. Save your work. The interface is now ready for testing.

Step #12: Testing the Program

Before generating code for the project in the next section, take a moment to
switch to Test Mode.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Hide the Color Editor interface by choosing View⇒Hide Project.

3. Choose Tools⇒Interpreter. The Interpreter window appears, as shown in
Figure 5-22.

Figure 5-22 C++ Interpreter Window

4. Select the Form interface by clicking on its icon in the Project Window.

Creating an RGB Color Editor in C++
Step #12: Testing the Program

186 UIM/X Tutorial Guide

5

5. Choose Module⇒Selected Interface in the Interpreter or click on the cor-
responding icon .

The Interpreter title bar changes to reflect the new scope.

Enter the following code in the Interpreter window, as shown in Figure
5-23.

UxPopupInterface(create_form1(UxParent),
no_grab);

Figure 5-23 Evaluating the Interface’s Create Function

6. Triple-click the line of code to highlight it, then choose Interpret⇒Evalu-
ate.

The Interpreter evaluates the code, pops up the Color Editor interface, and
prints the following to the Interpreter Messages Area:

Result: 0

7. Close the Interpreter by choosing File⇒Close.

8. Test the Color Editor interface:

Sliding a Scale updates the value on the scale, the value in the Label, and
the Drawing Area widget itself.

9. When you are through, switch back to Design Mode by clicking on the
Design icon.

CREATING AN RGB COLOR EDITOR IN C++
Updating the Connections

UIM/X Tutorial Guide 187

5

Step #13: Generating the C++ Code and Running the
Executable

You have now successfully constructed and tested the Command Line
project. In this step you will generate the code for the application, and run
it, without leaving the development environment.

1. Check that you are in Design Mode. If not, click on the Design icon.

2. Choose Options⇒Code Generation on the Project Window menu. The
Code Generation Options window appears, as shown in Figure 5-24.

Figure 5-24 Code Generation Options

3. Ensure that the following radio buttons and toggle buttons are selected:

• C++

• Context Support

Context support is required when generating code for an interface that
uses instances.

4. Save your changes and close the dialog by clicking on OK.

5. Click on the Run Mode icon or choose File⇒Generate Code As… on the
Project Window menu.

Creating an RGB Color Editor in C++
Step #13: Generating the C++ Code and Running the Executable

188 UIM/X Tutorial Guide

5

6. Check that the following radio buttons and toggle buttons are selected:

• Write All Interfaces

• Run Makefile

• Write Main Program

• Run Executable

• Write Makefile

7. Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

8. Test your program. Verify that it works as it did in Test Mode.

9. To stop the program select Close from the window control box, or switch
back to Design Mode by clicking on the Design icon .

10. Save the changes to your program.

Now when you modify the Color Editor project, you can simply click on
the Run Mode icon to generate the code, compile it, and run the
executable in one step.

UIM/X Tutorial Guide 189

Integrating a Non-Visual
Object 6

Overview

UIM/X provides the objects and tools needed to develop sophisticated
applications with graphical user interfaces quickly and easily. But some
objects, by their very nature, cannot be represented visually. Files, servers,
database objects and data structures, for example, have no graphical user
interface. Yet application developers and development teams would benefit
greatly from these and other non-visual objects. With the Non-Visual Shell,
UIM/X provides the structure for developing non-visual object classes. By
integrating them into UIM/X you can extend the UIM/X palette to include
your new non-visual object classes, facilitating their use by you and your
design team.

Consider the advantages of a non-visual linked list object, for example.
Instead of declaring the linked list in the Declaration Editor you could
simply drop an instance of a linked list object from the palette into the
interface where you need it. If the linked list were equipped with add and
delete methods you could call these from your interface callback code, or
connect to them visually using the Connection Editor.

As the above example illustrates, the Non-Visual Shell object extends the
benefits of the UIM/X development environment to the non-visual aspects
of your application. Using the Non-Visual Shell you can graphically create
any non-visual object you need. Then you can use the Method Editor to
give it functionality.

Integrating the non-visual object into the UIM/X development environment
provides additional advantages. As with a visual GUI object, you can
pre-register its create function and methods with the interpreter for faster
processing. Further, by placing an instance of the object into the palette,
you can ensure that its methods are available for use, while remaining
uneditable.

Integrating a Non-Visual Object
About This Tutorial

190 UIM/X Tutorial Guide

6

About This Tutorial

This tutorial demonstrates how to create a non-visual object and integrate it
into UIM/X. While you will create the new object using the Non-Visual
Shell, to facilitate using it in an application, a start-up project has been
provided. As part of the development process you will test the new object
by using it in the start-up project. Once integrated into the UIM/X
executable, you will use the non-visual object in the start-up project once
again, this time by dragging and dropping the integrated object from the
Palette.

Note: If you have installed UIM/X in its C-only configuration, do not attempt
the tutorial in this chapter. The tutorial assumes that UIM/X is running in C++
mode, and that you have a C++ compiler.

The GUI You Will Build

In this chapter you will create a non-visual object to open, read, write, and
close files. You will then use the new object in a To Do List application in
two ways. First, you will use it directly, by simply adding an instance of the
object to the To Do List main interface. Next, you will augment the UIM/X
executable with the new object, and use the integrated version in the same
To Do List application.

To allow the tutorial to focus on development of the File object and
augmenting UIM/X, the To Do List application has been provided as a
start-up project, as shown in Figure 6-1.

The interface consists of the following areas:

• Menu Bar: Contains pull-down menus with commands to open and close a
file, and exit the application. The Help menu pops up a Message Box
dialog.

• Work Area: Contains a Scrolled Window where you can view, edit, or
delete the tasks in your To Do List.

• Push Button Area: Contains a Field for editing tasks, a slide bar for setting
the task’s priority, and Push Buttons for adding the task to the work area,
or clearing the Field.

INTEGRATING A NON-VISUAL OBJECT

UIM/X Tutorial Guide 191

6

Figure 6-1 To Do List

The Sections in This Tutorial

This tutorial takes about 120 minutes to complete. It contains the following
sections:

Section I: Creating a Non-Visual File Object

Section II: Using the File Object in the To Do List

Section III: Integrating the File Object into UIM/X

Section IV: Using the Integrated File Object

Integrating a Non-Visual Object
Section I: Creating a Non-Visual File Object

192 UIM/X Tutorial Guide

6

Section I: Creating a Non-Visual ���� Object

This section focuses on creating the non-visual object with the following
features:

• The object will contain all the code it needs to open, read, write, and close
a file.

• Methods will be used so other interfaces have access to the object’s
functions.

In this section you will start UIM/X in Standard Mode. Next you will create
the non-visual File object based a Non-Visual Shell, modifying its create
function to allow the File object to receive a file name. Finally, you will add
methods to the File object to open, close, read, and write files. These
methods will be used in the next section, when you use the File object in a
To Do List project.

The Steps in This Section

This section takes about 20 minutes to complete. It contains the following
steps:

Step #1: Starting UIM/X in Standard Mode

Step #2: Creating the Non-Visual File Object

Step #3: Adding Functionality to the File Object

Where You Are in the Tutorial
⇒Section I: Creating a Non-Visual File Object

Section II: Using the File Object in the To Do List

Section III: Integrating the File Object into UIM/X

Section IV: Using the Integrated File Object

Step #1: Starting UIM/X in Standard Mode

Before you begin building the File object, set up new directories and copy
the start-up project as follows:

1. Start the X Window System.

2. Bring up a terminal window.

3. Make a base directory for this tutorial:

mkdir chap6

INTEGRATING A NON-VISUAL OBJECT
Where You Are in the Tutorial

UIM/X Tutorial Guide 193

6
4. Change to the directory you just created:

cd chap6

5. Make a directory to store the files you will create in this section:

mkdir sect1

6. Change to the directory you just created:

cd sect1

7. Start UIM/X from your new directory:

uimx &

If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx_directory/bin/uimx &

After a brief pause, a copyright notice window appears, to show that
UIM/X is being initialized. When UIM/X is ready, the Project Window
and UIM/X palette appear.

8. Iconify the terminal window.

Note: To restart the tutorial, begin again from Step 4 above.

Step #2: Creating the Non-Visual ���� Object

UIM/X provides a Non-Visual Shell class especially designed for creating
nonvisual objects. By modifying the new object’s create function, you can
easily pass values to it. You can also declare variables for use with the
object’s methods.

Adding a parameter to an object’s create function allows you to pass values
to it each time it is created. The parameter also shows up in the Property
Editor for instances of the object, so you can give it a default value, or
assign it a value at runtime. In this case, the parameter will be used to pass
the name of the file to be manipulated.

In this step you will use a Non-Visual Shell widget to create the File object.
Next you will use the Declaration Editor to define a few global variables to
function as error messages. You will also modify its create function to add
a filename parameter. The error messages and filename parameter will be
used in the next step, when you create methods for the File object to read,
write, open and close files.

Integrating a Non-Visual Object
Step #2: Creating the Non-Visual File Object

194 UIM/X Tutorial Guide

6

Drawing the ��
� Object

In this step you will create the File object, based on the Non-Visual Shell.

1. Drag and draw (or drag and drop) a Non-Visual Shell from the Shells
area of the Palette to your work area, as shown in Figure 6-2.

Figure 6-2 Non-Visual Shell Added to the Project

It does not matter what size you make the Non-Visual Shell.

2. Open the Property Editor by double-clicking on the Non-Visual Shell.

The property Editor appears, loaded with the Non-Visual Shell, as shown
in Figure 6-3.

INTEGRATING A NON-VISUAL OBJECT
Drawing the File Object

UIM/X Tutorial Guide 195

6

Figure 6-3 Property Editor Loaded with Non-Visual Shell

Note that while the Non-Visual Shell has dimension and position
properties, these apply to Design Mode and Test Mode only. At runtime
Non-Visual Shells, as the name implies, are not visible.

3. In the Declaration category, locate the Name property, and change it from
nonVisualShell1 to File.

4. Apply the change by clicking on Apply.

5. Close the Property Editor by choosing File⇒Close in the Property Editor.

6. Save the interface as a project by choosing File⇒Save Project As in the
Project Window.

7. Check that the project name selection box shows the path to your work
directory, chap6/sect1.

8. Click in the selection box and replace Untitled.prj with file.prj,
then click OK to save your project.

Integrating a Non-Visual Object
Step #2: Creating the Non-Visual File Object

196 UIM/X Tutorial Guide

6

Defining Global Variables for the ��
� Object

In this step you will load the File object into the Declaration Editor and
define a few global constants. These will be shared by the object’s methods
that you will add later. You will also add a filename parameter to the File
object’s create function. The parameter will be used to name the file
operated upon by the File object.

1. Open the Declaration Editor by pressing the Menu mouse button while
over the interface, and choosing Selected Objects⇒Tools⇒Declaration
Editor.

2. The Declaration Editor appears, as shown in Figure 6-4.

Figure 6-4 Declaration Editor

INTEGRATING A NON-VISUAL OBJECT
Defining Global Variables for the File Object

UIM/X Tutorial Guide 197

6
3. Click on the editor button (…) next to the /* Includes, defines,

global variables */ area, and add the following macro constants:

4. Close the Text Editor by clicking on OK.

5. Add the following definition to the /* Interface specific
variables */ area:

FILE *file_ptr;

6. Open a text editor for the interface function area by clicking on the editor
button (…) next to the /* Interface function */ area.

The interface function appears as follows:

swidget create_File(swidget UxParent)

7. Add a parameter, filename, to the interface function:

swidget create_File(swidget UxParent, char*
filename)

The filename parameter will be used to hold the name of the file opened
by the object’s methods.

8. Close the Text Editor by clicking on OK.

9. Add the following code to the /* Final Code */ area, just before the
return call (the return call is shown below, for reference).

file_ptr = NULL;

return(rtrn);

10. Apply the changes by clicking on OK in the Declaration Editor.

11. Save your work.

#define FILE_NOERROR 1
#define FILE_ERROR_ALREADY_OPEN -1
#define FILE_ERROR_CANNOT_OPEN -2
#define FILE_ERROR_CANNOT_CLOSE -3
#define FILE_ERROR_NOT_OPEN -4
#define FILE_ERROR_EOF -5

Integrating a Non-Visual Object
Step #3: Adding Functionality to the File Object

198 UIM/X Tutorial Guide

6

Step #3: Adding Functionality to the File Object

Now that you have created a File object that is not visible at runtime, the
next step is to add functionality to it. Methods present the most convenient
way to add functionality to objects designed for integration, for two
reasons. First, methods are inherited by instances of the object, with an
automatic naming convention that makes them easy to access. Second,
when augmenting UIM/X with a new object, methods provide functionality
while remaining uneditable.

When you place an instance of an object into an interface, any methods you
defined for it become available for use. They are visible in the Connection
Editor, and are available in callback code. But the bodies of an object’s
methods are not editable in the instance, providing structured access, and
security for the underlying code.

In UIM/X method names are of the form
InterfaceName_MethodName. The first part of the name reflects the
interface (or object) containing the method, and is automatically provided
by UIM/X. The second part you provide when creating or editing the
method.

In this step you will use the Method Editor to add four methods to the File
object. The methods will open, close, read and write a file respectively, with
error-checking. In Section II: Using the File Object in the To Do List, you
will add an instance of the File object to the To do List interface and call
the methods.

Note: Since the results of file operations are not directly observable, this step
makes use of #ifdef DESIGN_TIME statements to write messages to the
Project Window when in Test Mode. DESIGN_TIME is a macro constant
defined when in Design Mode and Test Mode but not at runtime.

Creating the Open Method

In this step you will add a method to the File object for opening files. In
Test Mode the open method will write to the Messages area of the Project
Window as well.

1. Click on the File interface to select it.

2. Open the Method Editor by choosing Selected Objects⇒Tools⇒Method
Editor.

3. The Method Editor appears, as shown in Figure 6-5.

INTEGRATING A NON-VISUAL OBJECT
Creating the Open Method

UIM/X Tutorial Guide 199

6

Figure 6-5 Method Editor

4. In the Return Type area, type the following:

int

5. In the Name area, type the following:

Open

6. In the Arguments area, type the following:

char *access;

Integrating a Non-Visual Object
Step #3: Adding Functionality to the File Object

200 UIM/X Tutorial Guide

6

7. In the Code area, type the following:

#ifdef DESIGN_TIME

printf("Trying to open %s \n", filename);

#endif /* DESIGN_TIME */

if (file_ptr != NULL)

{

#ifdef DESIGN_TIME
printf("%s is already open\n", filename);

#endif /* DESIGN_TIME

*/return FILE_ERROR_ALREADY_OPEN;

}

file_ptr = fopen(filename, access);

if (file_ptr == NULL)
{
#ifdef DESIGN_TIME

printf("%s cannot be opened\n", filename);

#endif /* DESIGN_TIME */

return FILE_ERROR_CANNOT_OPEN;}

#ifdef DESIGN_TIME

printf("%s opened\n", filename);

#endif /* DESIGN_TIME */

return FILE_NOERROR;

8. Click on Create Method. The method appears in the Interface Methods
list.

9. Save your work.

INTEGRATING A NON-VISUAL OBJECT
Creating the Remaining Methods

UIM/X Tutorial Guide 201

6

Creating the Remaining Methods

In this step you will create the methods to close, read, and write a file.

1. Repeat the process to create the Close method.

The complete definition for the Close method is shown in Table 6-1.

������!	������� Method Definition

2. Once you have entered the code for the Close method, be sure to click on
Create to define the method.

3. Repeat the process for the Readline method, as shown in Table 6-2.

Area Code

Return Type int

Name Close

Arguments none.

Code #ifdef DESIGN_TIME
printf("Trying to close %s \n", filename);
#endif /* DESIGN_TIME */
if (file_ptr == NULL)
{
#ifdef DESIGN_TIME

printf("%s not open\n", filename);
#endif /* DESIGN_TIME */

return FILE_ERROR_NOT_OPEN;
}
if (fclose(file_ptr) == EOF)
{
#ifdef DESIGN_TIME

printf("Unable to close %s \n", filename);
#endif /* DESIGN_TIME */

return FILE_ERROR_CANNOT_CLOSE;
}
#ifdef DESIGN_TIME
printf("%s closed\n", filename);
#endif /* DESIGN_TIME */
file_ptr = NULL;
return FILE_NOERROR;

Integrating a Non-Visual Object
Step #3: Adding Functionality to the File Object

202 UIM/X Tutorial Guide

6

������!	
�/��'��
� Method Definition

4. Repeat the process one last time for the Writeline method, as shown in
Table 6-3.

Area Code

Return Type
char *

Name Readline

Arguments none.

Code

static char str[256];
#ifdef DESIGN_TIME
printf("Trying to read from %s \n", filename);
#endif /* DESIGN_TIME */
if (file_ptr == NULL)
{
#ifdef DESIGN_TIME

printf("%s is not open\n", filename);
#endif /* DESIGN_TIME */

return NULL;
}
if (fgets(str, sizeof(str), file_ptr) == NULL)
{
#ifdef DESIGN_TIME

printf("no more in %s\n", filename);
#endif /* DESIGN_TIME */

return NULL;
}
#ifdef DESIGN_TIME
printf("read from %s \n", filename);
#endif /* DESIGN_TIME */
return str;

INTEGRATING A NON-VISUAL OBJECT
Creating the Remaining Methods

UIM/X Tutorial Guide 203

6
������!	���������
� Method Definition

5. Choose File⇒Close to close the Method Editor.

6. Save your work. The File object is now complete.

Section II: Using the File Object in the To Do List

Now that you have finished creating the non-visual File object, you can put
it to use in a project. Since you defined the object’s functionality using
methods, the simplest way to use it is to add an instance of it to the
interface. Adding an instance makes the object’s methods available for use
in the interface, while keeping them local to the interface. Values can be
passed to and from the instance directly, without the need for declaring
them as extern.

In this section you will load the To Do List start-up project provided. Next
you will add an instance of the File object to the To Do List. Then you will
modify the menus to work using the File object’s methods. After testing the
To Do List, you will generate code for the project.

Area Code

Return Type
int

Name Writeline

Arguments char *line;

Code #ifdef DESIGN_TIME
printf("Trying to write to %s \n", filename);
#endif /* DESIGN_TIME */
if (file_ptr == NULL)
{
#ifdef DESIGN_TIME

printf("%s is not open\n", filename);
#endif /* DESIGN_TIME */

return FILE_ERROR_NOT_OPEN;
}
#ifdef DESIGN_TIME

printf("%s written to\n", filename);
#endif /* DESIGN_TIME */
fprintf(file_ptr, "%s\n", line);
return FILE_NOERROR;

Integrating a Non-Visual Object
Step #4: Loading the Start-Up Project

204 UIM/X Tutorial Guide

6

This section takes about 20 minutes to complete. It contains the following
steps:

Step #4: Loading the Start-Up Project

Step #5: Adding an Instance of the File Object to the Interface

Step #6: Modifying the To Do List Menus

Step #7: Testing the To Do List

Step #8: Generating the Code and Running the Executable

Where You Are in the Tutorial
Section I: Creating a Non-Visual File Object

⇒Section II: Using the File Object in the To Do List

Section III: Integrating the File Object into UIM/X

Section IV: Using the Integrated File Object

Step #4: Loading the Start-Up Project

To facilitate development of the To Do List, a start-up project has been
provided. It contains the To Do List main interface with menus already
defined, plus a Message Box. In this step you will load the start-up project.

To Load the Start-Up Project
1. Under the chap6directory, make a directory to store the files you will

create in this section of the tutorial:

mkdir sect2

2. Change to the directory you just created:

cd sect2

3. Copy the To Do List project files into your work directory:

cp uimx_directory/contrib/ToDoList/* .

4. Change the permissions on the project files you copied to make them writ-
able:

chmod a+w *

5. In the same way, copy the File interface from the chap6/sect1 direc-
tory into your current directory:

cp ../sect1/File.i .

6. Reset UIM/X by choosing File⇒Reset in the Project Window. Before
loading a new project, it is helpful to reset UIM/X.

INTEGRATING A NON-VISUAL OBJECT
To Load the Start-Up Project

UIM/X Tutorial Guide 205

6
7. Choose File⇒Open in the Project Window.

8. Navigate to chap6/sect2, choose ToDo.prj, and click OK.

Dialogs will appear indicating that you are loading an interface originally
created in Novice Mode, and that compound objects will be converted to
widgets.

9. Dismiss each dialog as it appears by clicking Replace. The To Do List
start-up interface appears, as shown in Figure 6-6.

Figure 6-6 To Do List Start-Up Project

The Message Box is not visible by default, though an icon appears for it in
the Project Window. This interface is popped up by a callbacks provided
in the menus. You will test it later in this section.

Integrating a Non-Visual Object
Step #5: Adding an Instance of the File Object to the Interface

206 UIM/X Tutorial Guide

6

Step #5: Adding an Instance of the File Object to the
Interface

Now that you have loaded the To Do List interface, you can add an instance
of the File object to it. Placing an instance on the interface allows you to
refer to its methods directly, without declaring them as external to the
interface.

1. Add the File object to the To Do List project by choosing File⇒Open
in the Project Window, and selecting File.i.

2. Click on the File interface to select it. An interface must be selected to cre-
ate an instance of it.

3. Point to the To Do List interface, then press and hold the Menu mouse but-
ton to display the Selected Objects popup menu.

Notice the selection “Instance of File” appears on the menu as shown in
Figure 6-7.

Figure 6-7 Selected Objects Popup Menu

4. Choose “Instance of File”. The cursor changes into the corner shape.

INTEGRATING A NON-VISUAL OBJECT
To Load the Start-Up Project

UIM/X Tutorial Guide 207

6
5. Drag and draw the instance of the File on the To Do List interface.

Make sure to add the instance to the work area of the interface. It does not
matter what size you draw it, since the instance will not be visible. You
will work with the instance via the Browser.

6. Open the Browser by choosing Selected Objects⇒Tools⇒Browser while
over the To Do List interface.

The Browser appears, as shown in Figure 6-8.

Figure 6-8 Browser Showing the Instance of the File Object,
FileInstance1

7. Load the File instance, FileInstance1, into the Property Editor by
selecting it in the Browser and choosing Selected Objects⇒Tools⇒Prop-
erty Editor.

8. In the Core category locate the filename property, changing it from
NULL to "todo.out".

The filename property is the result of having added a parameter to the
File object’s create function. This property specifies the file that will be
opened and closed.

9. In the Declaration category locate the Name property, changing it from
FileInstance1 to todofile.

10. Apply your changes by clicking on Apply in the Property Editor.

11. Close the Property Editor by choosing File⇒Close.

12. Save your work.

Integrating a Non-Visual Object
Step #6: Modifying the To Do List Menus

208 UIM/X Tutorial Guide

6

Step #6: Modifying the To Do List Menus

The menus provided with the To Do List project already contain
functionality to open and close files. In this step you will change the
callbacks to use the methods defined for the File object instead.

1. Select the menu bar and open the Menu Editor by choosing
Tools⇒Menu Editor.

The Menu Editor appears, as shown in Figure 6-9.

Figure 6-9 Menu Editor

2. Select the file_open item. The properties and callbacks are listed in the
display area.

3. Click on the Text Editor button (…) beside the Callback property.

A Text Editor appears, displaying the code included with the To Do List
project.

INTEGRATING A NON-VISUAL OBJECT
To Load the Start-Up Project

UIM/X Tutorial Guide 209

6
4. Delete the code provided, replacing it with the following code:

char *str;
Widget w;
XmString xms;

if (File_Open(todofile, "r", &UxEnv))

{

w = UxGetWidget(scrolledList1);

XmListDeleteAllItems(w);

while (str = File_Readline(todofile, &UxEnv))

{

/* remove trailing newline and add to the list */

str[strlen(str)-1] = ’\0’;

xms = XmStringCreateSimple(str);

XmListAddItem(w, xms, 0);XmStringFree(xms);

}
File_Close(todofile, &UxEnv);

}

5. Close the Text Editor and copy the code to the callback by clicking OK.

6. Apply the changes without closing the Menu Editor by clicking Apply.

Integrating a Non-Visual Object
Step #6: Modifying the To Do List Menus

210 UIM/X Tutorial Guide

6

7. Similarly, enter the following callback for the file_save item.

char *taskList;
char *processList;

if (File_Open(todofile, "w", &UxEnv))

{

taskList = UxGetItems(scrolledList1);

if (taskList)

{

/* Replace commas by newlines and write out to the
list */

processList = taskList;

while (*processList)

{

if (*processList == ’,’)

{

*processList = ’\n’;

}

processList++;

}

File_Writeline(todofile, taskList, &UxEnv);

File_Close(todofile, &UxEnv);

}

}

8. Apply the changes and close the Menu Editor by clicking OK.

9. Save your work.

INTEGRATING A NON-VISUAL OBJECT
To Load the Start-Up Project

UIM/X Tutorial Guide 211

6

Step #7: Testing the To Do List

Before generating code for the project in the next section, take a moment to
test the menus.

1. Switch to Test Mode by clicking on the Test icon in the Project
Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Test the To Do List interface:

• To add a task to the work area, type your text in the Task field,
and click on Add.

• Use the slider to assign the task a priority level.

• To edit an existing task, highlight it in the work area, and click on
Edit. The task is copied to the Task area.

3. Test the File functionality:

• Choosing File⇒Save writes the contents of your to do list to
todo.out.

• Choosing File⇒Open displays the contents of todo.out in
the work area.

• Note that since DESIGN_TIME is defined in Test Mode,
appropriate messages are printed to the Project Window.

4. When you are through, switch back to Design Mode by clicking on the
Design icon.

Step #8: Generating the Code and Running the
Executable

The final step in this section is to generate code for the To Do List project.

1. Check that you are in Design Mode.

2. Choose File⇒Generate Project Code As on the Project Window menu.

Integrating a Non-Visual Object
Section III: Integrating the File Object into UIM/X

212 UIM/X Tutorial Guide

6

3. Check that the following radio buttons and toggle buttons are selected:

• Write All Interfaces

• Run Makefile

• Write Main Program

• Run Executable

• Write Makefile

4. Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

5. Test your program. Verify that it works as it did in Test Mode (minus the
status messages).

6. To stop the program choose File⇒Exit.

7. Save the changes to your program.

Now when you modify the To Do List project, you can simply click on the
Run Mode toggle to generate the code, compile it, and run the executable
in one step.

8. Since you will restart UIM/X in the next section, exit now by choosing
File⇒Exit in the Project Window.

Section III: Integrating the File Object into UIM/X

Fundamental to integrating a new object into UIM/X is creating a new class
definition for the object. The class definition contains information about the
new object that allows it to be added to the UIM/X executable and used like
any other widget. It contains code that lets you use it in projects where both
C or C++ code may be generated. It can also provide a common API and
user interface to the component, and can determine what properties and
callbacks are available for it in the Property Editor.

UIM/X has been designed for easy integration of the custom objects you
create. First you generate a C++ class definition for the object. This code
includes additional “wrapper” and “integration” code required by UIM/X.
For an object created within UIM/X, this code can be produced
automatically.

INTEGRATING A NON-VISUAL OBJECT
Where You Are in the Tutorial

UIM/X Tutorial Guide 213

6
While generating class code in UIM/X is automatic, it requires options not
normally available in the Code Generation Options window. To make these
options visible, you must set Builder Engine resources and restart UIM/X.

Once you recompile UIM/X with the class definition, the new object
becomes available for use, and is indistinguishable from those provided
with UIM/X. You can drag and drop it from a palette, and make use of its
methods from within your callback code. In addition, Test Mode, run mode,
and code generation work just as expected.

In this section you will augment the UIM/X executable with the File object
created earlier. You will begin by restarting UIM/X, this time with Builder
Engine resources set. Next you will generate the class code for the File
object. Then you will compile the class code twice—once for use with the
UIM/X executable itself, and once for use with any project code generated
using UIM/X. Once added to the executable, you will add the File object to
the palette, and “polish” the augmented UIM/X to load the palette at start
up.

This section takes about 60 minutes to complete. It contains the following
steps:

Step #9: Restarting UIM/X with Builder Engine Resources

Step #10: Creating the New Class Code

Step #11: Compiling the New UIM/X Class Code

Step #12: Augmenting UIM/X

Step #13: Creating a New UIM/X Palette

Step #14: Polishing the Augmented UIM/X

Where You Are in the Tutorial
Section I: Creating a Non-Visual File Object

Section II: Using the File Object in the To Do List

⇒Section III: Integrating the File Object into UIM/X

Section IV: Using the Integrated File Object

Integrating a Non-Visual Object
Step #9: Restarting UIM/X with Builder Engine Resources

214 UIM/X Tutorial Guide

6

Step #9: Restarting UIM/X with Builder Engine
Resources

UIM/X users are accustomed to setting code generation options prior to
generating project code. Integrating a new component, however, requires
options not normally available on the standard Code Generation Options
dialog. (Figure 6-10 shows both dialogs.) In order to display the options
required, you must merge two Builder Engine resources into the current X
resource database.

Figure 6-10 Standard and Advanced UIM/X Code Generation Options Dialogs

As part of integrating the File object into UIM/X, you will use UIM/X to
generate C wrappers and Ux Integration Code. The C wrappers make a C++
class callable from a C program. The Ux Integration Code allows UIM/X to
manage the component.

These advanced C++ code generation options become available in the
UIM/X Code Generation Options dialog when two resources are set to true:

INTEGRATING A NON-VISUAL OBJECT
To Restart UIM/X With Builder Engine Resources

UIM/X Tutorial Guide 215

6
Uimx3_0*UxPrjOptionsCGenGenCWrappers.set:true

Uimx3_0*UxPrjOptionsCGenGenUxIntCode.set:true

It is simply a matter of merging the above resources into the current
X-resource database prior to starting UIM/X. This shall be done as part of
this step.

To Restart UIM/X With Builder Engine Resources

Before you begin this section of the tutorial, load the required Builder
Engine resources and set up a new directory as follows:

1. Under the chap6directory, make a directory to store the files you will
create in this section of the tutorial:

mkdir sect3

2. Change to the directory you just created:

cd sect3

3. In a terminal window, copy the File interface, File.i, from the
chap6/sect2 directory into your current directory:

cp ../sect2/File.i .

4. Create a directory to hold the Motif class definition you will generate, and
another to hold the augmented UIM/X:

mkdir motif augment

5. Add the required Builder Engine resources to the resource database:

xrdb -m

Uimx3_0*UxPrjOptionsCGenGenCWrappers.set:true

Uimx3_0*UxPrjOptionsCGenGenUxIntCode.set:true

When you are through typing, press Ctrl-d to end your xrdb session

6. Start UIM/X from your current directory:

uimx &

• If your PATH variable does not provide the full path to the UIM/X
executable, you have to specify it when you run UIM/X:

uimx_directory/bin/uimx &

After a brief pause, a copyright notice window appears on the screen, to
show that UIM/X is being initialized. When UIM/X is ready, the Project
Window and palette appear.

Integrating a Non-Visual Object
Step #9: Restarting UIM/X with Builder Engine Resources

216 UIM/X Tutorial Guide

6

7. Load the File object, File.i, by choosing File⇒Open in the Project
Window.

8. Iconify the terminal window.

Note: To restart this tutorial, begin again from Step 2 above.

INTEGRATING A NON-VISUAL OBJECT
To Restart UIM/X With Builder Engine Resources

UIM/X Tutorial Guide 217

6

Step #10: Creating the New Class Code

Before you can integrate a new component into UIM/X, you must create a
class definition for the component. The class definition must be in C++,
must contain C wrapper functions, and must contain integration code. For
components built in UIM/X, creating the C++ class for it is a simple matter
of generating the C++ code, as you would for any project. While creating
the class definition is automatic, you must be sure to select the correct code
generation options.

UIM/X recognizes component class definitions provided they meet certain
specifications. First, the class definition must be in C++. UIM/X can
integrate C++ class definitions only, but can generate C or C++ project code
using the code. Second, it must be “wrapped” in a C wrapper function. This
allows the C++ class code to be linked to a C language program. More
importantly, since UIM/X is a C program, it allows UIM/X itself to link
with the class definition.

UIM/X also requires that the class definition contain integration code, in a
specific format. This code enables UIM/X to manage the new class
throughout the design process. In addition to managing the component
during design-time, UIM/X must know what component-specific properties
and event callbacks to display in the Property Editor, for example. This
information is contained in the Ux Integration Code.

For components built using UIM/X, producing the correct class
definition—in C++, and including C wrappers and Ux Integration Code—is
a matter of selecting the correct code generation options and generating the
“project code” based on the actual component. For a component produced
outside UIM/X you must write the integration code by hand, as described in
UIM/X Advanced Topics.

In this step you will create the File object’s C++ class definition by
generating the project code using the File object just loaded. In the next
step, you will integrate the new class into UIM/X.

Integrating a Non-Visual Object
Step #10: Creating the New Class Code

218 UIM/X Tutorial Guide

6

To Create the New UIM/X Class Code

The first step in integrating a new class into UIM/X is to generate the class
code, containing wrapper code, and Ux Integration code.

1. Open the Code Generation Options dialog by choosing Options⇒Code
Generation in the Project Window.

2. Ensure the following radio buttons and toggle buttons are selected:

• C++

• extern C Wrappers

• Ux Integration Code

3. Close the dialog by clicking OK.

4. Choose File⇒Generate Project Code on the Project Window menu. The
Generate Code window appears, as shown in Figure 6-11.

Figure 6-11 Generate Code Window

INTEGRATING A NON-VISUAL OBJECT
To Create the New UIM/X Class Code

UIM/X Tutorial Guide 219

6
5. Check that the following radio buttons and toggle buttons are selected:

• Write All Interfaces

• Write Main Program

• Write Makefile

6. Change the makefile name from its default to File.mk.

7. Click on OK.

UIM/X writes the files, displaying progress messages in the Messages
area of the Project Window.

8. When complete, exit UIM/X.

Step #11: Compiling the New UIM/X Class Code

Once you have generated the C++ class definition for the File object you
can compile the code. Two compiled versions of the class definition are
required—one for linking with UIM/X, and one for linking with other
programs (such as those you create using UIM/X). To compile a specific
version, you edit the class definition makefile and set C++ compiler flags.

In order to link with UIM/X, you must inform the C++ compiler that the
class code contains C wrapper functions, Ux Integration Code, and that it
should be compiled with design-time management considerations.

To link with other applications you need to compile the code with the C
wrapper functions only. This will produce the object file for linking with C
or C++ applications, such as the project code you normally generate when
using UIM/X.

The CPLUS_CFLAGS macro in the makefile defines compiler flags that
control the object file produced. Table 6-4 explains the flags you should use
to produce the object file you want:
������!	��Compiler Flags Required

The meaning of the flags is explained in Table 6-5:

To Link With Use These Flags

UIM/X -DEXTERN_C_WRAPPERS -DUX_C -DDESIGN_TIME

C++ code only No flags required.

C or C++ code -DEXTERN_C_WRAPPERS

Integrating a Non-Visual Object
Step #11: Compiling the New UIM/X Class Code

220 UIM/X Tutorial Guide

6

������!	� Meaning of Compiler Flags

In this step you will edit the File object class makefile and compile it
twice—once for use with UIM/X, and once for use with other
applications. In the next step you will augment UIM/X with the class
definition executable.

For Linking with C and C++ Applications
1. Using a text editor, open the File object makefile, File.mk.

2. Find the line that defines the C++ compiler flags used:

CPLUS_CFLAGS = ...

3. Change it to read as follows:

CPLUS_CFLAGS = ... -DEXTERN_C_WRAPPERS

The three dots indicate the presence of platform-specific information.
Leave that information as is. Do not type three dots. The meaning of
-DEXTERN_C_WRAPPERS is explained in Table 6-5.

4. Save your changes and exit the text editor.

5. Compile the object code for linking with applications by typing the fol-
lowing at the UNIX command line:

make -f File.mk File.o

6. Move the object code produced to the motif directory for later use.

mv File.o motif

7. If you plan on generating C code for your projects, compile a version of
UxInterf.o for linking with File.o in C applications:

make -f File.mk UxInterf.o

Compiler Flag Meaning

-DEXTERN_C_W
RAPPERS

Informs the compiler that C++ code is being compiled, but
that the C wrapper functions for the code should be used, so
it can be called by both C and C++ applications.

-DUX_C Compiles the Ux Integration Code required by UIM/X.
-DDESIGN_TIM
E

Compiles for proper design-time control and presentation
of the class.

INTEGRATING A NON-VISUAL OBJECT
For Linking with UIM/X

UIM/X Tutorial Guide 221

6
8. Move the object code produced to the motif directory for later use.

mv UxInterf.o motif

For Linking with UIM/X

In this step you will edit the File makefile once again, to include the flags
required for linking with UIM/X itself. In addition, to compile the
integration code UIM/X requires header files located in the
/custom/include directory.

1. Using a text editor, open the File object makefile, File.mk.

2. Find the line that defines the C compiler flags used:

UX_CFLAGS = ...

3. Change it to read as follows:

UX_CFLAGS = ... -I$(UX_DIR)/custom/include

As in the earlier instruction, the three dots indicate you should leave the
existing information as is.

4. Find the CPLUS_CFLAGS line, this time changing it to read as follows:

CPLUS_CFLAGS = ... -DEXTERN_C_WRAPPERS -DUX_C
-DDESIGN_TIME

The meaning of -DEXTERN_C_WRAPPERS, -DUX_C and
_DDESIGN_TIME are explained in Table 6-5.

5. Compile the object code for augmenting UIM/X by typing the following
at the UNIX command line:

make -f File.mk File.o

6. Move the object code to the augment directory for later use.

mv File.o augment

Integrating a Non-Visual Object
Step #12: Augmenting UIM/X

222 UIM/X Tutorial Guide

6

Step #12: Augmenting UIM/X

Once you have compiled the UIM/X class code, you can augment the
UIM/X executable to include the new class. Augmenting UIM/X is a simple
matter of making a copy of the UIM/X main program file and its makefile,
then editing the makefile to include the class object file generated earlier.

When you compile the code, the new class code will be added to the UIM/X
executable. Since the object file contains the class definition, as well as
integration code, the resulting executable will contain all the information it
needs to manage the new class.

To Augment UIM/X
1. Change to the directory containing the object code for augmenting

UIM/X:

cd augment

2. Copy the UIM/X main program file into the augment directory:

cp uimx_directory/config/uimx_main.cc .

3. Copy the UIM/X makefile into the augment directory

cp uimx_directory/config/Makefile.uimx .

4. Using a text editor, open the UIM/X makefile, Makefile.uimx.

5. Find the line that defines the object files included in the executable:

APPL_CPLUSOBJS = $(AUGMAINOBJ)

6. Change it so the executable includes the File object code, File.o:

APPL_CPLUSOBJS = $(AUGMAINOBJ) File.o

7. Create the augmented UIM/X by running the makefile:

make -f Makefile.uimx uimx_aug

INTEGRATING A NON-VISUAL OBJECT
Making the File Object Subclass Visible

UIM/X Tutorial Guide 223

6

Step #13: Creating a New UIM/X Palette

Now that you have created the UIM/X augmented executable with the new
File class, the File object is available for use. To make it easier to use, you
can add the object to the palette. To do so, you must run the augmented
executable, and create an empty subclass to hold the File object. Once
created, you populate the subclass with the object by setting its declaration
properties. Next, you add the component to the palette, then save the palette
for future use.

Making the File Object Subclass Visible

In order to allow users to use the File object in projects, it must be made
visible. To create the File object you create an empty instance and add the
File object to it.

1. Run the augmented version of UIM/X:

uimx_aug &

2. Create a Manager, such as Drawing Area as shown in Figure 6-12:

Figure 6-12 Temporary Top-Level Interface

Integrating a Non-Visual Object
Step #13: Creating a New UIM/X Palette

224 UIM/X Tutorial Guide

6

The Drawing Area manager shall be used to temporarily hold the File
subclass.

3. Create an empty instance by choosing Selected Objects⇒Instance and
dragging and drawing it on the Manager, as shown in Figure 6-13:

Figure 6-13 The Empty Instance, instance1

Make the instance the size you want the File object’s outline to appear
when it is dragged and dropped from the Palette. The size is otherwise
unimportant, since a Non Visual object’s dimensions are not used.

4. Open the Interpreter window by choosing Tools⇒Interpreter in the
Project Window.

5. Choose Module⇒Selected Interface in the Interpreter or click on the cor-
responding icon .

The Interpreter title bar changes to reflect the new scope.

6. Enter the following code in the Interpreter window.

extern "C" swidget create_File(swidget, char *);

When you generated the object file for linking with UIM/X, recall that
create_File()was defined as a C function. This was so it could be
used by UIM/X to generate C or C++ code. In this step the interpreter is in
C++ Mode. The above declaration is required to inform UIM/X that the
create function is a C function.

INTEGRATING A NON-VISUAL OBJECT
Making the File Object Subclass Visible

UIM/X Tutorial Guide 225

6
7. Triple-click the line of code to highlight it, then choose Inter-

pret⇒Declare.

The Interpreter evaluates the code, pops up the Command Line interface,
and prints the following to the Interpreter Messages Area:

Result: OK

8. Close the Interpreter by choosing File⇒Close.

9. To rename the instance to something more suitable, begin by loading the
empty instance into the Property Editor.

10. In the Declaration category, change the Name property to FileObj and
click on Apply.

The instance should now appear as shown in Figure 6-14.

Figure 6-14 The Empty Instance, Renamed

11. Locate the properties shown in Table 6-6, and give them the values indi-
cated.

������!	!�Declaration Property Values for File Object Subclass

Property Name New Value

ArgDefinition "swidget UxParent; char *filename;"

Component "File"

Integrating a Non-Visual Object
Step #13: Creating a New UIM/X Palette

226 UIM/X Tutorial Guide

6

������!	!�Declaration Property Values for File Object Subclass

12. Click on Apply.

The instance inherits its properties from the named component. Since it
stems from a Non-Visual object, the instance disappears.

13. Close the Property Editor by choosing File⇒Close.

14. Open the Browser by choosing Selected Objects⇒Tools⇒Browser.

Although the Non-Visual object isn’t visible in the interface, it is visible in
the Browser. You will use the Browser in the next step.

15. Save your work.

Adding the New Subclass to the Palette

Adding the new subclass to the Palette is a simple matter of placing the
Palette in edit mode, creating a new category of components, and dragging
and dropping an instance of the subclass into a category. For the sake of
organization, it is helpful to create a new category to store the widgets or
objects you add.

1. Make sure you are in Edit mode by choosing Mode⇒Edit from the
Palette.

2. Create a new category of widget by choosing Edit⇒Create Category from
the Palette.

In the dialog that appears, name the category “Other” and click on OK.

3. Display the new category by scrolling the Palette to the bottom.

4. Put an instance of the File interface into the Palette by dragging and drop-
ping it from the Browser.

Use the Adjust mouse button, as if you were moving the interface.

5. Switch back to create mode by choosing Mode⇒Create from the Palette.

6. Save the new Palette by choosing File⇒Save As from the Palette.

Name the new Palette File.pal, and save it in
thechap6/sect3/augment directory.

7. Your new Palette should now appear as shown in Figure 6-15 (some cate-
gories have been collapsed for display purposes):

Property Name New Value

Constructor "create_File"

HeaderFile "File.h"

INTEGRATING A NON-VISUAL OBJECT
Adding the New Subclass to the Palette

UIM/X Tutorial Guide 227

6

Figure 6-15 The Palette Containing the New Category and Component

8. Exit the augmented UIM/X by selecting File⇒Exit from the Project Win-
dow. You will be asked to confirm your exit. Exit without saving.

Integrating a Non-Visual Object
Step #14: Polishing the Augmented UIM/X

228 UIM/X Tutorial Guide

6

Step #14: Polishing the Augmented UIM/X

Once UIM/X has been augmented with the new class definition and an
instance of the object has been added to the palette, the File object is ready
for use. Further refinements are possible. By adding a few lines of code to
the UIM/X main program source code, you will accelerate display of the
new object and ensure the interpreter recognizes its methods. Also, you can
have the palette containing the File object loaded automatically at start-up.
These simple changes are made by editing the UIM/X main program file,
and the UIM/X resource file.

To accelerate display of the new File object, you must preregister its class
with the interpreter. This is a matter of adding code to the UIM/X main
program

file. First, you add a declaration for the create function of the object’s
constructor. This is a function of the form create_object(). Then you
add a call to UxRegisterFunction, to preregister the create function.

To enable the interpreter to recognize the object’s methods you must load
the File header file at start-up. To do so, you edit the main program file,
adding a call to UxLoadGlobalInclude, the function that loads header
files into the interpreter.

To load the new Palette at start-up you must add information to the UIM/X
resource file, uimx_directory/app-defaults/Uimx3_0. The resource
file must also contain settings to ensure the interpreter knows the C++
compiler flags used when the class code was generated:
-DEXTERN_C_WRAPPERS and -DUX_C.

In this step you will edit the UIM/X main program file to preregister the
File create function, create_File(), for quick access by the interpreter.
Before recompiling UIM/X, you will also rename the executable to avoid
overwriting the augmented executable already created. This step also
includes modifying the UIM/X resource file to load the new palette at
start-up.

INTEGRATING A NON-VISUAL OBJECT
Editing the UIM/X Main Program File

UIM/X Tutorial Guide 229

6

Editing the UIM/X Main Program File

In this step you add the preregistration code to the UIM/X main program
file.

1. Using a text editor, open the UIM/X main program file,
uimx_main.cc (in the augment directory).

2. Find the declaration for UxRegisterFunction():

void UxRegisterFunction UXPROTO((char *, void*
));

3. Just after it, add a declaration for the File create function,
create_File:

swidget create_File UXPROTO((swidget, char *));

4. Now locate the body of UxRegisterFunctions(), and add the fol-
lowing code, after the last call to UxRegisterFunction():

UxRegisterFunction("create_File", create_File);

5. Find the section containing initialization code:

/* Insert initialization code for your application
here *

6. Add a call to load the File object’s header file:

UxLoadGlobalInclude("File.h");

7. Save your changes and exit the editor.

Editing the Makefile and Building the New Executable

In this step you edit the makefile to rename the executable to newuimx.
Then you will run the makefile to compile the polished executable that
preregisters the File class.

1. Using a text editor, edit the makefile, Makefile.uimx.

2. Locate the line that defines the executable name:

AUGEXEC = uimx_aug

3. Rename it to newuimx, as follows:

AUGEXEC = newuimx

Renaming the executable is a safety precaution. If you have to go back a
few steps, the augmented UIM/X created earlier, uimx_aug, will still be
intact.

4. Save the makefile and exit the editor.

Integrating a Non-Visual Object
Step #14: Polishing the Augmented UIM/X

230 UIM/X Tutorial Guide

6

5. Build the augmented executable by running the makefile:

make -f Makefile.uimx newuimx

Loading the Palette at Start-up

In this step you edit the UIM/X resource file to ensure the interpreter knows
what compiler flags the class code was compiled with, and which palette to
load at start-up.

1. Copy the UIM/X resource file into the current directory (augment):

cp uimx_directory/app-defaults/Uimx3_0 .

2. Change the permissions to make it writable:

chmod a+w *

3. Using a text editor, open the resource file, Uimx3_0.

4. Locate the lines that determine the palette loaded at start-up:

Uimx3_0*UxPalettePath.value:
uimx_directory/palettes
Uimx3_0*UxStartingPalettes.value: Uxcde.pal

5. Change start-up palette resources to the new palette in the current direc-
tory:

Uimx3_0*UxPalettePath.value: current_directory

Uimx3_0*UxStartingPalettes.value: File.pal

Be sure to specify the path from the root directory, starting with a forward
slash (“/”).

6. Locate the line that informs the interpreter of the CFLAGS used to com-
pile the code:

Uimx3_0.cflags: ...

The ellipsis [...] indicates platform-specific information. Do not type three
dots or delete the information.

7. Add -DEXTERN_C_WRAPPERS-DUX_C to the CFLAGS macro:

Uimx3_0.cflags: -DEXTERN_C_WRAPPERS-DUX_C ...

8. Save and close the updated resource file.

INTEGRATING A NON-VISUAL OBJECT
Where You Are in the Tutorial

UIM/X Tutorial Guide 231

6

Section IV: Using the Integrated File Object

In this section you will test the new executable to see that the File object
you added behaves as expected. As part of the test, you will use the To Do
List project, this time adding an instance of the new File object to it.

This section illustrates the advantages of augmenting the UIM/X executable
to include new objects. For example, adding a File object to the interface
can be done by dragging and dropping from the palette. While this is the
case with objects provided as a start-up project (or loaded as an interface)
there is one important difference. Since the File object in the palette is
already an instance, it’s methods are available for use, but cannot be
modified.

This section takes about 30 minutes to complete. It contains the following
steps:

Step #15: Starting the New Augmented UIM/X

Step #16: Adding a File Object to the To Do List Project

Step #17: Modifying the To Do List Menus

Step #18: Testing the Integrated Project

Step #19: Generating the Code and Running the Executable

Where You Are in the Tutorial
Section I: Creating a Non-Visual File Object

Section II: Using the File Object in the To Do List

Section III: Integrating the File Object into UIM/X

⇒Section IV: Using the Integrated File Object

Step #15: Starting the New Augmented UIM/X

In this step you will start the new version of UIM/X to see that the palette
you created is loaded at start up. You will also load the start-up project.

1. Under the chap6directory, make a directory to store the files you will
create in this section of the tutorial:

mkdir sect4

2. Change to the directory you just created:

cd sect4

3. Copy the File object’s header file from chap6/sect3 into your work
directory:

Integrating a Non-Visual Object
Step #16: Adding a File Object to the To Do List Project

232 UIM/X Tutorial Guide

6

cp ../sect3/File.h .

4. Copy the To Do List project files into your work directory:

cp uimx_directory/contrib/ToDoList/* .

5. Change the permissions on the project files you copied to make them writ-
able:

chmod a+w *

6. At the UNIX prompt, set the XAPPLRESDIR environment variable to the
directory containing UIM/X’s resource file (the one you copied and added
to):

setenv XAPPLRESDIR ../sect3/augment

By default, UIM/X searches for application defaults in a number of
directories in a specific order. Setting XAPPLRESDIR ensures the resource
file you created, Uimx3_0, is the one used.

7. Run the augmented UIM/X executable by typing the following in the ter-
minal window:

../sect3/augment/newuimx &

After a brief pause, a copyright notice window appears on the screen, to
show that UIM/X is being initialized. When UIM/X is ready, the Project
Window and your palette appear. Notice the palette contains the new
Other category, and the object you created.

8. Iconify the terminal window.

Step #16: Adding a File Object to the To Do List Project

In this step you will load the To Do List project, and add a FileObj from
the new palette.

1. Choose File⇒Open in the Project Window and choose ToDo.prj (in
chap6/sect4).

2. Select OK.

Dialogs appear indicating that you are loading an interface originally
created in Novice Mode, and that compound objects will be converted to
widgets.

3. Dismiss each dialog as it appears by clicking Replace.

4. Add a FileObj from the Others category of the Palette to the To Do List
interface.

5. Open the Browser by choosing Selected Objects⇒Tools⇒Browser.

INTEGRATING A NON-VISUAL OBJECT
Where You Are in the Tutorial

UIM/X Tutorial Guide 233

6
6. Load the File Object, FileObj1, into the Property Editor by selecting it

in the Browser and choosing Selected Objects⇒Tools⇒Property Editor.

7. In the Core category locate the filename property, changing it from
NULL to "todo.out".

This property specifies the file that will be operated upon. It is passed into
the File Object via its create function.

8. In the Declaration category locate the Name property, changing it from
FileObj1 to todofile.

9. Apply your changes by clicking on Apply in the Property Editor.

10. Close the Property Editor by choosing File⇒Close.

11. Save your work as a new project, Integrated.prj.

Step #17: Modifying the To Do List Menus

In this step you will change the callbacks for the File⇒Open and
File⇒Close items to use the methods defined for the File object instead.

1. Select the menu bar and open the Menu Editor by choosing
Tools⇒Menu Editor.

The Menu Editor appears, as shown in Figure 6-16.

Figure 6-16 Menu Editor

Integrating a Non-Visual Object
Step #17: Modifying the To Do List Menus

234 UIM/X Tutorial Guide

6

2. Select the file_open item. The properties and callbacks are listed in the
display area.

3. Click on the Text Editor button (…) beside the Callback property.

A Text Editor appears, displaying the code included with the To Do List
project.

INTEGRATING A NON-VISUAL OBJECT
Where You Are in the Tutorial

UIM/X Tutorial Guide 235

6
4. Delete the code provided, replacing it with the following code:

char *str;
Widget w;
XmString xms;

if (File_Open(todofile, "r", &UxEnv))

{

w = UxGetWidget(scrolledList1);

XmListDeleteAllItems(w);

while (str = File_Readline(todofile, &UxEnv))

{

/* remove trailing newline and add to the list */

str[strlen(str)-1] = ’\0’;

xms = XmStringCreateSimple(str);

XmListAddItem(w, xms, 0);

XmStringFree(xms);

}

File_Close(todofile, &UxEnv);

}

5. Close the Text Editor and copy the code to the callback by clicking on OK.

6. Apply the changes without closing the Menu Editor by clicking on Apply.

7. Similarly, enter the following callback for the file_save item.

Integrating a Non-Visual Object
Step #17: Modifying the To Do List Menus

236 UIM/X Tutorial Guide

6

char *taskList;
char *processList;

if (File_Open(todofile, "w", &UxEnv))

{

taskList = UxGetItems(scrolledList1);

if (taskList)

{

/* Replace commas by newlines and write out to the
list */

processList = taskList;

while (*processList)

{

if (*processList == ’,’)

{*

processList = ’\n’;

}

processList++;

}

File_Writeline(todofile, taskList, &UxEnv);

File_Close(todofile, &UxEnv);

}

}

8. Apply the changes and close the Menu Editor by clicking on OK.

9. Save your work.

INTEGRATING A NON-VISUAL OBJECT
Editing the Makefile Template

UIM/X Tutorial Guide 237

6

Step #18: Testing the Integrated Project

Before generating the project code for the new To Do List project, test that
the interface operates as expected.

1. As before, switch to Test Mode by clicking on the Test icon in the
Project Window.

The Palette and any other open editors disappear. The Project Window and
your interface remain.

2. Test the To Do List interface:

• To add a task to the work area, type your text in the Task field,
and click on Add.

• Use the slider to assign the task a priority level.

• To edit an existing task, highlight it in the work area, and click on
Edit. The task is copied to the Task area.

3. Test the File functionality:

• Choosing File⇒Save writes the contents of your to do list to the
file todo.out.

• Choosing File⇒Open displays the contents of todo.out in
the work area.

4. You can verify that a file has been created by looking in your working
directory from the command line.

5. When you are through, switch back to Design Mode by clicking on the
Design icon

Step #19: Generating the Code and Running the
Executable

The final step in creating your project is to edit its makefile template and
generate code for the integrated To Do List project.

Editing the Makefile Template

When generating code, UIM/X uses a makefile template, replacing variables
in the template with the names of elements in your project. In this step you
will edit the makefile template, adding the path to File.o (Motif version)
you created earlier. You must also inform the compiler that the object file
was created with C wrappers. The instructions vary slightly, depending on
whether you will be generating K&R C, ANSI C, or C++.

Integrating a Non-Visual Object
Step #19: Generating the Code and Running the Executable

238 UIM/X Tutorial Guide

6

1. Open the Program Layout editor by choosing Tools⇒Program Layout
in the Project Window.

2. Click on the Text Editor button […] next to the Ux Makefile field. The
Text Editor appears.

3. Locate the line that begins APPL_OBJS and, placing the cursor at the end,
add the following:

APPL_OBJS =/sect3/motif/File.o

For clarity, the part you type is indicated in bold. The three dots indicate
you should leave the rest of the text as is. Do not type the three dots.

4. If you will be generating C code, add the path to UxInterf.o (that you
created earlier) as well:

APPL_OBJS =/sect3/motif/File.o
../sect3/motif/UxInterf.o

5. If you will be generating C++, locate the line that begins
CPLUS_CFLAGS. Placing the cursor at the end, add the following:

CPLUS_CFLAGS = ... -DEXTERN_C_WRAPPERS

Once again, the part you type is indicated in bold. Leave the rest as is.

If you will be generating K&R C, add the above information to the end of
the line that begins KR_CFLAGS instead. For ANSI C, add it to the line
that begins ANSI_C.

6. There is one last change for those who will be generating C code. Since
the Non-Visual Object you created is a C++ object, you must use the C++
linker. Locate the lines that define the linker used:

LD = \

@‘if ["$(LANGUAGE)" = "C++"]; then echo
$(CPLUS_CC);fi‘ \

‘if ["$(LANGUAGE)" = "ANSI C"]; then echo
$(ANSI_CC); fi‘\

‘if ["$(LANGUAGE)" = "KR-C"]; then echo
$(KR_CC); fi‘

INTEGRATING A NON-VISUAL OBJECT
Generating the Code and Running the Executable

UIM/X Tutorial Guide 239

6
7. Change it to read as follows:

LD = \

@‘if ["$(LANGUAGE)" = "C++"]; then echo
$(CPLUS_CC);fi‘ \

‘if ["$(LANGUAGE)" = "ANSI C"]; then echo
$(CPLUS_CC); fi‘\

‘if ["$(LANGUAGE)" = "KR-C"]; then echo
$(CPLUS_CC); fi‘

The changes are indicated in bold.

8. Close the Text Editor by clicking OK.

9. Save your changes and close the Program Layout Editor by clicking OK.

10. Save your work.

Generating the Code and Running the Executable
1. Check that you are in Design Mode.

2. Choose Options⇒Code Generation on the Project Window menu. The
Code Generation Options window appears, as shown in Figure 6-17.

Figure 6-17 Code Generation Options

Integrating a Non-Visual Object
Step #19: Generating the Code and Running the Executable

240 UIM/X Tutorial Guide

6

3. Ensure the following radio and options buttons are selected:

• C++

• Include File

• Context Support

• Use Ux Convenience Library

Since multiple copies of the dialogs can be created by the application,
context support is required. If you carried out the steps required for
generating K&R C or ANSIC, you can select those languages too.

4. Save your changes and close the dialog by clicking on OK.

5. Choose File⇒Generate Project Code As on the Project Window menu.

6. Check that the following radio buttons and toggle buttons are selected:

• Write All Interfaces

• Write Main Program

• Write Makefile

• Run Makefile

• Run Executable

7. Click OK to generate your code.

UIM/X writes the files, runs the makefile, compiles the generated code,
and runs the executable. Progress messages are displayed in the Messages
area of the Project Window.

8. Test your program. Verify that it works as it did in Test Mode.

9. To stop the program choose File⇒Exit.

10. Save the changes to your program.

UIM/X Tutorial Guide 241

Index

Index

Symbols
.i file 17, 49
.prj file 17, 49

A
Adjust mouse button xii
Alt key xi
APPL_CPLUSOBJS 222
application defaults xiii
Application Window 44
application window behavior 105
arranging widgets 19

B
be.rf

See also Builder Engine resource file
behavior

adding callback 146
application window 105
See also Connection Editor

Browser 63
Builder Engine resource file 215
Bulletin Board widget 136

C
C Mode 169
C++ bindings 169
C++ compiler flags 219, 220
C++ Mode 169
callback accessor 37, 173
cancelling operations 83
category option menu 142
circle.xpm 109

classes
and inheritance 154
compiling class code 219
compiling for C and C++ 219, 220
compiling for UIM/X 221
creating class definition 217–219
creating empty 219
creating new 154
creating new widget class 168
defining C++ class in code 163
exposing behavior in class instances 155
exposing properties in class instances 154
See also RGB Color Editor project

clientAutoPlace resource 6
code generation 71, 72, 150, 187

setting options 215
Color Database 90
Color Editor 89
Color Viewer 89
ColorBox project 2–35

adding callback behavior to Push Buttons 31
adding Push Buttons 16
changing labels 26
Connection Editor 31
Constraint Editor 2, 23
description of GUI 3
Novice Mode 3
Property Editor 2
running the application 34
Test Mode 3
testing 34

Command Line project 133–151
adding an option menu 139
adding behavior to option menu 146
adding behavior to Toggle Buttons 146
adding Declarations 143

242 UIM/X Tutorial Guide

Index

code generation 150
description of GUI 134
options menus 139, 146
Property Editor 141
testing 149
Toggle Button 146

Communication project 37–74
adding behavior to menus 67
adding callbacks to dialogs 57
adding dialog instances 61
changing dialog properties 55
code generation 71
description of GUI 38
menus 65
popping up dialogs 73
testing 71

compound objects
definition x

Connection Editor 31, 32, 67, 177, 184
and exposed callbacks 178
and interface methods 178
editing connections 184
loading widgets 33
reordering connections 181

Constraint Editor 2, 23
CPLUS_CFLAGS

See also C++ compiler flags
create function

adding parameters 193

D
-DDESIGN_TIME 220
Declaration Editor 143, 165, 196
definition

compound object x
interface xi
Motif widget x
object x
project xi

DESIGN_TIME 198
-DEXTERN_C_WRAPPERS 219, 220
dialogs

centering over calling interface 57
Message Box 76
popping up 38, 73
setting display size 64
unmanaging Push Buttons 58
See also Communication project
See also Drawing Editor project

dragging and drawing widgets (detailed) 42
dragging and dropping widgets 47, 82

(detailed) 10
Drawing Area widget 9, 157
Drawing Editor project 76–132

adding a pulldown menu 95
adding color-drawing behavior 92
adding dialogs 118–127
adding line-drawing functionality 105–118
application window behavior 76, 105
cascading menu 97
color-changing Push Buttons 86
description of interface 77
generating code 127–132
Menu Editor 76, 95
menus 94–105
Message Box widget 76
methods 76
property accessor methods 122
pulldown menus 95
testing color-changing Push Buttons 93
testing line-drawing Push Buttons 117
testing menus 104
Translation Table List 110
translation tables 76
UxPutTranslations() 117

duplicating widgets 19–22, 48
-DUX_C 220

E
editors

Browser 63
Color Editor 89
Color Viewer 89
Connection Editor 31, 67, 177, 184

Index

UIM/X Tutorial Guide 243

Constraint Editor 2, 23
Declaration Editor 143, 165, 196
Event Editor 110
Icon Viewer 107
Interpreter 149, 185
Menu Editor 76, 94, 95, 139
Method Editor 37, 122, 167, 198
Option Menu 146
Property Editor 2, 54, 141, 142, 161, 173, 195
Translation Table Editor 106, 110

ellipse.xpm 109
Enter key xi

See also Return key xi
Event Editor 110

F
File Selection Box widget

adding behavior 217
See also Communication project

files
.i 17, 49
.prj 17, 49

Form widget 158
Frame widget 83

G
Gadgets 138
Generate Code Options 35, 72
generating code 71

H
Horizontal Scale widget 160

I
Icon Viewer 107
Installation Directories xi
instances 37

adding dialogs to an interface 61
adding to an interface 168
and Novice Mode 61
and Standard Mode 61
exposing callbacks 37, 169, 173

exposing properties 37, 169
novice mode and standard mode differences

73
setting display size 63
setting exposed properties 175

integrating objects
See also Non-Visual project

integration code
See also Ux Integration Code

interfaces
creating reusable 154
definition xi
setting resizing constraints 2

Interpreter 149, 185

L
Label widget 159
line.xpm 108, 109
line-drawing Push Buttons 117

M
Makefile.uimx 222
Menu Editor 76, 94, 95, 139

Novice Mode differences 66
Menu mouse button xii
menus

adding behavior 67
built-in behavior 76
cascading 97
Option Menu Editor 140, 146
option menus 139
pulldown 95
Selected Objects 20, 48, 137

Message Box dialog 47, 76
See also Communication project
See also Drawing Editor project

Method Editor 37, 122, 167, 198
and Novice Mode 39

methods 76, 173
and Connection Editor 177
callback accessor 37, 173
creating 198

244 UIM/X Tutorial Guide

Index

for integrated objects 198
property accessor 37, 118, 122, 168

Motif widget
definition x

mouse
adjust button xii
cancelling operations 83
menu button xii
responding to general mouse activity 106
select button xii
usage xii
See also Translation Tables

mouse buttons
naming conventions for xii

mouse pointer
compass shape 13

moving widgets 12–15, 47

N
naming conventions

menu options xi
methods 198
Return key xi
shell prompts xi
widget labels 17

Non-Visual project 189–240
adding behavior to menus 208, 233
adding categories to Palette 223, 226
adding instance to interface 203
adding parameter to create function 193
C++ compiler flags 219
creating File Selection Box subclass 219
creating methods 198
description of GUI 190
generating code 211, 237
integrating into UIM/X 212–230
testing 211, 237

Non-Visual Shell widget 189
Novice Mode 3

and instances 61
and Method Editor 39
Menu Editor differences 66

Palette in 7
starting in 5, 39

O
object

definition x
object class 212
Option Menu Editor 140, 146
Option Menus 139

P
Palette 2

adding categories 223, 226
adding items 226
category 7
expand arrow 7, 8
Novice Mode 7
using 7–8

Project Window
duplicating widgets in 20
icons in 11

projects
ColorBox project 2–35
Command Line project 133–151
Communication project 37–74
definition xi
Drawing Editor project 76–132
Non-Visual project 189–240
RGB Color Editor project 154–188
saving (detailed) 17, 49

Prompt widget 76
properties

adding to Property Editor 169, 212
Behavior 3, 145
changing at design-time 2, 87
changing at runtime 76
changing dialog 54
changing for several widgets at once 87
exposing in instances 169

property accessor 37
property accessor methods 118, 122, 168
Property Editor 2, 52, 54, 141, 142, 161, 173, 195

Index

UIM/X Tutorial Guide 245

loading by name 30
loading into 52

Push Button widget 16
adding callback behavior 31, 92, 146

R
rectangle.xpm 109
resize grid 12
resizing interfaces 2
resizing widgets 12–15, 46
resources

setting xiii
setting for advanced Code Generation options

217
Return key xi
RGB Color Editor project 154–188

changing labels 161
code generation 187
Connection Editor 177
description of GUI 155
exposing behavior in class instances 173
exposing properties in class instances 168
Property Editor 161
setting exposed properties 175
testing 185
using exposed behavior 178

Row Column widget 138

S
saving, detailed instructions 17, 49
Scrolled Window widget 81
Select mouse button xii
Selected Objects popup menu 20, 48, 137
selecting widgets 51, 87
selection handles 11
Standard Mode

and instances 61
starting in 79, 135, 157, 192

subclassing
See also classes
See also RGB Color Editor project

subprocess control

See also Command Line project

T
Test Mode 3, 34, 71, 149, 185
testing

ColorBox project 34
color-changing Push Buttons 93
Command Line project 149
Communication project 71
Drawing Editor project 93, 104, 117
Non-Visual project 237
RGB Color Editor project 185

Text widget 15, 137
To Do List project

See also Non-Visual project
Toggle Button 146
Toggle Button gadget 138
Translation Table Editor 106, 110
Translation Table List 110
translation tables 76

and application window behavior 106
and mouse activity 76, 106
assigning to a widget 116

Typographic Conventions xi

U
UIM/X

makefile 222
saving your work 49
starting in Novice Mode 5, 39
starting in Standard Mode 79, 135, 157, 192

uimx_aug 222
Uimx3_0*UxPrjOptions 215

CGenGenCWrappers 215
CGenGenUxIntCode 215

Ux Integration Code 217
UxCreateSubproc() 133, 145
UxExecSubproc() 133
UxGetBackground() 93
UxGetProperty() 76, 93
UxGetTextString() 58, 59
UxManage() 61

246 UIM/X Tutorial Guide

Index

UxPopupInterface() 186
UxPutBackground() 93
UxPutDefaultPosition() 60
UxPutLabelString() 168, 179
UxPutProperty() 76, 93
UxPutTranslations() 117
UxSetSubprocClosure() 145
UxThisWidget() 58, 59
UxVisualInterface() 37

W
widget creation

adding resizing constraints 23
dragging and drawing (detailed) 10, 42
dragging and dropping 82

widget operations
and the Browser 64
cancelling 83
creating custom colors 91
duplicating in Project Window 20
duplication 19, 48
moving and resizing 12–15, 46

using window decorations 12
widget selection

marquee selection 87
selecting multiple widgets 87
selection handles 11

widgets
adding behavior 2
adding behavior to dialogs 57
Application Window 42, 44
arranging 21
built-in behavior 2
Bulletin Board 136
changing properties 2, 27, 141, 161
definition x
dialog 76
dragging and dropping 82
Drawing Area 9, 157
File Selection Box 217
Form 158
Frame 83

Horizontal Scale 160
Label 159
Message Box dialog 47, 76
moving 47
naming conventions 17
Non-Visual Shell 189
Prompt 76
Push Button 17
resizing 46
Row Column 138
Scrolled Window 81
setting colors 89
Text 15, 137
Toggle Button gadget 138

X
XAPPLRESDIR 232
XmMessageBoxGetChild() 60
XtUnmanageChild() 60

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

