
��������	
���
�
���
������
�




Copyright © 2005 Integrated Computer Solutions, Inc.

The UIM/X Motif Developer’s Guide is copyrighted by Integrated Computer Solutions, Inc., with all rights
reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system, or transmitted
in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the
prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 Middlesex Turnpike, Bedford, MA 01730

Tel: 617.621.0060

Fax: 617.621.9555

E-mail: info@ics.com

WWW: http://www.ics.com

UIM/X Trademarks
UIM/X, Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software Development Kit, BX/Win
SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak, ViewKit ObjectPak, VKit,
and ICS Motif are trademarks of Integrated Computer Solutions, Inc. 

Motif is a trademark of Open Software Foundation, Inc. 

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited. 

X/Open is a trademark of X/Open Company Limited in the UK and other countries. 

X Window System is a trademark of the Massachusetts Institute of Technology. 

All other trademarks are properties of their respective owners.
ii UIM/X Motif Developer’s Guide

http://www.ics.com


Contents

Preface ......................................................................................v

Chapter 1—Overview of Motif Widgets 
Working with the Ux Palette ........................................................................................ 2
The Primitives Category ............................................................................................. 4
The Managers Category ............................................................................................. 7
The Menus Category ................................................................................................ 11
The Dialogs Category ............................................................................................... 11
 The Shells Category ................................................................................................ 14
The Gadgets Category ............................................................................................. 16
The Compound Objects Category ............................................................................ 17

Chapter 2—Programming in UIM/X 
Setting Property Values ............................................................................................ 20
Using C++ Bindings .................................................................................................. 20
Miscellaneous Ux Library Functions ......................................................................... 21
Using the CreateCallback ......................................................................................... 22
Using UIM/X Global Variables .................................................................................. 24
Using Xm, Xt, and X Calls ........................................................................................ 24
Generating Xt Code .................................................................................................. 25

Chapter 3—Using the Motif Components
Building Main Windows ............................................................................................. 30
Building Menus ......................................................................................................... 34
Using Convenience Dialogs ...................................................................................... 39
Using the List Object ................................................................................................. 41
Creating a Radio Box ................................................................................................ 46
Establishing a Default Button .................................................................................... 47
Communicating with the Window Manager .............................................................. 48

Chapter 4—Controlling Appearance 
Polishing the Layout ................................................................................................. 54
Customizing Colors and Fonts .................................................................................. 55
Using the Form Object .............................................................................................. 57
Using the Constraint Editor ....................................................................................... 60

Chapter 5—Specifying Application Window Behavior
Defining the Events: Using the Event Editor ............................................................. 68
Responding to Events: Defining the Actions ............................................................. 72
UIM/X Motif Developer’s Guide iii



Connecting Events and Actions: Translation Tables ................................................ 74
Attaching the Translation Table to a Widget ............................................................. 77
Advanced Usage: Passing Parameters to Your Actions ...........................................79

Chapter 6—Adding Interfaces to Existing Applications
Adding an Interface to a Command-Line Application ................................................ 84
Command-Line Example: Database Application ...................................................... 85
Intermediate Restructuring of an Existing Application .............................................. 91

Chapter 7—Generating and Compiling Project Code 
Generating Resource Files ....................................................................................... 94
Generating Message Catalogs ................................................................................. 94
Using the Program Layout Editor .............................................................................. 97
Customizing a Main Program File ............................................................................. 99
Adding New Input Sources to the Event Loop ........................................................ 102
Managing Resource Files .......................................................................................104
Generating Code ..................................................................................................... 107
Generating Code for Selected Interfaces ................................................................ 110
The Structure of the Generated Code ..................................................................... 111
Development Environment and Executable Code Differences ............................... 113
Problems with Your Compiled Application .............................................................. 115

Appendix A—Object Property Values ................................117

Appendix B—Frequently Asked Questions.......................131

Index......................................................................................139
iv UIM/X Motif Developer’s Guide



Preface

Overview
This guide helps you to use UIM/X to build Motif interfaces. It explains why the 
Motif standard is good for programmers to follow, and illustrates the use of the Motif 
objects that come packaged with UIM/X. It also discusses several programming 
techniques that you should use when designing Motif applications. 
UIM/X Motif Developer’s Guide v



Who Should Use this Guide 
This manual assumes you are familiar with the basics of UIM/X. Before using this 
manual, review the UIM/X Beginner’s Guide and the UIM/X User’s Guide. 

This manual also assumes that you have some knowledge of programming and a 
general understanding of the X Window System. You should also know how to use 
common items such as menus, buttons, and scroll bars. If you are not familiar with 
these items, you may find it useful to review the OSF/Motif User’s Guide. 

Before you begin, check with your system administrator to ensure that the software 
has been installed as described in the UIM/X Installation Guide. 

Before You Read this Guide 
This guide makes the following assumptions: 

• You are familiar with the basic functions of selecting from menus and dialog 
boxes; opening, moving, resizing and closing windows, and clicking icons. 

• You understand the functions of the three mouse buttons, which this guide 
refers to as the Select button (left button), the Adjust button (middle), and the 
Menu button (right). See “Using the Mouse” on page x for more information. 

• Either you have enough familiarity with programming to enter your own 
callback code; or you are using the novice mode of UIM/X to help design user 
interfaces for which a colleague can provide any code required.

The UIM/X Document Set and Related Books 
This section lists the UIM/X document set, and provides a suggested list for further 
reading. 
vi UIM/X Motif Developer’s Guide



The following list is the complete UIM/X document set: 

• UIM/X Installation Guide. Explains how to install and run UIM/X. Includes 
information on the files provided with UIM/X, backwards compatibility issues, 
and compiler considerations. 

• UIM/X Beginner’s Guide. Introduces UIM/X by presenting Novice Mode, the 
simplified Palette that enables new users to be productive immediately. 
Includes information on a number of important features for creating, testing, 
and running applications. 

• UIM/X Tutorial Guide. A series of step-by-step tutorials, teaching tools and 
techniques that will greatly assist you in developing your own applications. 
Features tutorials in Novice Mode, Standard Mode, and on advanced topics. 

• UIM/X User’s Guide. Explores the UIM/X features common to both Motif and 
cross-platform development. Includes discussions of how to use UIM/ X’s 
editors to set properties, add behavior, etc. 

• UIM/X Motif Developer’s Guide. An in-depth guide to the widgets, features 
and capabilities of UIM/X as they relate specifically to Motif development. 

• UIM/X Advanced Topics. Describes how to customize UIM/X, including 
integrating new widget and component classes into the executable. Includes 
reference information of an advanced technical nature. 

• UIM/X Reference Manual. A comprehensive list of properties, methods, and 
events, plus more, for Motif development. Designed for the experienced 
developer. 

Suggested Reading 
For more information on designing GUIs, see any of the following books: 

• OSF/Motif Style Guide release 1.2  (Prentice Hall, 1993, ISBN 0-13-643123-2) 

• Visual Design with OSF/Motif  (by Shiz Kobara, Addison-Wesley, 1991, ISBN 
0-201-56320-7) 

• New Windows Interface: An Application Guide  (Microsoft Corporation, 1994, 
ISBN 1-55615-679-0) 

• Human Interface Guidelines: The Apple Desktop Interface (Addison-Wesley, 
1987, ISBN 0-201-17753-6) 
UIM/X Motif Developer’s Guide vii



How this Guide Is Organized 
• Chapter 1, “Overview of Motif Widgets,” describes each of the objects 

supported by UIM/X.

• Chapter 2, “Programming in UIM/X,” describes how to use the Ux 
Convenience Library to specify behavior in your interfaces.

• Chapter 3, “Using the Motif Components,” describes some of the advanced 
Motif objects, and discusses some of the issues of Motif programming.

• Chapter 4, “Controlling Appearance,” describes how to control the layout and 
appearance of your interfaces.

• Chapter 5, “Specifying Application Window Behavior,” explains how to 
customize the look and feel of you project by specifying application window 
behavior.

• Chapter 6, “Adding Interfaces to Existing Applications,” explains how to 
create GUIs for existing programs.

• Chapter 7, “Generating and Compiling Project Code,” discusses some of the 
issues involved in generating code for your projects.

• Appendix A, “Object Property Values,” outlines the range of values possible 
for each property.

• Appendix B, “Frequently Asked Questions,” provides answers to some of the 
most commonly encountered questions about UIM/X.

Some Terms You Should Know 
Certain basic terms recur throughout this guide, and it helps to understand them 
from the outset. 

An object is a building block you can use to build an interface with UIM/X. 

A Motif widget is an object whose appearance and behavior precisely follows the 
OSF/Motif Style Guide. The novice mode of UIM/X supports a number of popular 
Motif widgets, including Push Button, Label, Text Field, and more. 

A compound object consists of several Motif widgets combined into one object for 
your convenience. The novice mode of UIM/X supports a number of compound 
objects, including Application Window and Group Box, that save you the time you 
might otherwise spend creating them. 
viii UIM/X Motif Developer’s Guide



An interface is a window or dialog box that you build up from objects with UIM/X. 
The novice mode of UIM/X supports four different types of interfaces: Application 
Window, Secondary Window, Message dialog box, and File Selection dialog box. 
Certain menu options refer to an interface, such as Save Interface; these act only on 
your selected interface. 

A project contains all the interfaces (i.e., windows and dialog boxes) and their 
associated files for a certain GUI you are building with UIM/X. The program can 
automatically save and generate code for an entire project in one step. Certain menu 
options refer to a project, such as Save Project; these act on all the windows and 
dialog boxes in your project. 

Conventions Used in this Guide 

Typographic Conventions 

The following table describes the typographic conventions used in this guide. 

Typeface or 
Symbol 

Meaning Example 

AaBbCc12 The names of commands, files, and 
directories; 
or on screen output; 
or user input. 

Edit your .login file. 

%You have mail. Use ls -a 
to list all the files. 

AaBbCc12 A placeholder you replace with your 
actual value; 
or words to be emphasized;
or book titles. 

To delete a file, type rm filename. 

You must be root to do this. See 
Chapter 6 in the User’s Guide. 

File⇒Open The Open option in the File menu. 
Choose the File⇒Open 
command. 

Alt+F4 Press both Alt and F4 at once. Press Alt+F4 to exit. 
Return The key on your keyboard marked 

Enter, Return, or . 

Press Return. 
UIM/X Motif Developer’s Guide ix



Installation Directories 

Product installation directories can depend on the platform or the user’s 
preferences. To keep things simple, this guide uses general names for product 
installation directories. The following table lists the name and the corresponding 
product installation directory: 

Using the Mouse 

Before starting the tutorial, take a moment to review the location and usage of your 
mouse buttons, as illustrated in the Figure P-1and the following table: 

1: Select 2: Adjust 3: Menu 

Throughout this book, you will use the mouse buttons along with the 
mouse pointer to make selections, move the input pointer, or position the 
text insertion point. You can perform any of the following mouse 
operations. 

Name Description

uimx_directory The UIM/X installation directory

Button Called Is Used For 

1 Select Selecting objects, menus, toggles, and options. 

2 Adjust Resizing and moving objects. 

3 Menu Displaying popup menus. 

Operation Description 

Point to Move the mouse to make the pointer go as directed. 

Press 
Hold down a mouse button. 
x UIM/X Motif Developer’s Guide



In general, instructions for mouse operations include the name of the mouse button. 
The exceptions are Click, Double-click, and Drag. These common operations may 
be described without specifying a mouse button. For example: 

• Click on the applWindow1 icon in the Interfaces Area of the Project 
Window. 

• Drag the Push Button icon from the Palette. 

In these cases, use the Select button to click and double-click, and the Adjust button 
to drag. 

Setting Application Defaults 
Application Defaults configure the way UIM/X looks and set the default 
preferences for many of its operations. You can set the Application Defaults for all 
UIM/X users or for a single user. For more details on setting your Application 
Defaults see the UIM/X User’s Guide. 

For optimum performance, set the following resources in your Application 
Defaults:

Mwm*autoKeyFocus: false

Mwm*clientAutoPlace: false

Mwm*focusAutoRaise: false

Mwm*focusFollowsPointer: true

Mwm*keyboardFocusPolicy: pointer

If you have a gray-scale monitor, you might try the following settings: 

Mwm*activeBackground: #666666 (gray40)

Mwm*activeForeground: #e5e5e5 (gray90)

Mwm*background: #666666 (gray40)

Operation Description 

Release Release a mouse button after pressing it. 

Click 
Quickly press and release a mouse button without moving the 
mouse. 

Drag Move the mouse while pressing a mouse button. 

Double-click 
Click a mouse button twice in rapid succession without moving the 
mouse pointer.

Triple-click 
Click a mouse button three times in rapid succession without moving 
the mouse pointer
UIM/X Motif Developer’s Guide xi



Mwm*foreground: #e5e5e5 (gray90)

Uimx3_0*calculatedColors: false

Uimx3_0*background: #ededed (gray93)

Uimx3_0*BottomShadowColor: #000000 (black)

Uimx3_0*foreground: #000000 (black)

Uimx3_0*TopShadowColor: #ffffff (white)

Uimx3_0*XmText.background: #b3b3b3 (gray70)

Uimx3_0*XmTextField.background: #b3b3b3 (gray70)

Note: The resources above prefixed with Mwm are specific to the Motif Window 
Manager. If you are using a different window manager, consult your Systems 
Administrator for the equivalent settings. 
xii UIM/X Motif Developer’s Guide



Overview of Motif 
Widgets 1

Overview
Motif is a programming toolkit that provides the look and feel of programs that 
run on X Windows with graphical user interfaces. Motif was created by the 
Open Software Foundation (OSF), as a tool that would allow programs to run 
on computers from a wide range of manufacturers. Motif is based on the X 
Toolkit Intrinsics (Xt), the usual standard upon which X Windows applications 
are organized. Xt widgets and gadgets can be assembled to build the visible 
and behavioral attributes that make up a graphical application. Motif provides 
a set of widgets and gadgets that are based on Xt widgets and gadgets, but that 
follow the Motif Style Guide. 
UIM/X Motif Developer’s Guide 1



OVERVIEW OF MOTIF WIDGETS 
Working with the Ux Palette 1
Working with the Ux Palette 
UIM/X provides a comprehensive palette of objects for building user 
interfaces. The Ux Palette, shown in Figure 1-1, includes the full Motif widget 
set. For convenience, the Ux Palette also includes pre-built menus and dialogs, 
as well as a set of compound objects. The compound objects are 
pre-configured groups of Motif widgets that are also available in novice mode. 
(Novice mode is a simplified version of UIM/X intended for newcomers to 
Motif and UIM/X. For more information on novice mode, see the UIM/X 
Beginner’s Guide.) The Ux Palette provides several approaches to creating 
objects: 

• Drag and drop. 

• Click, point, and click. 

• Click, point, and drag to interactively create and size the object. Holding 
down the Shift key allows you to create arrays of objects.
2 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

Figure 1-1 Ux Palette
UIM/X Motif Developer’s Guide 3



OVERVIEW OF MOTIF WIDGETS 
The Primitives Category 1
The Primitives Category 
The thirteen primitive widgets provided by the Ux Palette are shown in the 
following table, along with their names, suggested uses, and how the end user 
activates them in your interface. Primitive widgets can be top-level widgets or 
the children of Shell, Manager, or Dialog widgets. 

 

Name Icon Suggested Uses

Arrow Button

Purpose: To provide directional scrolling.
Use the Arrow Button to display an arrow 
pointing up, down, left, or right and used 
for much same purpose as a pushbutton.
To activate an Arrow Button, click it.

Drawn Button

Purpose: A button widget with 
functionality similar to a pushbutton, but 
with an empty widget window. The 
application provides the graphics to be 
displayed in the widget. 
Use a Drawn Button as a pushbutton, with 
a graphic image instead of a label.
To activate a Drawn Button, click it. 

Horizontal 
ScrollBar

Purpose: Used to implement scrolling in 
scrolled windows or in other windows 
you build. 

Use a Horizontal ScrollBar to bring 
different areas of a large object into view. 

To activate a Horizontal ScrollBar, click one 
of its arrows, drag its indicator to the 
desired position, or click on the area 
between the indicator and the arrow. 

Label 

Purpose: Used to display either text or 
pixmaps.
Use a Label to provide an identifying name 
or icon to part of your interface.
A Label cannot be activated.
4 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

List 

Purpose: Provides a dynamically updated 
selectable list of items.
Use a List to display a collection of text 
strings, and to make selections from them.
To activate a List, click within it.

Push Button

Purpose: Used to activate an 
operation. 
Use a Push Button to activate each 
of the main functions of your 
interface. A Push Button can contain 
a text label or a pixmap.
To activate a Push Button, click it.

Scrolled List

Purpose: Provides a scrolled window with 
a List object work area. 
Use a Scrolled List to display a collection of 
text strings that is too large to fit into your 
interface.
To activate a Scrolled List, click on the text 
strings within it.

Scrolled Text

Purpose: Provides a scrolled window with 
a Text object work area. 
Use a Scrolled Text to display an editable 
text area that is too large to fit into your 
interface. 
To activate a Scrolled Text, click within it 
and type.

Separator

Purpose: Used to separate child widgets in 
a Manager widget. Various line styles are 
available.
Use a Separator as a visual design element 
to help organize your interface.
A Separator cannot be activated.

Name Icon Suggested Uses
UIM/X Motif Developer’s Guide 5



OVERVIEW OF MOTIF WIDGETS 
The Primitives Category 1
Text

Purpose: Functions as a single-line or 
multi-line text editor.
Use a Text object to accept typed input 
from the end user.
To active a Text object, click within it and 
type.

Text Field

Purpose: To provide a single-line text 
editor widget with higher performance 
than the Text widget. 

Use a Text Field to accept typed input from 
the end user. 

To activate a Text Field, click within it 
and type. 

Toggle Button

Purpose: Used to permit the user to toggle 
an option between on and off. 
Contains text or pixmap and an indicator 
box showing the current status of the 
widget. Used to display and change the 
state of a binary variable. 
To activate a Toggle Button, click it. 

Vertical Scroll 
Bar 

Purpose: Used to implement scrolling in 
scrolled windows or in other windows 
you build. 

Use a Vertical ScrollBar to bring different 
areas of a large object into view. 

To activate a Vertical ScrollBar, click one 
of its arrows, drag its indicator to the 
desired position, or click on the area 
between the indicator and the arrow. 

Name Icon Suggested Uses
6 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

The Managers Category 
The fourteen Manager objects provided by the Ux Palette are shown in the 
following table, along with their names, suggested uses, and how the end user 
activates them in your interface. Manager widgets control their children in a 
particular fashion, according to the type of Manager created. Manager widgets 
can be top-level widgets or the children of Shell or other Manager widgets. 

Name Icon Suggested Uses

Bulletin Board

Purpose: A general layout widget used 
as the foundation for building dialogs. It 
may arbitrarily have many children and 
imposes some restrictions on the 
movement of children.
Use a Bulletin Board to build dialogs and 
as a general container.
A Bulletin Board cannot be activated.

Command

Purpose: Provides a command history 
mechanism including a message area, an 
input region, a scrolling list of previous 
commands, and command buttons.

Use a Command to provide a command 
history to the end user. 

To activate a Command object, click on 
its scrollbars and type into its text field. 

DrawingArea 

Purpose: A general layout widget that 
may have many children and imposes no 
constraints on the layout of children. 
Use a Drawing Area to display graphics. 
The Drawing Area can be activated by its 
InputCallback.
UIM/X Motif Developer’s Guide 7



OVERVIEW OF MOTIF WIDGETS 
The Managers Category 1
File Selection Box

Purpose: Provides a file selection 
mechanism including a field for the 
directory mask, a scrolling list of file 
names, a scrolling list of directories, an 
editable input field for the selected file, 
and command buttons.
Use a File Selection Box to allow the end 
user to select files. 

To use a File Selection Box, click on the 
Directories and Files list boxes until you 
see your desired file, then double-click 
on the file name, or select the file and 
click OK. 

Form

Purpose: A layout widget that may have 
many children and allows you to specify 
constraints on the location of children.

Use a Form to ensure that a particular 
layout is proportionately maintained 
even when the user resizes the window. 

A Form cannot be activated. 

Frame

Purpose: Provides a border to enclose a 
single child, usually another manager. 

Use a Frame to provide an etched or 
three-dimensional border decoration for 
its work area child. A Frame is useful 
when you want your work area object to 
have the same border appearance as the 
Primitives it contains. 

A Frame cannot be activated.

Name Icon Suggested Uses
8 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

Horizontal Scale

Purpose: Allows the user to select a value 
from a range of values by positioning a 
slider inside an elongated rectangular 
region. 

Use a Horizontal Scale to indicate a 
value from within a range of values, 
and to allow the end user to modify 
that value. 

To activate a Horizontal Scale, click and 
hold its drag button, and drag it left or 
right. 

Main Window

Purpose: A layout widget that provides a 
standard layout for the primary window 
of an application and automatically 
manages its children. 

Use a Main Window when you want 
your primary window to include such 
items as a menu bar, a command 
window, a work area, and scroll bars. 
You act on the Main Window with the 
Main Window Editor. 

A Main Window cannot be activated. 

Message Box

Purpose: Provides a means to pass 
information to the user and includes a 
symbol, a message area, and command 
buttons. 
Use a Message Box to provide 
information to the end user.
To activate a Message Box, click on its 
pushbuttons. 

Paned Window

Purpose: A composite widget that lays 
out children in a vertical column. Control 
sashes are provided between children.
Use a Paned Window when you want the 
manager’s children to appear in a vertical 
column. 
To activate a Paned Window, press and 
hold the left mouse button on the control 
sash, and move the mouse up or down. 

Name Icon Suggested Uses
UIM/X Motif Developer’s Guide 9



OVERVIEW OF MOTIF WIDGETS 
The Managers Category 1
Row Column

Purpose: Provides a general purpose 
manager that lays out its children in 
rows and columns. 
Use the Row Column when you build a 
matrix of widgets, and as the underlying 
widget when you build your own 
menus. 
To specify a certain cell in a Row 
Column, select it using the mouse or 
arrow keys.

Scrolled Window

Purpose: A layout widget that may have 
one child and may be configured to 
provide scroll bars when the size of the 
child exceeds the size of the scrolled 
window. 
Use a Scrolled Window when the 
interface is expected to display a large 
data display. 

To activate a Scrolled Window, click 
on its scrollbars. 

Selection Box

Purpose: Provides a means for a user to 
make a selection from among a number 
of alternatives. It provides a message 
area, an editable field, a scrolling list of 
choices, and command buttons. 

Use a Selection Box to allow the user to 
select from a list of alternatives. 

To activate a Selection Box, click in its 
text field and type, and click its 
pushbuttons. 

Vertical Scale 

Purpose: Allows the user to select a value 
from a range of values by positioning a 
slider inside an elongated rectangular 
region. 
Use a Vertical Scale to indicate a value 
from within a range of values, and to 
allow the end user to modify that value. 
To activate a Vertical Scale, click and 
hold its drag button, and drag it up or 
down.

Name Icon Suggested Uses
10 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

The Menus Category 
The three Menu objects provided by the Ux Palette are shown in the following 
table, along with their names, suggested uses, and how the end user activates 
them in your interface. 

The Dialogs Category 
The twelve Dialog objects provided by the Ux Palette are shown in the 
following table, along with their names, suggested uses, and how the end user 
activates them in your interface. Dialog widgets are a collection of widgets 

Name Icon Suggested Uses

Menu Bar

Purpose: A horizontal bar across a 
window, just below the title bar. A 
menu bar displays a list of menus, 
such as File, Edit, and Help. Clicking 
on a menu displays a pulldown menu.
Use a Menu Bar to add a menu bar to 
your interface.
To activate a Menu Bar, click it to open 
one of its menus. 

Option Menu

Purpose: Permits the user to select one 
option from two or more mutually 
exclusive options. 
Use an option menu to present a 
group of choices from which a user 
can choose only one.
To activate an Option Menu, click on it 
with the left or right mouse button, 
then click on the menu item you wish 
to select.

Pop-up Menu 

Purpose: A context-sensitive menu 
that pops up when the user presses the 
right mouse button over a given area 
of the user interface. Typically used to 
provide shortcuts. 
Use a Pop-up Menu when you want a 
menu that appears only when the end 
user needs it.
To activate a Pop-up Menu, press and 
hold the right mouse button over the 
interface. 
UIM/X Motif Developer’s Guide 11



OVERVIEW OF MOTIF WIDGETS 
The Dialogs Category 1
used for file selection or to display warning messages. Dialog widgets are 
top-level widgets and can never be child widgets, although they can be 
instances of a component. 

Name Icon Suggested Uses

Bulletin Board

Purpose: An empty Bulletin Board 
widget in a Board Dialog Shell widget.
Use a Bulletin Board Dialog when you 
wish to build a custom dialog. 
A Bulletin Board Dialog cannot be 
activated.

Error

Purpose: To inform the user of 
run-time errors. 
Use an Error Dialog to indicate to the 
user such errors as typing a 
non-existent file name. 
To activate an Error Dialog, click its 
pushbuttons.

File Selection Box

Purpose: To enable an end user to 
select a file.
Use a File Selection Dialog to enable 
the end user to select a file to open, 
view, modify, save, load, or delete. 

To activate a File Selection Dialog, 
click on the Directories and Files list 
boxes until you see your desired file, 
then double-click on the file name, or 
select it and click the OK button.

Form

Purpose: A form widget inside a 
Dialog Shell widget. 
Use a Form Dialog when building a 
custom dialog that the user can resize.
A Form Dialog cannot be activated.
12 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

 Information

Purpose: A message box showing the 
Motif information symbol. 
Use an Information Dialog to display 
information to the user. 
To activate an Information Dialog, 
click on its pushbuttons.

Message Box

Purpose: A message box with no 
symbol.
Use a Message Box to display a 
message to the user.
To activate a Message Box Dialog, 
click on its pushbuttons. 

Prompt

 Purpose: A message box showing a 
prompt symbol and containing a text 
field. 

Use a Prompt Dialog to request input 
from the user. 

To activate a Prompt Dialog, type into 
its text field, then click on its 
pushbuttons. 

Question 

Purpose: A message box showing a 
question symbol. 
Use a Question Dialog to request a 
simple Yes or No answer from the 
user.
To activate a Question Dialog, click on 
its pushbuttons.

Selection Box

Purpose: A selection box. 

Use a Selection Box to permit the 
user to choose from a list of items. 

To activate a Selection Box Dialog, 
type into its text field, then click on its 
pushbuttons. 

Name Icon Suggested Uses
UIM/X Motif Developer’s Guide 13



OVERVIEW OF MOTIF WIDGETS 
 The Shells Category 1
 The Shells Category 
The Shell objects provided by the Ux Palette are shown in the following table, 
along with their names, suggested uses, and how the end user activates them in 
your interface. Shell widgets function as top-level interfaces and allow you to 
dictate features of the widget’s interaction with the window manager. Shell 
widgets can never be children. 

Template

Purpose: A template that you can use 
to construct your own dialogs. 
Use a template Dialog as a base 
container when building a custom 
dialog.
A Template Dialog cannot be 
activated.

Warning

Purpose: A message box showing a 
warning symbol. 
Use a Warning Dialog to display a 
warning message, to prevent the user 
from accidentally performing 
destructive actions.
To activate a Warning Dialog, click on 
its pushbuttons. 

Working

Purpose: A message box showing a 
working symbol. 
Use a Working Dialog to show the 
user that the application is processing.
To activate a Working Dialog, click on 
its pushbuttons.

Name Icon Suggested Uses

Name Icon Suggested Uses

Application Shell

Purpose: A shell meant to enclose an 
Shell application’s primary window. 
Use an Application Shell for an 
application’s primary top-level window.
An Application Shell cannot be activated.
14 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

Note:  The Non-Visual Shell is not an official Motif widget. See the UIM/X 
Tutorial Guide for an example using a Non-Visual Shell. 

Dialog Shell

Purpose: A shell meant to enclose Dialog 
widgets. 
Use a Dialog Shell for Dialog widgets. 
The Dialog Shell is a subclass of the 
Transient Shell.
A Dialog Shell cannot be activated. 

Override Shell

Purpose: A shell that is unaffected by 
the Shell window manager. 

Use an Override Shell for windows that 
you wish to bypass the window 
manager, like pop-up menus. 
An Override Shell cannot be activated. 

TopLevel Shell

Purpose: A shell meant to contain a 
top-level widget.
Use a Top-Level Shell for top-level 
widgets (other than the primary 
Application Window). A Top-Level Shell 
can be manipulated and iconified by the 
window manager. 
A TopLevel Shell cannot be activated. 

Transient Shell

Purpose: A shell you can use for Dialog 
objects. A Transient Shell can be 
manipulated by the window manager, 
but not separately iconified.
Use a Transient Shell to enclose a dialog 
object. 
A Transient Shell cannot be activated. 

Non-Visual Shell

Purpose: A shell you can use to enclose a 
non-Shell visual object.
Use a Non-Visual Shell to enclose a 
non-visual object. 
A Non-Visual Shell cannot be activated.

Name Icon Suggested Uses
UIM/X Motif Developer’s Guide 15



OVERVIEW OF MOTIF WIDGETS 
The Gadgets Category 1
The Gadgets Category 
Gadgets are somewhat less flexible than Primitive widgets (they have fewer 
resources associated with them) but they are more efficient. Gadgets must 
always be the children of Manager or Dialog widgets. They can never be 
parent widgets. 

Name Icon Suggested Uses

Arrow Button

Purpose: A gadget that displays an 
arrow pointing up, down, left, or right 
and used for much the same purpose 
as a pushbutton. 
Use an Arrow Button Gadget when 
you want a directional pushbutton. 
To activate an Arrow Button Gadget 
click it. 

Label

Purpose: A gadget able to display 
either text or pixmap. 
Use a Label Gadget to provide an 
identifying name or icon to part of 
your interface. 
A Label Gadget cannot be activated.

Push Button

Purpose: A pushbutton gadget 
containing a text label or pixmap. 
Use a Push Button Gadget to activate 
each of the main functions of your 
interface.
To activate a Push Button Gadget, click 
it.

Separator

Purpose: A gadget used to separate 
items in a display. Various line styles 
are available. 
Use a Separator Gadget as a visual 
design element to help organize your 
interface.
A Separator Gadget cannot be 
activated.
16 UIM/X Motif Developer’s Guide



OVERVIEW OF MOTIF WIDGETS 
1

The Compound Objects Category 
The Compound objects provided by the Ux Palette are shown in the following 
table, along with their names, suggested uses, and how the end user activates 
them in your interface. Compound objects consist of several Motif widgets 
combined into one object for your convenience. While these compound objects 
are not official Motif widgets, they still follow the OSF/Motif Style Guide. 

ToggleButton 

Purpose: Used to allow the user to 
toggle an option between on and off. 
Use a Toggle Button Gadget to display 
and change the state of a binary 
variable.
To activate a Toggle Button Gadget, 
click it.

Name Icon Suggested Uses

Name Icon Suggested Uses

Application Window 

Purpose: A compound object designed 
to get you started quickly. The 
window includes a built-in title bar, a 
menu bar with File and Help 
pull-down menus, and a work area 
where you can add more objects.
Use an Application Window as the 
main window in your project. 
To activate an Application Window, 
click it to open one of its menus. 

Secondary Window

Purpose: A window that is transient, 
and is associated with another, 
primary window.
Use a Secondary Window in the same 
way as you would use an Application 
Window. You cannot add a menu bar 
to a Secondary Window. 
A Secondary Window cannot be 
activated. 
UIM/X Motif Developer’s Guide 17



OVERVIEW OF MOTIF WIDGETS 
The Compound Objects Category 1
Group Box

Purpose: A compound object designed 
to create a visual grouping in your 
interface. A Group Box includes a 
label. 
Use a Group Box to give a name to a 
group of related objects.
A Group Box cannot be activated.

Radio Box 

Purpose: A compound object that lets 
the user select one option among 
several mutually-exclusive options. 
Use a radio Box to present a group of 
choices from which the user can 
choose only one.
To activate a Radio Box, click one of its 
radio buttons.

Name Icon Suggested Uses
18 UIM/X Motif Developer’s Guide



Programming in UIM/X 2
Overview

To help you specify Motif behavior, UIM/X comes with a small, easy-to-use 
convenience library of Ux functions. 

The Ux Convenience Library performs such complex tasks as converting 
resources, allocating colormap entries, automatically managing children of 
dialog shells, and handling special cases of geometry management. By using 
the Ux Convenience Library, you do not need to learn the complex Motif 
Function Library and programming style. 

As you develop your application with UIM/X, the Ux Convenience Library 
performs substantial error checking, notification, and recovery to help in the 
debugging process. 

However, when you link your finished application, you link to a 
high-performance version of the Ux Convenience Library without error 
checking. Source to the library is also available for porting. 

Full information about the Ux Convenience Library can be found in the UIM/X 
Reference Manual. 
UIM/X Motif Developer’s Guide 19



PROGRAMMING IN UIM/X 
Setting Property Values 2
Setting Property Values 
For each property of each widget class, the Ux Convenience Library provides a 
UxPut function to set the property value and a UxGet function to retrieve the 
property value. The names of these functions are obtained by prefixing UxPut 
or UxGet to the property’s name. Thus, for the Width property, there are two 
functions: UxPutWidth() and UxGetWidth(). 

The UxGet function takes one argument: the name of the widget. It returns the 
value of the property: 

int value;
value = UxGetY(form1);

The UxPut function takes two arguments: the name of the widget, and the 
new value for the property. For example, the following line sets the Height 
of the form1 widget to 120: 

UxPutHeight(form1, 120);

Each property has a specific data type, such as int, float, or string. For 
the data types of particular properties, refer to Appendix A, “Object Property 
Values.” 

The first argument is of type swidget. For each widget you create, UIM/X 
maintains a small structure. A swidget is a pointer to this structure. Swidgets 
are used to identify the widgets in the interface. 

The second argument to the UxPut function is the value for the property as it 
would appear in the Property Editor. 

Using C++ Bindings 
The Ux Convenience Library also includes a set of lightweight Motif wrapper 
classes. When UIM/X is in C++ mode, and when C++ project code is 
generated with the “Use Ux C++ Convenience Library bindings” option set, all 
Motif objects are declared as objects of these wrapper classes. Such objects 
can be implicitly converted to swidgets, and thus standard Ux Convenience 
Library functions such as the one below will still work: 

UxPutWidth(form1, 75);

However, the Motif wrapper classes define actual C++ member functions for 
setting and retrieving property values. This allows you to take advantage of 
C++ syntax and error checking while manipulating Motif widgets. 
20 UIM/X Motif Developer’s Guide



PROGRAMMING IN UIM/X 
UxPopupInterface(swidget iface, grabtype gtype) 2
For each property of each widget the corresponding wrapper class provides 
two member functions. A Set function sets the property value and a Get 
function retrieves the property value. The Set function takes one argument, the 
property value, and returns void. The Get function takes no arguments and 
returns the property value, as shown in the following example: 

int value ; 

value = form1.GetY(); 

form1.SetWidth(75); 

Note: The preceding example illustrates a difference in terminology. The 
standard Ux Convenience Library functions are named “UxPut...()” while the 
corresponding member functions of the C++ wrapper classes are named 
“Set...()”. 

Miscellaneous Ux Library Functions 
This section describes several Ux Convenience Library functions and features 
that are useful when creating an interface. 

UxPopupInterface(swidget iface, grabtype gtype) 
This function makes an interface visible on the screen once it has been created 
with its Interface Function. Sometimes interfaces pop-up other interfaces, 
creating a cascade of interfaces. The gtype argument allows you to specify 
how the user interacts within a cascade of interfaces. The grab type can be: 
no_grab, nonexclusive_grab, or exclusive_grab. 

• no_grab allows the user to interact with any window on the screen. 

• nonexclusive_grab allows the user to interact with any widget in the 
interface cascade, but not with widgets outside the cascading interfaces. 

• exclusive_grab limits the user to only the interface that you are 
popping up (for example, a popup menu). 

UxPopdownInterface(swidget iface) 
This takes a visible interface and removes it from the screen. It also removes 
the grab that the interface has, if any. 
UIM/X Motif Developer’s Guide 21



PROGRAMMING IN UIM/X 
Using the CreateCallback 2
UxDestroyInterface(swidget iface) 
This routine destroys an interface. In Test Mode, the Interpreter informs you 
that the function was called, however the interface is not destroyed. 

Map and Unmap Functions 
These functions make a widget disappear or reappear. 

Widget Functions 
These functions can be used to convert between various representations of a 
widget: the X widget pointer, the UIM/X swidget pointer, and the widget name 
(a character string). 

Full information about the Ux Convenience Library can be found in the UIM/X 
Reference Manual. 

Using the CreateCallback 
UIM/X provides a CreateCallback for every widget. The CreateCallback is not 
a Motif callback (it is not even really a callback). It is a function inserted into 
the generated code. 

Function Use 

UxUnmap() Removes a widget from the screen. 

UxMap() Redisplays a widget on the screen. 

Function Use 

UxFindSwidget() 
Given the name of a widget, returns its swidget 
pointer. 

UxWidgetToSwidget()Given an X widget, returns its swidget pointer. 
UxGetWidget() Given a swidget, returns its X widget pointer.

UxGetName() Given a swidget, returns its widget name.
22 UIM/X Motif Developer’s Guide



PROGRAMMING IN UIM/X 
Widget Functions 2
The CreateCallback allows you to define a function called immediately after 
the widget is created, but before it is realized: 

static swidget _Uxbuild_drawingArea1()
{
/*

 * The Interface Function calls this function to

 * create the swidgets.
 */

drawingArea1 = UxCreateDrawingArea( 
"drawingArea1", UxParent );

/* … */

UxCreateWidget( drawingArea1 );

/* the CreateCallback */

createCB_drawingArea1( UxGetWidget( 
drawingArea1 ),(XtPointer) 
UxDrawingArea1Context, (XtPointer) NULL );

/* … */

pushButton1 = UxCreatePushButton

( "pushButton1", drawingArea1);

/* … */

UxCreateWidget( pushButton1 );

createCB_pushButton1( UxGetWidget( pushButton1 
),(XtPointer) "CreateCallback ClientData", 
(XtPointer) NULL );

/* … */

UxRealizeInterface( drawingArea1 );
}

Note that the CreateCallback of a parent should not reference its children, 
since they have not yet been created. 
UIM/X Motif Developer’s Guide 23



PROGRAMMING IN UIM/X 
Using UIM/X Global Variables 2
In UIM/X, the CreateCallback is called only if the Interface Function is 
explicitly called (for example, if the Interface Function is called from a 
callback, or evaluated in the Interpreter window). 

Using UIM/X Global Variables 
For certain X and X Toolkit functions, the following variables may be needed. 
These are defined globally by UIM/X and do not need to be declared before 
use: 

Using Xm, Xt, and X Calls 
Callbacks can include any Xm, Xt, or X function call—they are already linked 
into UIM/X. These calls typically take widgets or windows as arguments, but 
not swidgets. 

To obtain a pointer to the Motif widget of a swidget in a callback, simply call 
UxGetWidget(): 

To get the X window of a Motif widget in a callback, use XtWindow(): 

Global Variable Description 
Display *UxDisplay; The X Display. 
int UxScreen; The X screen. 
Widget UxTopLevel; The top-level widget returned by 

XtAppInitialize(). 

{ 

Widget w; 

w = UxGetWidget(mySwidgetName); 

/* — your Xm code — */ 

} 

{ 

Widget w; 

Window xw; 

w=UxGetWidget(mySwidgetName); 
xw=XtWindow(w); 

/* — your Xm and X code — */ 

} 
24 UIM/X Motif Developer’s Guide



PROGRAMMING IN UIM/X 
Writing Xt Code in UIM/X 2
Note: Xm function calls are much less tolerant of errors than Ux Convenience 
Library calls. In general, Ux Convenience Library calls have better 
error-checking. 

Generating Xt Code 
If you intend to generate Xt code, you have to write code that works both in 
UIM/X and in generated Xt code. What this means is that you have to write 
code that works with swidgets in UIM/X, but with widgets in the generated 
code. 

This does not mean extra work for you, though. UIM/X does all the work for 
you. The purpose of this section is to help you understand what UIM/X does to 
translate swidget code into widget code when you generate Xt code. 

Writing Xt Code in UIM/X 
No matter what kind of code you generate, UIM/X deals with swidgets, so the 
code you write in UIM/X has to operate on swidgets. You can write straight Xt 
code in a UIM/X editor, but you’ll have to call UxGetWidget() on each 
swidget you reference in your code: 

XmString text;

text = XmStringCreateLocalized( "Apply" )

XtVaSetValues( UxGetWidget( pushButton1 ),

XmNlabelString, text,

NULL );

XmStringFree( text );

In this example, UxGetWidget() returns the widget for the swidget 
pushButton1. Only when you generate Xt code does pushButton1 
become a widget. UIM/X handles this by redefining UxGetWidget() as a 
macro: 

#define UxGetWidget(sw) (sw)

So code that works in UIM/X, where everything is a swidget, still works in 
generated Xt code, where everything is a widget. 

Note that when you write callback and action code, you can still use the 
variable UxThisWidget to refer to the swidget. For example, if you were 
writing a callback for the swidget pushButton1, you could simply refer to 
UIM/X Motif Developer’s Guide 25



PROGRAMMING IN UIM/X 
Generating Xt Code 2
UxThisWidget instead of calling UxGetWidget() on pushButton1. 
In the generated Xt code, UxThisWidget is redefined as UxWidget, the 
actual widget passed into the callback: 

#define UxThisWidget UxWidget

Understanding the Generated Xt Code 
When you generate Xt code, UIM/X copies several files from 
uimx_directory/config into your local directory. Two of these files, 
UxXt.h and UxXt.c, provide the necessary support for Xt code generated 
by UIM/X. You can find out what Ux functions and symbols are available in 
Xt code by examining both these files. 

Each interface header file includes UxXt.h (instead of UxLib.h, the 
standard header for the Ux Convenience Library). You can think of UxXt.h 
as an Xt version of UxLib.h. UxXt.h makes the swidget-oriented code you 
write in UIM/X compatible with the widget-only generated Xt code. 

For example, UxXt.h redefines swidget, UxThisWidget, and 
UxGetWidget(): 

#define swidget Widget

#define UxThisWidget (UxWidget)

#define UxGetWidget(sw) (sw)

The file UxXt.c redefines a number of Ux functions so that they no longer 
depend on the Ux Convenience Library. Many of these functions, such as 
UxPutContext() and UxGetContext(), are part of the framework of 
the generated code, not part of the code you write. 

For your convenience, UxXt.c defines Xt versions of a number of Ux 
functions, such as UxPopupInterface(), UxPopdownInterface(), 
and UxDestroyInterface(). 

When you generate C code, UIM/X also copies 
uimx_directory/config/UxMethods.c into your local directory. This file 
provides C-language support for interface methods. 

When you generate C++ code, UIM/X copies 
uimx_directory/config/UxInterf.cc into your local directory. This file 
provides the implementation of the base C++ class for all interface classes 
generated by UIM/X. (This base class is defined in UxXt.h.) 
26 UIM/X Motif Developer’s Guide



PROGRAMMING IN UIM/X 
Setting Properties 2
Setting Properties 
When you generate Xt code, you cannot use the UxPutProperty() and 
UxGetProperty() functions provided by the Ux Convenience Library. 
However, Xt versions of many of the UxGet and UxPut functions are 
provided in the directory uimx_directory/contrib/XtCodePuts. See the 
README in that directory for more information. 

The reference page for UxGetProperty() lists the properties which have Xt 
versions of the UxGet and UxPut functions. See the UIM/X Reference 
Manual. 
UIM/X Motif Developer’s Guide 27



PROGRAMMING IN UIM/X 
Generating Xt Code 2
28 UIM/X Motif Developer’s Guide



Using the Motif 
Components 3

Overview
The Ux Palette includes a set of objects for Motif development. Motif objects 
are abstractions of common user interface objects, such as dialogs and option 
buttons. 

This chapter describes some of the advanced Motif objects, the Main Window, 
the List, and the Radio Box. It discusses some of the issues involved in 
building menus. It explains how to use convenience dialogs, and how to 
establish a default button. Finally, it describes some of the techniques you use 
to communicate with the window manager. 
UIM/X Motif Developer’s Guide 29



USING THE MOTIF COMPONENTS
Building Main Windows 3
Building Main Windows 
Most applications have a main window with a pulldown menu and a work area. 
The OSF/Motif Toolkit provides a small set of convenience functions for 
creating and working with main windows. Within UIM/X, you need not worry 
about these functions because the Main Window Editor provides the means to 
develop main windows. 

Figure 3-1 Main Window Editor
30 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Opening the Main Window Editor 3
The purpose of the Main Window Editor is similar to that of the Motif function 
XmMainWindowSetAreas(). It identifies the objects that become key 
parts of the main window. You use toggle buttons and option menus to choose 
the elements that you want added to the main window. 

Opening the Main Window Editor 
There are several ways to open the Main Window Editor: 

1. Choose Create⇒Managers⇒Main Window from the Project Window. 
The Main Window Editor appears automatically. 

Alternatively, you can open the Main Window Editor for a Main Window that 
already exists: 

1. Create a Main Window from the Palette. 

2. Double-click on the Main Window object. 
OR

3. Choose Selected Objects⇒Tools Main⇒Window Editor. 
OR 

4. Choose Tools⇒Main Window Editor from the Project Window. The Main 
Window Editor appears. 

Working with a Main Window 
1. Create a Main Window object and open the Main Window Editor. 

2. Select the elements to make up the main window by clicking on the appro-
priate toggle buttons with the Select mouse button. Until you have created 
a menu bar and pulldown menus using the Menu Editor, the MenuBar tog-
gle button is insensitive. 

3. Having made your selections, click OK to apply them and close the Main 
Window Editor. Click Apply if you want to apply the changes without 
closing the Main Window Editor. Click Cancel to close the Main Window 
Editor and cancel your selections. 

Modifying an Existing Main Window 
To modify an existing Main Window, you must display the Main Window 
Editor. 

Modifications are made in much the same way as the main window is created: 
by selecting toggle buttons, selecting a work area object, scroll bars, or a 
message window object, adding a menu bar and pulldown menus, and so on. 
Note that modifications to the menu bar are made through the Menu Editor. 
The Main Window Editor can only delete a menu bar. 
UIM/X Motif Developer’s Guide 31



USING THE MOTIF COMPONENTS
Building Main Windows 3
Changes to a main window usually involve the deletion of the objects 
originally included in the Main Window object. For example, you might 
change the object originally selected as a work area, choosing a different one 
and thereby destroying its predecessor. 

Alternatively, you might choose to delete a now unwanted work area object by 
specifying None. Again, the predecessor would be destroyed. 

When you click OK or Apply to apply any changes made to an existing main 
window, a dialog box prompts you to confirm the changes. The dialog box 
allows you to confirm all changes that destroy existing objects in the Main 
Window. The dialog box is not displayed if you add a work area or message 
window object, displacing only the value None. 

When you confirm the changes by clicking OK in the dialog box, the main 
window is redrawn according to your changes. 

Accessing the Property Editor 
You can use the Property Editor to change the properties of the MainWindow 
object itself or any child object of the MainWindow. 

To Load a 
MainWindow into 
the Property Editor 

With most interfaces, all you have to do is double-click on an object and the 
Property Editor appears, loaded with that object. When you double-click on a 
Main Window or one of its children, the Main Window Editor appears instead. 
However, the Main Window Editor provides an alternate way to load a Main 
Window into the Property Editor: 

1. Open the Main Window Editor. 

2. Choose Edit⇒Properties from the Main Window Editor. 

The Property Editor is displayed, loaded with the Main Window object. 

Double-clicking on a Main Window’s child opens the Main Window Editor 
instead of the Property Editor. To load a Main Window’s child into the 
Property editor, open the Property Editor first, and then use any of the other 
loading methods. To learn the basics of how to use the Property Editor, see the 
UIM/X User’s Guide and the UIM/X Beginner’s Guide. 

Using the motifMain.prj Example 
If your application needs a main window, you might consider using the file 
uimx_directory/contrib/MotifMain/draw_start.prj as a starting 
point. This file contains an example main window interface with the following 
features: 
32 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Using the motifMain.prj Example 3
• A menu bar featuring the following: 

• All the pulldown menu commands described in the OSF/Motif 
Style Guide. 

• A View menu that demonstrates how to use radio buttons in 
menus. Radio buttons ensure only one selection can be made at a 
time. This pane achieves the radio button behavior by setting the 
RadioBehavior property of the menu pane to true. 

• An Option menu that demonstrates how to mix a set of radio 
buttons with a set of check boxes in the same menu pane. Here, 
the mutually exclusive behavior of the radio buttons is 
accomplished within the callbacks for the toggle buttons. 

• Keyboard mnemonics for all menu commands. These are 
displayed as underlined characters within each menu command. 

• A work area. If you want to add something to the work area, create a 
manager object and make it a child of the form. If you don’t want these 
existing managers, simply delete them and add your own work area 
object. 

• Two application-modal dialogs: 

• A file selection box that is displayed by choosing either 
File⇒Open or File⇒Save As from the menu bar. If you select a 
file while using this interface in Test mode, the file name is 
echoed to standard output using printf(). 

• An exit dialog that is displayed by choosing Exit from the File 
menu, or Close from the window menu (provided by the window 
manager). If you click OK, the exit() function is called. In 
Test mode, the Interpreter catches this function and displays a 
message. 

To demonstrate the modality of these dialogs, you must switch to 
Test Mode, then execute the main window’s Interface Function, 
popup_mainWS() in the Interpreter. Choose the appropriate 
commands from the menus. You cannot display both dialogs at 
once. 
UIM/X Motif Developer’s Guide 33



USING THE MOTIF COMPONENTS
Building Menus 3
Building Menus 
The Menu Editor, shown in Figure 3-2, allows you to build pulldown, option, 
and pop-up menus. Menus are composed of panes and items. A pane is a 
RowColumn object containing a list of items, and items are the selections 
offered. An item can either perform an operation or display a cascading menu 
(a subordinate pane). 

The basics of building menus with the Menu Editor are covered in the UIM/X 
Beginner’s Guide.

Figure 3-2 Menu Editor
34 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Pulldown Menus 3
Pulldown Menus 
Menu bars are composed of several pulldown menus arranged horizontally 
across a top-level or manager object. The pulldown menus in a menu bar 
typically offer global operations or operations on selected objects. Pulldown 
menus are accessed with the Select mouse button. 

Pulldown menus can only be the children of top-level or manager objects (for 
example, a Form object). 

The menu bar of the Project Window provides several examples of pulldown 
menus. The File, Create, Edit, View, Options, Mode, Tools, and Help 
selections each drop a submenu, each with its own set of operations. 

Option Menus 
Option menus are composed of a single principal pane containing a single list 
of one or more mutually exclusive items. Note that an Option menu cannot 
contain submenus. The list of items on an option menu is accessed by the 
Select mouse button. 

Option menus can only be the children of top-level or manager objects. 

The Category menu in the Property Editor is an example of an option menu. 
The Core, Specific, Constraints, All Resources, Behavior, Compound, 
Declaration, and All items in the menu determine which group of properties is 
displayed in the Property Editor. 

Pop-up Menus 
Pop-up menus also consist of a single principal pane, but differ from Option 
menus by allowing cascade menus. Unlike the other types of menus, a pop-up 
is only visible when the user presses the Menu mouse button over the object on 
which the pop-up was created. An object can only have one pop-up menu. 
Pressing the Menu mouse button on a child of the object also displays the 
pop-up menu (unless the child has its own pop-up menu). 

The Selected Interfaces menu in the Interfaces Area of the Project Window is 
an example of a pop-up menu. 

Menus and Panes 
Every menu, whatever its type, begins with a RowColumn object. Beyond that, 
pulldown, pop-up, and option menus differ slightly in their object hierarchy. 
UIM/X Motif Developer’s Guide 35



USING THE MOTIF COMPONENTS
Building Menus 3
In pulldown menus, the RowColumn object manages the horizontal 
arrangement of the panes in a menu bar. When adding a pane to a menu and 
applying the change, UIM/X automatically creates a RowColumn object to 
hold the pulldown menu pane. 

When you define a pane in the Menu Editor and apply your changes, UIM/X 
automatically creates a cascade button on the menu bar for the pane. Selecting 
this cascade button displays the pane. The panes and cascade buttons in the 
menu bar are children of the menu object. Menu items are children of the pane. 

When creating an Option menu, a pane is automatically added to manage the 
arrangement (vertical by default) of the items and display the current selection. 
This menu type can only contain one pane (that is, no cascade menus are 
allowed). The pane is the child of the menu object. The menu items are 
children of the pane. 

Note: The OSF/Motif menu shell, present in pulldown and pop-up menus, is 
transparent in UIM/X. Its resources cannot be accessed. 

The pop-up menus also begin with a single top pane (a RowColumn menu 
object). This RowColumn object serves as the menu’s principal pane and 
manages the arrangement (vertical by default) of the menu items, the children 
of that object. This menu can contain other panes, but they must be children of 
the single top pane. 

Menu Items 
The following object and gadget items can be added to a pane:  

The function of most items should be clear. However, cascade buttons deserve 
further discussion. A cascade button is used exclusively to display a 
subordinate pane, in other words, a cascade menu. For example, in the Project 
Window, the Create pane offers three cascade menus: Shells, Managers, and 
Dialogs. A cascade menu may also contain cascade buttons, thus creating a 
menu hierarchy. 

Object/Gadget Pulldown Pop-up Option
Push Button x x x
Cascade Button x x
Toggle Button x x
Label x x x
Separator x x x
36 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Reordering Panes and Items 3
When creating a cascade menu, a Label object is created as a child of the 
RowColumn if the pane’s LabelString field is not the null string ("") when 
applying changes to the menu. This object provides the title of the cascade 
menu when it is displayed. 

Note: A cascade button can only display one pane. No two cascade buttons 
may be used to display the same pane. 

Reordering Panes and Items 

To Reorder Panes 
(in Pulldown 
Menus Only) or 
Items 

1. Select the pane or item you want to reorder. 

2. Choose either Edit⇒Exchange Before or Edit ⇒Exchange After from the 
Menu Editor. 

Repeat the process until the pane or item is positioned where desired. 

Reparenting Menus and Panes 
Any menu object can be reparented through the Property Editor. 

To Reparent a 
Menu Object 
Using the Property 
Editor 

1. Load the menu object into the Property Editor. 

2. Select Declaration from the Property Editor’s Category option menu. 

3. In the Parent field, enter the name of the new parent object. 

To Reparent a 
Pane in a Menu 

1. Create a cascade button in another pane. 

2. Add the name of the pane to the Next Pane field. 

The object representing the pane in which the cascade button appears 
becomes the new parent. 

To reparent a subordinate pane in a pulldown menu to the menu bar, delete 
the cascade button that calls it.

In pop-up menus, the first pane cannot be reparented.

Note: Menu items cannot be reparented. Menu objects cannot be promoted to 
top-level status. 
UIM/X Motif Developer’s Guide 37



USING THE MOTIF COMPONENTS
Building Menus 3
Setting Menu Properties 
The Property Editor for a menu, pane, or item can be accessed using the Edit 
menu in the Menu Editor. However, the menu, pane, or item must exist: click 
on the Apply button first to create the menu, pane, or item. For example, to 
open the Property Editor for a pane, create the pane, then choose 
Edit⇒Properties⇒Pane. 

Setting Menu Connections 
You can open the Connection Editor from the Menu Editor, with one of your 
menu objects already loaded as either the Source or the Target object. For 
example, suppose you want to open the Connection Editor with a menu pane 
loaded as the Target object: 

1. In the Menu Editor’s Panes list, select a pane by clicking on it. 

2. Choose Edit⇒Connection To⇒Pane from the Menu Editor. 

The Connection Editor appears, with your selected menu pane loaded as 
the Target object. 

Choosing Edit⇒Connection From works in a similar fashion, except that the 
selected object will be loaded as the Source object. 

Creating a Help Menu Entry 
The OSF/Motif Style Guide specifies that the help menu selection of the main 
pulldown menu should appear at the far right of the menu bar, with the other 
menu selections grouped at the left of the menu bar. 

To achieve this behavior, simply select the menu pane you want as your help 
menu in the Menu Editor, and click on the Use As Help Pane toggle button. 

The menu bar should appear at the top of its window, and completely fill the 
width of the window. To achieve this behavior, a menu bar is typically created 
as a child of a Main Window or Form object. When you put a menu bar on a 
Form, you set the LeftAttachment and RightAttachment constraints 
to attach_form. 
38 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Adding Parameters to an Interface Function to Make it Flexible 3
Using Convenience Dialogs 
Three of the most common techniques for dialog boxes are: 

• Making a dialog more flexible by adding parameters to its Interface 
Function. 

• Customizing a dialog by working with the dialog’s children objects. 

• Reparenting a dialog to make it application modal. 

Adding Parameters to an Interface Function to Make it 
Flexible 
It is often efficient to use a single interface for several parts of an application. 
This is especially true for dialogs. For example, if your application opens and 
saves files, you could use the same File Selection box for both operations. The 
difference between the two operations could be reflected in the dialog’s title 
and selection string. 

The following example demonstrates this technique. The Interface Function 
for the message dialog is declared like this: 

swidget popup_messageDialog(char *messageString, 
char *title)

Within the dialog’s Property Editor, these two parameters are used as property 
values. For example, if you create an instance of this dialog using this call: 

popup_messageDialog("Hello Joe!", "This is a 
dialog");

the dialog is displayed with “Hello Joe!” as a message and “This is a dialog” as 
a title. 

Unmanaging Some Children of Dialogs 
Since children of a dialog are created automatically, you cannot access them 
using the Selected Objects popup menu. However, you can access these 
objects using functions provided by the Motif Toolkit. Since most dialogs are 
built using subclasses of XmMessageBox or XmSelectionBox, you can get the 
widget ID for most children of convenience dialogs using these calls: 

• XmMessageBoxGetChild() 

• XmSelectionBoxGetChild() 
UIM/X Motif Developer’s Guide 39



USING THE MOTIF COMPONENTS
Using Convenience Dialogs 3
Once you have a widget ID for the child you wish to manipulate, you can use 
standard Xm and Xt calls. For example, to remove the Help button from a file 
selection dialog, you could enter this call in the dialog’s Final Code section: 

XtUnmanageChild(XmSelectionBoxGetChild(UxGetWidge
t(rtrn),XmDIALOG_HELP_BUTTON));

Making Dialogs Application Modal 
During a session with your application, you may want to force the end-user to 
respond to a dialog before continuing. This is accomplished by setting the 
dialog style to application modal. Whenever an application modal dialog is 
displayed, input is rejected by every other window in that application. 

To make a dialog operate this way, you must do two things: 

• Change the dialog’s parent from UxParent to the name of the top-level 
shell for the application’s main window. 

• Change the dialog’s DialogStyle property to 
dialog_primary_application_modal. 

The draw_start.prj example interface demonstrates this technique with 
two dialogs. Both are children of mainWindowShell, which is the 
application shell parent of the main window. When either of these dialogs is 
displayed, input to the main window is refused. To see how this example 
works, follow these steps: 

1. Load uimx_directory/contrib/MotifMain/draw_start.prj 
into UIM/X. It may take a few moments to load this interface file. 

2. Switch to Test mode. 

3. Evaluate this function call in the Interpreter Work Area: 

popup_mainWS();

The three interface windows will disappear (as they are recreated) and 
then the main window is redisplayed. 

4. Choose File⇒Open in the sample main window, not in the Project Win-
dow. The File Selection box is displayed, ready for input. 

5. While the File Selection box is displayed, try using the File menu again in 
the sample main window. It should not work. In fact, if your terminal’s 
beeper is active, you should hear a beep each time you click the mouse in 
the main window. 

6. Click OK to close the File Selection box. 

7. Switch back to Design mode. 
40 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Using System Modal Dialogs 3
Using System Modal Dialogs 
You can also make a dialog system modal, which prevents all other windows 
on the display from receiving input while the dialog is displayed. However, 
this function is generally advised only for very special applications such as a 
window manager. 

If your application does have a special need to provide system modal dialogs, 
you should note that the dialog_system_modal value for the 
DialogStyle property is ignored in Test mode. This prevents you from 
locking up your computer with a partially-complete interface. To test system 
modal behavior you must generate and compile the source code for the 
interface. 

Using the List Object 
The List object is used extensively in many applications. It is particularly 
suited for managing textual lists of related information. 

Typically, items in a List represent data that your application is managing. 
Since the items within a List are usually based on run-time data, List objects 
are generally left empty during construction. It is up to your application’s 
callback procedures and other functions to add, delete, and manipulate items in 
a List. 

Using the List Convenience Functions 
To help manage List objects, the Motif Toolkit provides a number of 
convenience functions. Before using the List object, you should study the 
properties, callbacks, and convenience functions described in the OSF/Motif  
Programmer’s Guide and the OSF/Motif Programmer’s Reference Manual. 

Since most lists may potentially have too many items to display all at once, the 
Motif Toolkit provides a scrolled list, which is a list object inside a scrolled 
window. Unless you have special requirements, you should use scrolled lists 
for all the lists in your application. A special requirement might be scrolling 
two lists with a single scrollbar. In this case, it is up to your application to 
create and handle all of the scrolling. 
UIM/X Motif Developer’s Guide 41



USING THE MOTIF COMPONENTS
Using the List Object 3
The following are the Motif List functions: 

The Connection Editor provides the following List swidget methods: 

Function Description 

XmListAddItem() Adds an item to the List (possibly selected). 

XmListAddItemUnselecte
d() 

Adds an unselected item to the List. 

XmListDeleteItem() Deletes an item from the List. 

XmListDeletePos() 
Deletes an item from the List using position 
number. 

XmListDeselectItem() Deselects the specified item. 

XmListDeselectPos() Deselects the item at the specified position. 

XmListDeselectAllItems() Deselects all items in the List. 

XmListItemExists() Determines if the specified item is in the List. 

XmListSelectItem() Selects an item in the List. 

XmListSelectPos() Selects an item in the List at the specified position. 

XmListSetBottomItem() 
Puts the specified item at the bottom of the List 
window. 

XmListSetBottomPos() 
Puts the specified position at the bottom of the List 
window.

XmListSetHorizPos() Sets the position of the horizontal scrollbar (if any). 

XmListSetItem() 
Puts the specified item at the top of the List 
window. 

XmListSetPos() 
Puts the specified position at the top of the List 
window.

Method Description 

GetItemCount Retrieves the total quantity of items in the List. 

GetSelectedItemCount 
Retrieves the total quantity of selected items in the 
List.

GetItems Retrieves all items from the List. 

GetSelectedItems Retrieves the selected items from the List. 

SetItems Sets the items in a List. 

SelectItems Selects the specified set of items in the List. 

SelectAllItems Selects all items in the List.
42 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Using the List Convenience Functions 3
Note: For all swidgets that accept an Itemlist: Itemlist is a comma-separated 
list of items. Any item which contains a comma or a backslash must have that 
character preceded by a backslash. The same is true for all swidget methods 
that return a list of items. Note also that all backslashes must be protected from 
the C preprocessor. Thus, as an extreme example, to specify an item with the 
name "\", the argument to the swidget must be specified as "\\\\\\". 

The following example routine, AddThreeItems(), shows how to add an 
item to a List. The parameter list is presumed to be a list shadow widget 
created by UIM/X. The UxGetWidget() function is used to determine the 
widget ID (type Widget) expected by the XmListAddItem() function. 

Method Description 

DeselectItems Deselects the specified set of items in the List. 

DeselectAllItems Deselects all items in the List. 

AddItemsToBeginning Adds the specified items to the beginning of the List. 

AddItemsToEnd Adds the specified items to the end of the List. 

DeleteItems Deletes the specified set of items from the List. 

DeleteItemsAtBeginning 
Deletes the specified number of items from the 
beginning of the List. 

DeleteItemsAtEnd 
Deletes the specified number of items from the end 
of the List.

DeleteSelectedItems Deletes the selected items from the List. 

DeleteAllItems Deletes all items from the List. 

ReplaceItems 
Replaces a specified set of items with a second set of 
specified items. 

ReplaceSelectedItems 
Replaces the selected items with the specified set of 
items.

GoToItem Scrolls the List so that the specified item is visible. 

GoToBeginning Scrolls the List so that the first item is visible. 

GoToEnd Scrolls the List so that the last item is visible. 
UIM/X Motif Developer’s Guide 43



USING THE MOTIF COMPONENTS
Using the List Object 3
/* This function demonstrates how to add items 
/* to a list. The list is passed as a parameter 
/* to the function as a shadow widget.      

*/ 
*/ 
*/ 

void AddThreeItems(swidget list) { /* Declare a 
temporary variable for creating /* the XmString 
for each item.         XmString item; 

*/ 
*/ 

/* Add the string "First Item" to the list /* and 
then free the XmString.         

*/ 
*/ 

item = (XmString)XmStringCreateLtoR ("First 
Item", 

XmSTRING_DEFAULT_CHARSET);

XmListAddItem(UxGetWidget(list), item, 0);

XmStringFree(item);

/* Add the string "Second Item" to the list*/

/* and then free the XmString. */
item = (XmString)XmStringCreateLtoR 
("Second Item",XmSTRING_DEFAULT_CHARSET);

XmListAddItem(UxGetWidget(list), item, 0);

XmStringFree(item);

/* Add the string "Third Item" to the list */

/* and then free the XmString */
item = (XmString)XmStringCreateLtoR ("Third 
Item", XmSTRING_DEFAULT_CHARSET); 

XmListAddItem(UxGetWidget(list), item,0);
XmStringFree(item);

}

44 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Using Sample Data to Test a List 3
Using Sample Data to Test a List 
Since List items are normally based on run-time data, to test your List interface 
you should have some test data in place and a callback routine or other 
function that can read the data and create the List items. 

Try the FileToList.i example interface, demonstrating this technique: 

1. Create a working directory to hold the Lists contrib: 

mkdir Lists

2. Change to the working directory you just created: 

cd Lists

3. Copy the contents of the Lists contrib into your working directory: 

cp uimx_directory/contrib/Lists/* . 

4. Start UIM/X. If you already have UIM/X running, save your work and 
then restart UIM/X by choosing Reset from the File menu. 

5. Load the following sample interface file: FileToList.i 

6. Change to Test mode. 

7. Click on the Load List button in the interface. The application loads items 
into the List from a file named TestData stored in the same directory 
with the interface file. 

The Load List button has the following connections: 

ActivateCallback--->applicationShell1::LoadList(“
TestData”)

ActivateCallback--->scrolledList1::DeselectAllIte
ms()

To clear the List, click the Clear List button. This button has the following 
connection: 

ActivateCallback--->scrolledList1::DeleteAllItems
()

The Add To List Text Field allows you to type in entries separated by commas. 
When this Text Field is active, pressing Return adds the new entries to the 
bottom of the List. This Text Field has the following connections:   

ActivateCallback--->textField1::getText()

ActivateCallback--->scrolledList1::AddItemsToEnd(
item list)
UIM/X Motif Developer’s Guide 45



USING THE MOTIF COMPONENTS
Creating a Radio Box 3
After testing a List interface, choose Edit⇒Other⇒Recreate from the Project 
Window to return it to its initial conditions. To reset an entire interface, choose 
Selected Objects⇒Other⇒Recreate. The Recreate command causes an 
existing object and all of its children to be destroyed and then recreated using 
initial values specified in the Property Editor. 

Creating a Radio Box 
A radio box is a special configuration of Toggle Buttons within a RowColumn 
manager object. The RowColumn manager can take on the burden of enforcing 
radio behavior, which ensures that only one Toggle Button can be selected at a 
time. 

To create a radio box, you create a RowColumn manager object and set its 
RadioBehavior property to true. You then create a Toggle Button for 
each option in the radio box. Refer to the Motif documentation for more 
information about the RowColumn object. 

If you want one toggle to be selected by default when the radio box is first 
created, you should change its Set property to true. 

Adding Behavior to Each Toggle Button 
Within a radio box, the RowColumn manager takes care of the behavior that 
unselects one Toggle Button at the selection of another. Any additional 
behavior that should occur when a Toggle Button is selected should be added 
using the toggle’s ValueChangedCallback behavior property. 

A Toggle Button’s ValueChangedCallback is called whenever the state 
of the Toggle Button changes. Be careful: When you select a Toggle Button in 
a radio box, two ValueChangedCallback callbacks are called—first for 
the toggle being automatically unselected, then for the toggle that was selected.

Therefore, within a value changed callback, it is usually important to 
determine if the toggle is selected. This is accomplished using convenience 
functions provided by the Motif Toolkit. For example, in this 
ValueChangedCallback, the appropriate printf() statement is executed 
based on a test of the Toggle Button using 
XmToggleButtonGadgetGetState() like this:
46 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Determining Which Toggle Button Was Last Selected 3
This example assumes that option1 is a gadget. If the toggle used is not a 
gadget, use XmToggleButtonGetState() instead. 

If you create a radio box with only two Toggle Buttons, you should not have to 
add behavior to both buttons’ ValueChangedCallback. Rather, add the 
behavior to one Toggle Button and include a test like the one above that 
determines whether the toggle was selected or unselected. 

Determining Which Toggle Button Was Last Selected 
Every time a Toggle Button or Push Button within a RowColumn manager is 
used, the RowColumn manager updates its own MenuHistory property with 
the widget ID of that child button. Although this feature is primarily intended 
for use in option menus, you can use the MenuHistory property to 
determine which Toggle Button within a radio box was last selected. 

Establishing a Default Button 
It is often useful to have a button within an interface that is activated when the 
user presses Return. The Motif Toolkit supports this idea with the bulletin 
board DefaultButton property. To establish a default button, simply set 
the DefaultButton property to the widget ID of the desired Push Button 
object or gadget. 

{ 

/* This is the ValueChangedCallback for the */

/* option1 toggle button gadget. Within this */

/* callback, the option1 button can be referenced */ 

/* using the built-in local variable UxWidget */

/* which is type Widget.               */

if (XmToggleButtonGadgetGetState(UxWidget)) 

printf("option1 selected!\n"); 

else 

printf("option1 unselected!\n"); 

} 
UIM/X Motif Developer’s Guide 47



USING THE MOTIF COMPONENTS
Communicating with the Window Manager 3
Installing Special Accelerators 
If the parent of the bulletin board is not a dialog shell, you may have to install 
accelerators for some of its children so the default button will work. For 
example, an OK button is added as an accelerator to a Text object by calling 
this function: 

void SetupAccelerators(void)

{

Widget buttonWidget;

buttonWidget = UxGetWidget(ok_Button);

XtInstallAccelerators(UxGetWidget(text1),butto
nWidget);

}

Providing a Visual Cue to the Default Button 
By convention, default buttons are visually identified with an additional three 
dimensional frame around the button. The thickness of this frame is 
determined by the button’s ShowAsDefault property. 

Changing the ShowAsDefault property alters only the appearance of a 
button, not its behavior. 

Communicating with the Window Manager 
Your application’s communication with the window manager should be 
designed to comply with the Inter-Client Communications Conventions 
Manual (ICCCM). The conventions in this book outline the standard methods 
for X clients to communicate with one another. One special relationship is the 
one between applications like yours and the window manager. 

The general philosophy behind communications with a window manager is 
that the application cannot assume that any of its requests will be honored. 

Therefore, an application’s requests to the window manager are often referred 
to as hints. It is considered bad programming practice to base any critical part 
of your application’s appearance or behavior on window manager functions. 
48 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Requesting Window Manager Decoration 3
The techniques in this section demonstrate the mechanisms built into the Motif 
widget set for sending commonly-used hints to the Motif Window Manager 
(mwm). You will learn how to: 

• Request specific window manager decorations for an interface window. 

• Request specific commands to be included in the window menu. 

• Add a callback to detect when the window manager’s close command is 
invoked from the window menu. 

If you use these techniques in your applications, always include the 
MwmUtil.h header file (#include <X11/MwmUtil.h>). 

Requesting Window Manager Decoration 
The VendorShell widget property MwmDecorations is used to set 
window manager hints for particular window decorations. This property is 
supported by all of the shell objects in UIM/X, except the Override Shell 
object. 

The MwmDecorations property expects an integer value. This value is used 
by the window manager to determine which decorations it should add to the 
window. Seven integer values for various decorations are defined in 
MwmUtil.h:

These values are defined so that you can logically OR them together to get the 
decoration you want. For example, suppose your application has a dialog box 
that should never be resized, minimized, or maximized by the user. You could 
set the MwmDecorations property for the dialog’s shell to this value: 

MWM_DECOR_BORDER | MWM_DECOR_TITLE | 
MWM_DECOR_MENU

Use This Value: For: 

MWM_DECOR_ALL All window decorations. 

MWM_DECOR_BORDER A border without resize handles. 

MWM_DECOR_RESIZE A border with resize handles. 

MWM_DECOR_TITLE A title bar. 

MWM_DECOR_MENU A window menu button. 

MWM_DECOR_MINIMIZE A minimize button. 

MWM_DECOR_MAXIMIZE A maximize button. 
UIM/X Motif Developer’s Guide 49



USING THE MOTIF COMPONENTS
Communicating with the Window Manager 3
This specifies the decoration to be a border, a title bar, and a window menu 
button. Remember, these values are integers, so don’t add any quotation marks.

Requesting Window Manager Commands 
Your application can also request changes to the window menu for each 
interface window. It does so by setting the MwmFunctions property. The file 
MwmUtil.h defines the following integer values that you can use to request 
particular functions in the window menu. 

You logically OR them together just like the decoration values previously 
shown. 

Detecting the Window Menu Close Command 
If exiting your application might result in lost data, you should always confirm 
the user’s intention to exit. For example, you might want to display an exit 
dialog when the user chooses File⇒Exit from the Project Window. The 
application is not terminated unless the OK button in the exit dialog is pressed. 

However, an exit dialog alone is not sufficient. It does not protect the user from 
closing the window through the window manager. If the user chooses Close 
from the window menu, your application is immediately terminated unless you 
make these changes: 

• Set the DeleteResponse shell property on your application’s main 
window to do_nothing. 

• Add a protocol callback that detects when the Close command is activated 
by the user. 

Use This Value: For: 

MWM_FUNC_ALL All window menu commands. 

MWM_RUNC_RESIZE The Resize command. 

MWM_FUNC_MOVE The Move command. 

MWM_DECOR_MINIMIZE The minimize command. 

MWM_DECOR_MAXIMIZE The maximize command. 
MWM_FUNC_CLOSE The Close command.
50 UIM/X Motif Developer’s Guide



USING THE MOTIF COMPONENTS
Setting the Delete Response 3
Setting the Delete Response 
The VendorShell widget property DeleteResponse determines what 
action the shell takes when it receives a WM_DELETE_WINDOW message from 
the window manager. This message is sent to a window whenever you choose 
the Close command from the window menu. 

Setting the DeleteResponse to do_nothing ensures that the shell will 
not immediately destroy itself. The default value for this property is 
destroy. 

Adding a Protocol Callback 
You can detect when a particular message is sent to an application’s window 
by setting the protocol callback. To establish a callback that is invoked when 
the Close command is activated on your application’s main window, you must 
set up the callback to watch for a WM_DELETE_WINDOW message. 

In the draw_start.prj example, the main window establishes a protocol 
callback by calling an auxiliary function named 
CreateWindowManagerProtocols(). This function is called in the 
interface’s Final Code area as follows: 

/* Final Code */

CreateWindowManagerProtocols(UxGetWidget(rtrn));

The local variable rtrn contains the shadow widget structure for the main 
window’s application shell. The widget ID (type Widget) is passed to this 
function as a parameter, so the protocol callback can be established. Here is 
how the function is declared: 

/* Auxiliary Functions */

void CreateWindowManagerProtocols(Widget shell)

{

Atom xa_WM_DELETE_WINDOW;

/* Intern the "delete window" atom.*/

xa_WM_DELETE_WINDOW = XInternAtom 
(UxDisplay,"WM_DELETE_WINDOW",False);

/* Add the window manager protocol callback.*/

XmAddWMProtocolCallback (shell, 
xa_WM_DELETE_WINDOW,ExitCB, NULL); 

}

UIM/X Motif Developer’s Guide 51



USING THE MOTIF COMPONENTS
Communicating with the Window Manager 3
The protocol callback list for the WM_DELETE_WINDOW message now 
includes a call to ExitCB(). This function is also entered into the Auxiliary 
Functions area:

/* This function pops up the Exit dialog box.*/

void ExitCB(Widget w, XtPointer 
client_data,XtPointer call_data)

{ 

mainWS_Exit(UxWidgetToSwidget(w), &UxEnv);

}

The Exit command in the application’s File menu also calls the exit method to 
display the exit dialog. Therefore, once the protocol callback is established, the 
Close command in the window menu is functionally equivalent to the Exit 
command in the File menu. 
52 UIM/X Motif Developer’s Guide



Controlling Appearance 4
Overview

The concepts and techniques presented in this chapter show you how to control 
particular visual aspects of your application’s user interface. Techniques for 
controlling layout using manager objects and constraint properties are also 
included. 

As you work on your application’s user interface, you should make note of the 
visual characteristics that should be customized by the end-user. For these 
characteristics—such as fonts and colors—you should provide acceptable 
default values, but not interfere with the user’s ability to change them. 

Note: Several examples are provided with the UIM/X software. Most have 
their own subdirectories containing one or more files needed to explore a 
particular topic. If you just want to explore the on-line examples, look in the 
uimx_directory/contrib directory. 
UIM/X Motif Developer’s Guide 53



CONTROLLING APPEARANCE 
Polishing the Layout 4
Polishing the Layout 
The interactive layout features of UIM/X help you to quickly overcome some 
of the most difficult aspects of programming with objects. Here are a few tips 
to help you get the most out of these layout features: 

Avoiding Absolute Coordinates 
When you create a new object and place it on the screen, UIM/X uses the box 
you draw to set the object’s location and size properties (X, Y, Width, and 
Height). Initially these properties are set to Private, which means that the 
object may not be able to resize itself accordingly if it needs to. 

If you are using a manager object, such as a bulletin board, that does not 
impose any geometry management on its children, you may want to reset some 
or all of each object’s layout properties back to default. 

Planning Ahead for End-User Customization 
As you arrange the objects in an interface, you should keep in mind that many 
users may want to change some visual characteristics such as fonts. A change 
in font size could render your interface useless or impaired if it is unable to 
adjust to accommodate the font. You should also consider what happens to the 
layout of an interface if the user resizes it. For instance: 

• Should some elements of the interface remain a constant size while others 
automatically adjust to fit the remaining space? 

• Is there a minimum or a maximum useful size? 

• Should the interface maintain a certain width-to-height ratio? 

• Should the interface never be resized by the user? 

The answers to such questions may help you choose particular shell and 
manager objects. You may also discover some properties that help implement 
the desired behavior. 

Choosing the Right Manager Objects 
Choosing the right manager object often simplifies your layout work. Before 
you begin constructing an interface, you should understand which manager 
objects are available, how they control the layout of their children, and which 
one best meets your needs. Refer to the OSF/Motif Programmer’s Guide and 
OSF/Motif Programmer’s Reference Manual for more information on manager 
objects. 
54 UIM/X Motif Developer’s Guide



CONTROLLING APPEARANCE 
Choosing the Right Manager Objects 4
If the children of the manager object are created dynamically while your 
application is running, you should place the manager object inside a Scrolled 
Window object. The Scrolled Window is used when a portion of an interface 
may be too large to display it in its entirety. 

The Form object is perhaps the most useful object for controlling the layout of 
its children. The Form object uses constraint properties to create dependencies 
between objects and properties. Using forms, you can construct interfaces that 
respond as the user expects when they are resized. 

The RowColumn object is designed to manage its children in rows and 
columns. This function makes it particularly useful for arranging collections of 
similar or identical objects. For example, a file manager application could use 
a RowColumn object to order file and directory icons. 

The best way to manage resize behavior is to use the Constraint Editor. This 
chapter includes a discussion on how to use the Constraint Editor. 

Customizing Colors and Fonts 
Users, especially those familiar with the X Window System, expect to be able 
to customize the colors and fonts for each application they use. While building 
the interfaces for your application you should keep these recommendations in 
mind: 

• If you specify any color or font property in your application’s interface, be 
sure to make them Public. If you don’t, end-users will not be able to 
customize these properties. Later, when you generate the source code for 
your interfaces, Public resource files are created. You can combine the 
properties in these files to make an application defaults file for your 
application. 
UIM/X Motif Developer’s Guide 55



CONTROLLING APPEARANCE 
Customizing Colors and Fonts 4
• Carefully consider how the user’s choice of a different font might affect 
the layout of the interface you designed. For example, if the user chooses a 
larger font, does the interface automatically make itself large enough? 
Here are some tips for working with objects and interfaces whose size 
may be determined by the current font: 

• Be sure the RecomputeSize property for Label objects (and 
subclasses of Label) is set to true. When set to true, this 
property causes the object to resize itself whenever any of its 
visual characteristics, including fonts, change. 

• Choose manager objects that respond positively when their 
children request a new size. The Form object is popular for this 
type of layout because it allows you to create layout relationships 
between its children. If you want the form to grow and shrink as 
needed, you should attach its children to the right and bottom 
edges (or another pair of adjacent objects) of the form. 

• Object properties that control an object’s size and location, such 
as Width, Height, X, and Y, should be set to their default 
values. Use of the Bulletin Board object is generally discouraged 
because it relies on these properties to layout its children. As you 
create and place objects during construction, UIM/X sets these 
values to Private. Depending on how the object’s managers use 
these properties, you may have to specifically set them to 
Default. 

• Set the AllowShellResize property for each top-level 
interface to true. This allows the manager object within the 
shell to specify a new window size. 

If your application has special characteristics that depend on screen resolution 
or the availability of colors, you can query the X server to obtain a lot of 
valuable information. Using this information, your application could determine 
the best default sizes and colors for some of its interfaces. 

Here are some of the Xlib functions that you can use to get information from 
the server: 

BlackPixel() DefaultDepth()

DefaultRootWindow() DefaultVisual()

DisplayCells() DisplayWidth()

DisplayWidthMM() WhitePixel()

DisplayHeight() DisplayHeightMM()
56 UIM/X Motif Developer’s Guide



CONTROLLING APPEARANCE 
Choosing the Right Manager Objects 4
Using the Form Object 
The Form object uses constraint properties which allow you to create layout 
dependencies among its children. To see how constraint properties are used to 
layout an interface, consider a form and its four children as shown in Figure 
4-1: 

Figure 4-1 A Form With Children 

The four objects are arranged on the form according to these design 
specifications: 

• Object A should appear in the upper-left corner of the form and may 
specify 

• its own size at creation. Object A’s size should not change when the form 
is resized. 

• Object B should fill the form to the right of object A. Object B’s height is 
supposed to be 70% of the form’s height. 

• Object C should fill the rectangular space below object A and to the left of 
object B. 

• Object D fills the bottom 30% of the form. 

To construct this interface, you first create the form and its first child, object A. 
You attach A to the top and left edges of the form by setting two constraint 
properties: 

TopAttachment: "attach_form" 

LeftAttachment: "attach_form" 

A 
B 

C 

D 
UIM/X Motif Developer’s Guide 57



CONTROLLING APPEARANCE 
Using the Form Object 4
Next, you create object B. To meet the design specifications, you set 
constraints as follows: 

TopAttachment: "attach_form" 

LeftAttachment: "attach_widget" 

LeftWidget: widgetA 

RightAttachment: "attach_form" 

BottomAttachment: "attach_position" 

BottomPosition: 70 

These values constrain the width of object B to the width of the form minus the 
width of object A. The BottomPosition property is set to 70, which means 
that the bottom edge of object B should be 70% from the top of the form. Since 
the top of object B is attached to the form, object B’s height is always 70% of 
the form’s height. 

To attach object C so that it fills the rectangle below object A and to the left of 
object B, you set constraints as follows: 

TopAttachment: "attach_widget"

TopWidget: widgetA

LeftAttachment: "attach_form"

RightAttachment: "attach_opposite_widget"

RightWidget: widgetA

BottomAttachment: "attach_opposite_widget"

BottomWidget: widgetB

You use attach_opposite_widget when you want an edge of an object 
to be flush with another. Here, the right edge of object C is made flush with the 
right edge of object A. Similarly, its bottom edge is made flush with object B. 
58 UIM/X Motif Developer’s Guide



CONTROLLING APPEARANCE 
Guidelines for Form Constraints 4
Finally you set the constraints for object D as follows: 

TopAttachment: "attach_widget"

TopWidget: widgetB

LeftAttachment: "attach_form"

RightAttachment: "attach_form"

BottomAttachment: "attach_form"

Object D is attached to the sides and bottom of the form and to the bottom of 
object B. 

Note: When setting form constraints for using an object’s Property Editor, the 
default values provided by the form may be confusing. If all attachment 
properties are set to default, the default values for TopAttachment and 
LeftAttachment are attach_form, and RightAttachment and 
BottomAttachment default to attach_none. However, if you change 
the constraints for RightAttachment or BottomAttachment, the 
default values for TopAttachment and LeftAttachment become 
attach_none. 

Guidelines for Form Constraints 
Here are a few guidelines for using Form object constraints: 

• Avoid attaching several objects to the same position. If your design calls 
for a particular position, attach one object to that position and then attach 
others to that object. 

In the example above you could attach the bottom of C and the top of D to 
the 70% position. However, if your design specifications for this position 
change (say to 60%), you will have to update the position properties for B, 
C, and D. Using the method shown, you have to change the position con-
straint only on object B—objects C and D automatically adjust because 
they are attached to object B. 

• Use offsets to provide space between an object and whatever it is attached 
to. Offsets are specified using one or more of these constraint properties: 
TopOffset, LeftOffset, RightOffset, and BottomOffset. 

• Consider how the form should respond if its children determine their sizes 
dynamically at creation time. As mentioned earlier, if you are constructing 
an interface that should determine its own size based on the current font or 
other visual properties, you should not attach objects to the right and 
UIM/X Motif Developer’s Guide 59



CONTROLLING APPEARANCE 
Using the Constraint Editor 4
bottom edges of the form. For the example in this section, that means that 
the RightAttachment properties of objects B and D, and the 
BottomAttachment property of object D should be left as their default 
values (attach_none). 

Using the Constraint Editor 
The Constraint Editor is a valuable tool that allows you to attach constraints to 
the objects in your interface. The Constraint Editor is shown in Figure 4-2. 
With the Constraint Editor’s easy-to-use graphical interface, you can 
selectively apply constraints that make your interface and the objects within it 
maintain proportion when they undergo a resize event. 
60 UIM/X Motif Developer’s Guide



CONTROLLING APPEARANCE 
Opening the Constraint Editor 4
Figure 4-2 Constraint Editor

Opening the Constraint Editor 
To open the Constraint Editor: 

1. Select an object in your form. 
UIM/X Motif Developer’s Guide 61



CONTROLLING APPEARANCE 
Using the Constraint Editor 4
2. Choose Tools⇒Constraint Editor from the Project Window, or choose 
Selected Objects⇒Tools⇒Constraint Editor. 

The Constraint Editor appears, displaying the selected form. 

To load a form into a Constraint Editor that is already showing, choose 
File⇒Load from the Constraint Editor, or click on the Load icon in the 
Constraint Editor’s icon bar. 

To Use the Zoom Feature 
In order to better see your form in the Constraint Editor, you can zoom in, 
zoom out, or revert to the form’s actual size. 

To zoom in and magnify the size of your form, click on the Zoom In icon in the 
Constraint Editor’s icon bar, or choose View⇒Zoom In from the Constraint 
Editor. 

To zoom out and shrink the size of your form, click on the Zoom Out icon in 
the Constraint Editor’s icon bar, or choose View⇒Zoom Out from the 
Constraint Editor. 

To revert to the original size of your form, click on the Actual Size icon in the 
Constraint Editor’s icon bar, or choose View⇒Actual Size from the Constraint 
Editor. 

Specifying Constraints 
With the Constraint Editor, you can set constraints between children on a form 
or between a child and its parent. The first step in setting a constraint is to 
select a tool. The tool you choose determines the type of constraint that will be 
applied to the object. The Constraint Editor lets you choose from three tools, as 
described below. 

Bolt The Bolt constraint allows you to anchor one object to another so that an 
absolute distance is maintained between the objects during subsequent move 
and resize operations. 

To impose a Bolt constraint: 

1. Click on the Bolt icon in the Constraint Editor’s icon bar. 

OR 

1. Select Tools⇒Bolt from the Constraint Editor. 

2. Position the pointer on an edge of the selected object, then press and hold 
the Select mouse button. 
62 UIM/X Motif Developer’s Guide



CONTROLLING APPEARANCE 
Specifying Constraints 4
3. Drag the mouse pointer to a valid destination and release the mouse but-
ton. 

The applied constraint is depicted graphically by a bolt symbol. The caption of 
the right-hand text field in the Constraint Editor changes from ‘‘Offset’’ to 
‘‘Length.’’ The text field displays the length to be maintained between the two 
objects during move and resize operations. 

To change the value of Length, type a new value into the text field and click on 
Apply. The graphics in the form area are updated to reflect the new value. 

Note: The Bolt constraint maps to the attach_form and 
attach_widget properties. If you wish, you can load an object into the 
Property Editor, choose the Constraints category, and see how the Constraint 
properties change as you apply constraints with the Constraint Editor. 

Dimension The Dimension constraint allows you to anchor an object so that during 
subsequent move and resize operations, the position of the selected edge 
remains fixed at a proportionate distance from the left (y-axis) or bottom 
(x-axis) edge of the form. 

Applying a Dimension constraint to the upper or lower edge of an object 
imposes a y-axis constraint. Applying a Dimension constraint to the left or 
right edge of an object imposes an x-axis constraint. Once such a constraint is 
applied, you cannot move an object from its position on that axis. 

To impose a Dimension constraint: 

1. Click on the Dimension icon in the Constraint Editor’s icon bar. 

OR 

1. Select Tools⇒Dimension from the Constraint Editor. 

2. Position the pointer on an edge of the selected object, and press the Select 
mouse button. 

The applied constraint is depicted graphically by an arrow, linking the selected 
object to the parent. The Proportion text field displays the percentage of the 
form (in the appropriate dimension) that is taken up by the Dimension arrow. 
The Offset text field displays the number of pixels to offset the edge from its 
base position. 

To change the values of Proportion or Offset, type new values into their 
respective text fields and click Apply. The graphics in the form area are 
updated to reflect the new values. 
UIM/X Motif Developer’s Guide 63



CONTROLLING APPEARANCE 
Using the Constraint Editor 4
Note: The Dimension constraint maps to the attach_position property. 

PushPin The Pushpin constraint allows you to constrain an object so that it maintains its 
absolute position along the x-axis, the y-axis, or both during subsequent resize 
operations. 

To impose a Pushpin constraint: 

1. Click on the Pushpin icon in the Constraint Editor’s Icon Bar. 

OR 

1. Select Tools⇒Pushpin from the Constraint Editor. 

2. Position the pointer on an edge of the selected object, and press the Select 
mouse button. 

The applied constraint is depicted graphically by a pushpin symbol. 

The Location text field displays the location on the x-axis or y-axis at which 
the selected object is anchored. To change the Location value, type a new value 
into the text field and click Apply. The graphics in the form area are updated to 
reflect the new value. 

Note: The Pushpin constraint maps to the attach_self property. 

Editing Constraints 
The Constraint Editor allows you to easily select, deselect, and delete 
constraints, either one at a time or all at once. You can also recreate your form 
within the Constraint Editor. 

Selecting 
Constraints 

To select a single constraint, click on its symbol in the Constraint Editor. To 
select more than one constraint, hold down the Control key while clicking on 
their symbols. To select all of the constraints, choose Edit⇒Select All from the 
Constraint Editor, or choose Selected Objects⇒Select All. 

Deselecting 
Constraints 

To deselect constraints, choose Edit⇒Deselect All from the Constraint Editor, 
or choose Selected Objects⇒Deselect All in the Constraint Editor, or click 
somewhere other than the constraints’ symbols, either in the actual interface, in 
its representation in the Constraint Editor, or in the Interfaces area of the 
Project Window. 

Deleting 
Constraints 

You can delete all previously applied constraints simultaneously, or you can 
delete individually selected constraints. To delete a constraint: 
64 UIM/X Motif Developer’s Guide



CONTROLLING APPEARANCE 
Editing Constraints 4
1. Select the constraint or constraints you wish to delete. 

2. Choose Edit⇒Delete from the Constraint Editor. 

OR 

2. Choose Selected Objects⇒Delete in the Constraint Editor. 

To delete all constraints simultaneously: 

1. Choose Edit⇒Select All from the Constraint Editor. 

2. Choose Edit⇒Delete from the Constraint Editor. 

OR 

2. Choose Selected Objects⇒Delete. 

Recreating Your 
Form 

To recreate your form with the Constraint Editor, choose Edit⇒Recreate Form 
from the Constraint Editor, or choose Selected Objects⇒Recreate Form in the 
Constraint Editor. 

Handling Absolute 
Coordinates 

The Constraints that you set with the Constraint Editor may conflict with the 
absolute coordinates specified by the X, Y, Width, and Height properties. To 
avoid any confusion, load the objects in your interface into the Property Editor, 
and set the Source option menu to Default for each of these properties. 
UIM/X Motif Developer’s Guide 65



CONTROLLING APPEARANCE 
Using the Constraint Editor 4
66 UIM/X Motif Developer’s Guide



Specifying Application 
Window Behavior 5

Overview
You customize the look and feel of your application by specifying the behavior 
of each application window in your project. For example, a mouse pointer in a 
text editor window will most likely behave differently from one in a drawing 
application window. In a text editor window, pressing a mouse button and 
dragging the mouse pointer might select text. In a drawing application window, 
those operations might draw an object. In UIM/X, you regulate application 
window behavior by assigning translation tables. You use translation tables to 
map events and event sequences into window-specific actions. 

In UIM/X, working with translation tables is made easier with the support of a 
Translation Table Editor, an Action Table Editor, and an Event Editor. By 
maintaining separate action tables, you can assign the same actions to many 
widgets without typing the code over again. 

Note: This chapter focuses on the use of translation tables to add behavior to 
application windows. Translation tables can also be used to override a widget’s 
built-in behavior. For example, clicking on a pushbutton changes the graphical 
representation of the widget. Assigning a translation table to the pushbutton 
can alter that behavior as desired. 

The procedure for specifying behavior to application windows is as follows: 

• Create the translation table with events and actions as required. 

• Assign the translation table to the application window using the Property 
Editor. 
UIM/X Motif Developer’s Guide 67



SPECIFYING APPLICATION WINDOW BEHAVIOR
Defining the Events: Using the Event Editor 5
Action Tables and Events 

In the Event Editor, you can graphically specify the events that will trigger a 
response in the application window. UIM/X’s Event Editor lists common 
events, such as mouse button presses and releases. Nevertheless, you can 
choose from any X Toolkit event—not just those presented graphically. 

Similarly, in the Action Table Editor you define the response to the event. The 
action’s code can refer to the variable UxThisWidget, and to the standard 
four parameters of an action function. (These standard arguments are a widget, 
an event, an array of strings containing any arguments specified for the action 
in the translation table, and the number of arguments in the string.) 

The Translation Table Editor 

Connecting events and actions is done in a Translation Table Editor, after 
which you apply the translation table to an object. At this stage, you can 
choose from all three X Toolkit modes for modifying object behavior. The 
built-in object behavior can be augmented, overridden, or replaced by the new 
behavior you define. Once the translation table is installed on an object, the 
named action will be invoked each time the event sequence occurs in the 
object. 

This chapter gives details on each of the main steps in creating a translation. A 
special section explains the code generated by UIM/X from your action 
function and how to pass parameters to your action function. 

Defining the Events: Using the Event Editor 
The UIM/X Event Editor (shown in Figure 5-1) allows you to define events 
interactively, for use in the Translation Table Editor. When you choose events 
via the Event Editor, the correct code is automatically presented in the Event 
String field. You can then transfer the event to the Translation Table Editor by 
applying the change. 
68 UIM/X Motif Developer’s Guide



SPECIFYING APPLICATION WINDOW BEHAVIOR
Opening the Event Editor 5
Figure 5-1 Event Editor

Opening the Event Editor 

The Event Editor is opened via the Translation Table Editor. The Translation 
Table editor is opened via the Translation Table List. 

To Open the 
Translation Table 
List 

1. Select any object in your interface. 

2. Choose Tools⇒Translation Table List from the Project Window. 

OR 

2. Choose Selected Objects⇒Tools⇒Translation Table List. The Translation 
Table List appears. 

Alternatively, you can open the Translation Table List by selecting your 
interface. 

1. Select your interface by clicking on it, or by clicking on its icon in the 
Interfaces Area of the Project Window. 

2. Choose Tools⇒Translation Table List from the Project Window. 

OR 

2. Choose Selected Interfaces⇒Tools⇒Translation Table List. The 
Translation Table List appears, as shown in Figure 5-2. 
UIM/X Motif Developer’s Guide 69



SPECIFYING APPLICATION WINDOW BEHAVIOR
Defining the Events: Using the Event Editor 5
Figure 5-2 Translation Table List

To Open the 
Translation Table 
Editor for a New 
Translation Table 

1. Choose Edit⇒Add from the Translation Table List. 

OR 

1. Choose Selected Entry⇒Add.

The Translation Table Editor appears, with a new translation table loaded, as 
shown in Figure 5-3. 
70 UIM/X Motif Developer’s Guide



SPECIFYING APPLICATION WINDOW BEHAVIOR
Opening the Event Editor 5
Figure 5-3 Translation Table Editor

To Open the 
Translation Table 
Editor for an 
Existing Translation 
Table 

1. Double-click on the icon of the Translation Table you want to edit. 

OR 

1. In the Translation Table List, click on the icon of the Translation Table 
you want to edit. 

2. Choose Edit⇒Editor from the Translation Table List. 

OR 

2. Choose Selected Entry⇒Editor in the Translation Table List. The 
Translation Table Editor appears, containing your chosen translation table.

Note: A complete description of the Translation Table Editor is given in 
“Connecting Events and Actions: Translation Tables” on page 74. 

To Open the Event 
Editor 

1. Choose Edit⇒Event Editor in the Translation Table Editor. 

OR 

1. Choose Selected Entry⇒Event Editor in the Translation Table Editor. 

The Event Editor appears, loaded with your selected translation table. 
UIM/X Motif Developer’s Guide 71



SPECIFYING APPLICATION WINDOW BEHAVIOR
Responding to Events: Defining the Actions 5
Defining Events 

Once the Event Editor is displayed you are ready to define an event. 

To Define an Event 1. By clicking on its toggle button, select the Event String field on the Trans-
lation Table Editor where you want to define the event. 

Initially there will be only one Event String field, but you can add others. 
To do this, choose Edit⇒Add from the Translation Table Editor. An empty 
Event String and Action row appears. 

2. In the Event Editor, use the Select mouse button to choose the mouse but-
tons, modifiers, keys, and window events that make up the event. 

As you click on the events, the correct code is automatically displayed in 
the Event String field of the Event Editor. 

UIM/X supports all X Toolkit events, not just those listed in the table. If 
the event you want to match is not listed, type it directly into the Event 
String area. You can also type it directly into the Event String area of the 
Translation Table Editor. 

3. Apply the changes by clicking on OK or Apply in the Event Editor. The 
event will be displayed in the active Event String field of the Translation 
Table Editor. 

Note: It is not possible to assign the event to the translation table itself until 
you have provided a corresponding action name in the Translation Table 
Editor. 

Responding to Events: Defining the Actions 
The Action Table Editor (shown in Figure 5-4) is where you define the action 
part of the event-action sequence. Here you define the action names that can be 
referred to in both the Translation Table Editor (where events and actions are 
linked) and the action’s code. 
72 UIM/X Motif Developer’s Guide



SPECIFYING APPLICATION WINDOW BEHAVIOR
Opening the Action Table Editor 5
Figure 5-4 Action Table Editor

There is only one action table per project. The actions defined in it are 
available to all interfaces in the project. 

Note that actions that are part of an augmented UIM/X are already defined and 
do not need to be re-defined in the Action Table Editor. They can be referred to 
directly in the Translation Table Editor. (Refer to the X Toolkit Intrinsics 
Programming Manual for details on the format of action functions.) 

In addition to the above action type, there are four parameters declared 
implicitly by UIM/X for each action you define. You can refer to these in your 
action’s code without re-declaring them. In addition, one of the parameters can 
be used as an argument, to pass strings into your action. Details on this are 
given in “Advanced Usage: Passing Parameters to Your Actions” on page 79. 

Interface-specific variables cannot be referenced in the Action Table Editor. 
Actions should call a method or function using the action function arguments 
UxThisWidget, UxWidget, UxEvent, UxParams, and UxNumParams. 
(Note that UxNumParams is an int, not a pointer to an int. UIM/X 
dereferences the pointer passed in by Xt.) 

Opening the Action Table Editor 

To open the Action Table Editor choose Tools Action Table Editor from the 
Project Window. 
UIM/X Motif Developer’s Guide 73



SPECIFYING APPLICATION WINDOW BEHAVIOR
Connecting Events and Actions: Translation Tables 5
Working with Actions 

To Add an Action 1. Choose Edit⇒Add from the Action Table Editor.

OR

1. Choose Selected Entry⇒Add from the Action Table Editor.

A new action row appears in the Action Table Editor and becomes the 
selected action. 

To Select an 
Action 

Move the pointer to the toggle on the left of the action and press the Select 
mouse button. To unselect that action, select another action. 

To Duplicate an 
Action 

1. Select the action you want to duplicate. 

2. Choose Edit⇒Duplicate from the Action Table Editor. 

OR 

2. Choose Selected Entry⇒Duplicate from the Action Table Editor. 

To Delete an 
Action 

1. Select the action you want to delete. 

2. Choose Edit⇒Delete from the Action Table Editor. 

OR 

2. Choose Selected Entry⇒Delete from the Action Table Editor. 

To Create an 
Action 

1. Enter the Action Name. 

2. Enter the code. To access the Text Editor for code having more than one 
line, choose the Text Editor (…) button. 

3. Apply the changes to the action table by clicking Apply or OK in the 
Action Table Editor. 

Connecting Events and Actions: Translation 
Tables 

The actions defined in the Action Table Editor can be used with any object in 
your application. To connect actions with the events that trigger them, and then 
use these actions with specific objects, you use translation tables. 

Translation tables connect events to the actions defined in the Action Table 
Editor. Objects have a translation property that allow you to associate a 
translation table with a given object. 
74 UIM/X Motif Developer’s Guide



SPECIFYING APPLICATION WINDOW BEHAVIOR
Working with the Translation Table List 5
In UIM/X, each interface can have any number of translation tables. The 
Translation Table List (shown in Figure 5-5) manages the translation tables 
associated with an interface. The Translation Table List allows you to view, 
add, edit, and delete Translation Tables. 

Figure 5-5 Translation Table List

Working with the Translation Table List 

To learn how to open the Translation Table List, see “To Open the Translation 
Table List” on page 69. 

To Add a 
Translation Table 

1. Choose Edit⇒Add from the Translation Table List. 

OR 

1. Choose Selected Entry⇒Add from the Translation Table List. 

An icon representing the translation table appears on the Translation Table 
List. The editor for that translation table is automatically displayed. 

To Select a 
Translation Table 

1. Position the pointer on the corresponding icon in the Translation Table 
List. 

2. Click the Select mouse button. 

3. To select additional translation tables, hold down the Control key while 
clicking the Select mouse button on the icons. 

To Duplicate a 
Translation Table 

1. Select the translation table you want to duplicate by clicking on it. 

2. Choose Edit⇒Duplicate from the Translation Table List. 

OR 
UIM/X Motif Developer’s Guide 75



SPECIFYING APPLICATION WINDOW BEHAVIOR
Connecting Events and Actions: Translation Tables 5
2. Choose Selected Entry⇒Duplicate from the Translation Table List. 

To Delete a 
Translation Table 

1. Select the translation table you want to delete by clicking on it. 

2. Choose Edit⇒Delete from the Translation Table List. 

OR 

2.  Choose Selected Entry⇒Delete from the Translation Table List. 

Working with the Translation Table Editor 

To learn how to open the Translation Table Editor, see “To Open the 
Translation Table Editor for a new Translation Table” on page 70. 

To Add a 
Translation 

1. Choose Edit⇒Add from the Translation Table Editor. 

OR 

1. Choose Selected Entry⇒Add from the Translation Table Editor. 

A new translation row appears in the Translation Table Editor, and is 
automatically selected. 

To Select a 
Translation 

Move the pointer to the toggle on the left of the Event String and press the 
Select mouse button. To unselect that translation, select another Event String. 

To Duplicate a 
Translation 

1. Select the translation to be duplicated by clicking the Select mouse button 
on the toggle beside the Event String. 

2. Choose Edit⇒Duplicate from the Translation Table Editor. 

OR 

2. Choose Selected Entry⇒Duplicate from the Translation Table Editor. 

A copy of the selected translation is added to the Translation Table Editor. It is 
automatically selected. 

To Delete a 
Translation 

1. Select the translation to be deleted by clicking the Select mouse button on 
the toggle beside the Event String. 

2. Choose Edit⇒Delete from the Translation Table Editor. 

OR 

2. Choose Selected Entry⇒Delete from the Translation Table Editor. 

The translation is removed from the Translation Table Editor. 
76 UIM/X Motif Developer’s Guide



SPECIFYING APPLICATION WINDOW BEHAVIOR
Specifying the Table Policy 5
Specifying the Table Policy 

Objects respond to certain events automatically because they have translations 
built-in. For example, clicking on a pushbutton automatically changes the 
pushbutton’s shading. When you assign a new translation to an object, you 
must decide what policy it will have regarding an object’s already existing 
translations. 

The Translation Table Editor supports all three X Toolkit policies: override, 
augment, and replace. Override replaces the object’s translations with those 
you define in the Translation Table Editor. That is, when the event is one to 
which the object already responds, the new action replaces the old one. 
Override also adds new translations to the object when there is no conflict. 
Augment adds new translations only when there is no conflict with the object’s 
already existing translations. If the object already responds to an event, that 
response remains in force. Replace removes all built-in translations and 
replaces them with those you define in the Translation Table Editor. 

To change the table policy, use the Select mouse button to press the appropriate 
toggle in the Table Policy area of the Translation Table Editor. 

Events for Accelerator Tables 

When building events for Accelerator Tables, note that the X Toolkit doesn’t 
allow event abbreviations. Instead of <Btn1Down>, for example, you must 
type the long form of the event, <ButtonPress>Button1. 

For more details on the long forms of events, refer to X Toolkit programming 
manuals. 

Attaching the Translation Table to a Widget 
Before an object can make use of the events and actions you define in a 
Translation Table Editor, you must attach the table to it. Translation tables can 
be attached to an object in the Property Editor, or dynamically using 
UxPutTranslations(). 

Note that many objects in an interface can share the same translation table. 
Each object, however, must have the translation table attached to it. 
UIM/X Motif Developer’s Guide 77



SPECIFYING APPLICATION WINDOW BEHAVIOR
Attaching the Translation Table to a Widget 5
Attaching a Translation Table in the Property Editor 

To Attach a 
Translation Table 
Using the Property 
Editor 

1. Bring up the object’s Property Editor. 

2. Each object has a Core property called Translations. Display this property 
and type the translation table name in the field without quotation marks. 

3. Apply the change to the object. 

Note: If the Translations property is set to Public, augment and override modes 
in the Translation may not work properly. If translations have been specified in 
a resource file, the object does not install the default translations. This is due to 
a bug in Motif. Note also that Public resources may not be visible, depending 
on the setting of the Hide Source toggle in the View menu of the Property 
Editor.

Dynamically 
Attaching a 
Translation Table: 
UxPutTranslations 

It is often necessary to dynamically change the behavior of an object. For 
example, in a drawing program you may want to draw lines one moment, then 
choose a palette entry and draw rectangles. This would mean changing the 
application window’s translation table so the same mouse event—pressing and 
dragging—would produce a different result. 

You can assign a translation table to an object dynamically using 
UxPutTranslations(). For example, the callbacks for palette entries for 
lines and rectangles respectively might contain the following C code: 

{

/* Draw lines. */

UxPutTranslations(drawingWindow, 
line_trans_table);

}

{

/* Draw rectangles. */

UxPutTranslations(drawingWindow,rect_trans_tab
le);

}

Create the translation table as you normally would. 
78 UIM/X Motif Developer’s Guide



SPECIFYING APPLICATION WINDOW BEHAVIOR
The Action Function Generated by UIM/X 5
Note: When assigning translation tables dynamically using 
UxPutTranslations(), take care to ensure you get the behavior you 
expect. If your new table has its policy set to augment, your new translations 
may not get assigned. Ensure the new behavior is assigned to the object by 
overriding the previous translations. 

Advanced Usage: Passing Parameters to Your 
Actions 

When you call an action in the Translation Table Editor, UIM/X allows you to 
pass strings to the action function. To understand why parameters can be 
passed, it is first necessary to understand the action function generated by 
UIM/X from the code you type in. In addition to the automatically declared 
parameter used to pass in strings, there are three other parameters available for 
use in your action code. Finally, there is also the variable UxThisWidget, 
that your code can refer to without explicitly defining it. 

The Action Function Generated by UIM/X 

When you type action code between the curly braces in the Action Table 
Editor, UIM/X creates a function. For example, suppose your interface is 
called drawingArea1. UIM/X generates a function as follows: 

static void action_actionName(Widget UxWidget, 
XEvent *UxEvent, String *UxParams, int 
*p_UxNumParams) 

{

int UxNumParams=*p_UxNumParams;

_UxCdrawingArea1 *UxSaveCtx, *UxContext;

swidget UxThisWidget;

UxThisWidget = UxWidgetToSwidget(UxWidget);

UxSaveCtx = UxDrawingArea1Context;

UxDrawingArea1Context = UxContext =

(_UxCdrawingArea1 *) 
UxGetContext(UxThisWidget);

/* Code entered in the Action Table Editor */

{UxPutBackGround(UxThisWidget, "red");} /* 
UIM/X Motif Developer’s Guide 79



SPECIFYING APPLICATION WINDOW BEHAVIOR
Advanced Usage: Passing Parameters to Your Actions 5
action code*/

UxDrawingArea1Context = UxSaveCtx;

}

As you can see, each action has four arguments. These are UxWidget, 
UxEvent, UxParams, and p_UxNumParams. These are the four standard 
X Toolkit arguments for an action. UxWidget is the X widget for which the 
action was called. UxEvent is the event that triggers the action. UxParams 
is an array of strings. It is this array that holds the parameters you pass to the 
action. p_UxNumParams is a pointer to the number of elements in the array. 
UIM/X dereferences the pointer and stores the actual value in 
UxNumParams. 

You can use UxWidget, UxEvent, UxParams, and UxNumParams in the 
code you write in the Action Table Editor without re-declaring them. In 
addition, (as in callback functions) the variable UxThisWidget can be used. 
As shown in the sample, it identifies the swidget associated with UxWidget, 
for which the action was called. 

Adding Arguments to Action Calls 

To use parameters when making an action call, append the parameter list to the 
name of the action in the Translation Table Editor. The argument list must be a 
series of words separated by commas, typed between the parentheses that 
follow the action. UIM/X takes these arguments and passes them into the 
action in the third argument, UxParams, which is an a array of strings—like 
argv in a C main function. At the same time it updates UxNumParams to 
reflect the number of arguments passed in—analogous to argc. 

As the arguments are passed as strings, it is not possible to pass variables to an 
Action. However, you can pass numerical values, since a numerical value can 
be retrieved from a string. 

Example Consider an action called act1, whose body is declared in the Action Table 
Editor as follows: 
80 UIM/X Motif Developer’s Guide



SPECIFYING APPLICATION WINDOW BEHAVIOR
Adding Arguments to Action Calls 5
As noted above, neither UxNumParamsnor UxParamsare declared explicitly 
in the Action Table Editor. However, as UIM/X declares them automatically, 
you can use them in action code without re-declaring them. 

In the Translation Table Editor, this action could be called as follows: 

act1("Greetings, Leif!", "3.14")

When an event triggers act1, the following is printed to stdout (in Test 
mode, it is printed to the Project Window Messages Area): 

Parameter 0 = Greetings, Leif! 

Parameter 1 = 3.14

{ 

int i; 

for (i=0; i < UxNumParams; i++) 

{ 

printf("Parameter %d = %s\n", i, UxParams[i]); 

} 

} 
UIM/X Motif Developer’s Guide 81



SPECIFYING APPLICATION WINDOW BEHAVIOR
Advanced Usage: Passing Parameters to Your Actions 5
82 UIM/X Motif Developer’s Guide



Adding Interfaces to 
Existing Applications 6

Overview
Using UIM/X, you can create GUIs for already existing applications. For 
command-line applications, you can create an interface that communicates 
directly with the application: it is not necessary to modify the command-line 
application. For applications where some restructuring is possible, another 
technique can be used. This chapter discusses both these techniques. 
UIM/X Motif Developer’s Guide 83



ADDING INTERFACES TO EXISTING APPLICATIONS
Adding an Interface to a Command-Line Application 6
Adding an Interface to a Command-Line 
Application 

The technique of creating a GUI for a command-line driven application is 
known as subprocess control. 

Note: To use subprocess control, add #include "UxSubproc.h" to the 
Includes, Defines, Global Variables section of the Declarations Editor. 

Functions For Controlling Subprocesses 
UIM/X provides a number of functions for controlling the execution of the 
application, passing command-line strings to the application, and handling 
output from the application. 

Function Use 
UxCreateSubproc() Specifies an application to be executed as a 

subprocess of UIM/X. 

UxRunSubproc() Begins execution of the subprocess. If the 
subprocess is already running, it returns an error. 

UxExecSubproc() Begins execution of the subprocess. If the 
subprocess is already running, it terminates the 
running subprocess and restarts it. 

UxSetSubprocClosure() Specifies data that is to be passed to the output 
handler function for a given subprocess. It 
identifies where the output is sent. 

UxSetSubprocEcho() Turns echoing of input on or off for a subprocess. 

UxSetSubprocFunction() Specifies the function that handles output from the 
subprocess. 

UxSetSubprocExitCallback() Specifies a function to be called when the 
subprocess is terminated or stopped. 

UxSendSubproc() Sends a command string to the subprocess. 

UxExitSubproc() Terminates execution of a subprocess. 

UxDeleteSubproc() Terminates execution of a subprocess, and deletes 
all related data. 

UxGetSubprocPid() Determines the process id of a running subprocess. 
84 UIM/X Motif Developer’s Guide



ADDING INTERFACES TO EXISTING APPLICATIONS
Sending Output to a Text Object: 6
Command-Line Example: Database Application 
The following examples use an imaginary database application to demonstrate 
UIM/X subprocess features. Suppose that the imaginary application accesses a 
database of countries and their populations and that its executable is named 
population_db. Further, suppose that the application accepts commands 
from a terminal and prints information back to the terminal. It is, therefore, 
eligible for treatment using the UIM/X subprocess features. 

Suppose that the application accepts the following commands: 

There are two basic scenarios for handling output from the application: output 
can be sent directly to a Text object or to a text buffer for processing. 

Sending Output to a Text Object: 
In the first scenario, output is to be sent to a Text object. Consider the interface 
in Figure 6-1. 

Figure 6-1 Text Object Interface Sketch

Function Use 

UxAppendTo() Allows subprocesses to write to a Text object. 

UxTransferToBuffer() Copies a 2048 byte block of output from a 
subprocess to a buffer, returning a pointer to the 
buffer. 

Command Response 

pop name of country Returns the population of a country. 

quit Exits. 
UIM/X Motif Developer’s Guide 85



ADDING INTERFACES TO EXISTING APPLICATIONS
Command-Line Example: Database Application 6
The user presses the Start button to initialize the application and the Quit 
button to exit. To find the population of a country, the name of the country is 
entered in the text1 object and the Population button is pressed. The result 
appears in the text2 object. The following paragraphs describe how to 
implement this interface. 

Step 1: Initializing 
the Application 

1. The following code goes in the Include, Defines, Global Variables section 
of the Declaration Editor: 

#include "UxSubproc.h"
handle h;

2. To initialize the application, the following code would be entered in the 
ActivateCallback property for the Start Push Button: 

h = UxCreateSubproc("population_db", NULL, 
UxAppendTo);

if (ERROR == UxSetSubprocClosure 
(h,UxGetWidget(text2))) {printf("Cannot set 
subproc closure\n");return;

}

if (ERROR == UxRunSubproc(h, NULL)) {

printf("Cannot start the application\n");

return;

}

The variable h is used by UIM/X to identify the subprocess. The 
UxCreateSubproc() function call initializes UIM/X’s mechanism for handling 
the subprocess, but does not start the subprocess itself. The first argument is 
the name of the application. The second argument is the default arguments that 
are to be passed to the application. Because this application requires no 
arguments, the value of the second argument of UxCreateSubproc() is NULL. 
The third argument is a function pointer to a function which handles output 
from the subprocess. In this case, the output is to be sent directly to a Text 
object. The Ux Convenience Library function UxAppendTo() can be used for 
this purpose. 

The second function call, UxSetSubprocClosure(), identifies the Text 
object to which UxAppendTo() will send output from the subprocess. The 
first argument is the handle of the subprocess returned by 
UxCreateSubproc(), and the second argument is the X widget pointer of 
the Text object. 
86 UIM/X Motif Developer’s Guide



ADDING INTERFACES TO EXISTING APPLICATIONS
Sending Output to a Text Object: 6
The third function call, UxRunSubproc(), starts the subprocess. Its 
arguments are the subprocess handle and the arguments to pass to the 
subprocess. If the second argument is NULL, the default arguments specified in 
the call to UxCreateSubproc() are passed as arguments to the subprocess. 

The function UxExecSubproc() can be used in place of 
UxRunSubproc(). The difference is that if the subprocess is already 
running, UxRunSubproc() returns an error; UxExecSubproc() first 
terminates and then restarts the subprocess. 

Note: You can create multiple subprocesses, but if you don’t need to, it is 
recommended to create a single subprocess by calling 
UxCreateSubproc() then UxRunSubproc(). When the child 
subprocess terminates, it is enough to run the subprocess again using 
UxRunSubproc(). It is up to you to manage each spawned subprocess. To 
clean up the subprocess structure, use UxDeleteSubproc(). 

If you wish to have the subprocess started when the interface is first created, 
you would enter the code above in the Final Code area of the Declaration 
Editor for the interface. In this case, a Start button would not be needed. 

Step 2: 
Implementing the 
Population 
Command 

To implement the population command, you would enter the following code in 
the ActivateCallback property of the Population button: 

char s[128];

sprintf(s, "pop %s", UxGetText(text1));

UxSendSubproc(h, s);

The UxSendSubproc() function is used to send a command string to the 
running subprocess. In this case, the string sent is formed by the command 
pop followed by the name of the country, which is read from the Text object, 
text1. Output would be handled by UxAppendTo(), which would display 
the string in the Text object, text2. 

Final Step: 
Implementing the 
Quit Command 

To implement the quit command, you would enter the following code in the 
ActivateCallback property of the Quit button: 

UxDeleteSubproc(h);

For applications that might be terminated and restarted many times from the 
same interface, UxExitSubproc() should be called instead. In this case, 
only a call to UxRunSubproc() is needed to restart it. 
UIM/X Motif Developer’s Guide 87



ADDING INTERFACES TO EXISTING APPLICATIONS
Command-Line Example: Database Application 6
Sending Output to a Text Buffer 
In the second scenario, the output is sent to a text buffer for processing. 
Consider the interface shown in Figure 6-2. 

Figure 6-2 Text Buffer Interface Sketch

A Horizontal Scale object displays the population value graphically. It replaces 
the Text object that displayed the population in the previous example. This 
example also uses a method called _set_ScaleValue that sets the value of 
the Horizontal Scale object. Otherwise, the interfaces are identical. 

1. The following code goes in the Include, Defines, Global Variables section 
of the Declaration Editor: 

#include "UxSubproc.h"
handle h;

2. For this case, it is necessary to write a customized output handler to 
replace UxAppendTo(). This function would normally be entered into 
the Auxiliary Functions section of the Declarations Editor and would have 
the form: 

void LaurasOutputHandler(int fd, char *data)

/* fd is the file descriptor for output from the 
subprocess */

/* data is set by UxSetSubprocClosure()     */

{

int status;

char *s;

s = UxTransferToBuffer(fd, &status);

drawingArea2_set_ScaleValue((swidget) data, 
88 UIM/X Motif Developer’s Guide



ADDING INTERFACES TO EXISTING APPLICATIONS
Sending Output to a Text Buffer 6
atoi(s)/100, &UxEnv);

}

The function UxTransferToBuffer() copies a block of 2048 bytes of 
output from the subprocess to a buffer and returns a pointer to it. In this case, 
we would convert the result to integer and use the interface’s 
_set_ScaleValue method to set the position of the indicator in the 
Horizontal Scale object. The status and data parameters are described later. 

3. The code for the Start Push Button’s ActivateCallback property 
would be: 

handle h;

h = UxCreateSubproc("population_db", 
NULL,LaurasOutputHandler);

UxSetSubprocClosure(h,(char *)drawingArea2);

if (ERROR == UxRunSubproc(h, NULL))

{
printf("Cannot start the application\n");
return;

}

The third argument to UxCreateSubproc now specifies the custom output 
handler LaurasOutputHandler() rather than UxAppendTo(). In 
addition, the call to UxSetSubprocClosure() passes in the interface, 
enabling it to be used to call the _set_ScaleValue method, as seen in Step 2. 
This function is used to set the second argument, which is passed to 
LaurasOutputHandler() each time it is called. A typical application 
would be to distinguish among multiple processes running simultaneously, all 
using the same output handler. 

The UxSendSubproc() and UxDeleteSubproc() calls are handled the 
same way in the two scenarios. 

The status variable is non-zero (1) if there is more output data present. It is 
up to your output handler function to read from the buffer until status is 0. 

The function UxSetSubprocFunction() can be used to modify the 
output handler function for a running subprocess without having to terminate 
it. 
UIM/X Motif Developer’s Guide 89



ADDING INTERFACES TO EXISTING APPLICATIONS
Command-Line Example: Database Application 6
Determining When the Subprocess Exits or is Stopped 
1. The function UxSetSubprocExitCallback() is provided to handle 

cases when the subprocess exits or is stopped. The developer must write 
an exit handler, which takes two integer parameters: the process id of the 
exiting subprocess and a status parameter. This function is entered into the 
Auxiliary Functions section of the Declarations Editor. A typical exit call-
back is: 

void my_exit_callback(int pid, int status, handle 
sub_handle)

{

printf("subprocess %d terminated with exit code 
%d\n",pid, (status & 0xffff) >> 8);

}

The status parameter will contain the value set by the wait() system call. 
The example is rather primitive and does not handle cases when the subprocess 
is stopped or killed. 

2. To set the exit callback function, use UxSetSubprocExitCall-
back() after creating but before running the subprocess: 

handle h;

h = UxCreateSubproc("population_db", NULL, 
UxAppendTo);

if (ERROR == UxSetSubprocClosure(h, 
UxGetWidget(text2))) {printf("Cannot set 
subproc closure\n");return;

}

if (ERROR == UxSetSubprocExitCallback 

(h, my_exit_callback)) {

printf ("Cannot set subproc exit callback\n");

return;

}

if (ERROR == UxRunSubproc(h, NULL)) {

printf("Cannot start the 
application\n");return;

}

90 UIM/X Motif Developer’s Guide



ADDING INTERFACES TO EXISTING APPLICATIONS
Determining When the Subprocess Exits or is Stopped 6
Note: UxCreateSubproc() creates two queues on the system. These 
queues are automatically cleared when the subprocess terminates. If the 
process can’t run, or if it terminates abnormally, the queues may still be 
present. 

To print information about the currently active queues, run the command 
ipcs. To remove the queues after an abnormal termination, use the command 
ipcrm -q id, where id is the id of the queue (given by ipcs.) 

Intermediate Restructuring of an Existing 
Application 

When it is possible to modify the code, but the effort to restructure it for the 
asynchronous event-loop style of programming is too great, UIM/X provides 
an intermediate mechanism to add an iconic interface to an application. 

The typical situation is one where deep in existing code there is an I/O call to 
read input (for example, a color) and the process does not continue until input 
is received. UIM/X provides two function calls: UxWaitForNotify() and 
UxNotify() to handle such cases. Here, you would create an interface—a 
color editor, for example—and modify the Interface Function to return a color. 
In addition, you would place a call to UxWaitForNotify() after the 
UxPopupInterface() call in the Final Code section of the Declarations 
Editor and before the return statement. In the OK button callback of the 
color editor, put a call to UxNotify(). Finally, the original I/O call is 
replaced by a call to the Interface Function. 

When the Interface Function is called, the color editor pops up and UIM/X 
enters the UxWaitForNotify() call. UxWaitForNotify() processes 
events so the user can use the interface to choose a color. However it does not 
return until UxNotify() is called when the OK button is clicked. Control 
then returns to the application. The interface is still modal, but development 
cost to create a usable product is minimal. 
UIM/X Motif Developer’s Guide 91



ADDING INTERFACES TO EXISTING APPLICATIONS
Intermediate Restructuring of an Existing Application 6
92 UIM/X Motif Developer’s Guide



Generating and Compiling 
Project Code 7

Overview
When you use UIM/X objects to build a project, you can generate ANSI C, 
K&R C, or C++ code. For a list of supported compilers, refer to the UIM/X 
Installation Guide. 

This chapter discusses the files that are created when you generate code for 
your project, and explains how to use the Program Layout Editor. It shows you 
how to manage your files, and provides a breakdown of the structure of the 
generated code. 
UIM/X Motif Developer’s Guide 93



GENERATING AND COMPILING PROJECT CODE 
Generating Resource Files 7
Generating Resource Files 
When an interface contains a property where the Source is set to Public, 
UIM/X creates a resource file when generating the interface’s code file (The 
name of the file is that of the code file, with the extension .rf). This file can 
be edited by the end user, and is automatically merged with the resource 
database when the interface is created. 

By setting properties in an interface to Public, you allow end-users to 
customize the application. By modifying the resulting resource file, end-users 
can customize the appearance and behavior of the generated application. 

Generating Message Catalogs 
By default, message strings entered in the Property Editor appear directly in 
the generated code. For example, if you set the LabelString property of a 
Label, the text is hard-coded in a call to UxPutLabelString(): 

UxPutLabelString( label, "Label:" )

When you generate a message catalog for a project, the values of properties 
such as LabelString are put in the message catalog. UIM/X generates message 
catalog entries for all Private properties of type XmString, XmString*, 
String, or String*. 

Generating a message catalog separates message text from program code, and 
makes it easier to localize the application. When you use a message catalog, 
UIM/X replaces references to message text with the macro UxCATGETS(). 

UxPutLabelString( label,UxCATGETS( 
UXMC_ROWCOLUMN1, 1, UXDS_ROWCOLUMN1_1 )),

The macro UxCATGETS() retrieves the message from the project message 
catalog. (See “Retrieving Messages” on page 100 for more information on the 
UxCATGETS() macro.) The generated main program file takes care of 
opening and closing the project message catalog. 

The following table describes the different files used to build the project 
message catalog. 
94 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
Adding Messages to the Project Catalog 7
Adding Messages to the Project Catalog 
You can use the Program Layout Editor to add your own messages to the 
project message catalog. In the Ux (or Xt) Makefile, use the macro 
APPL_MSG_FILES to list the message files you want to add to the project 
message catalog: 

APPL_MSG_FILES = 

MSG_FILES = $(INTERFACES:$PJ_SOURCE_SUFFIX = 
.msg)$(APPL_MSG_FILES)

MSG_FILES_STRIP = $(INTERFACES:$PJ_SOURCE_SUFFIX 
=)$(APPL_MSG_FILES:.msg=)

MSG_CATALOG = $(EXECUTABLE).cat

MSG_HEADER = $(EXECUTABLE)_cat.h

MSG_CPP = $PJ_CATALOG_CPP

MSG_DEPEND = $PJ_CATALOG

File Description 
Project.mk The makefile generated by UIM/X. It contains the rules for 

building the project message catalog from the message text 
source files generated by UIM/X. 

Project.cat The message catalog for the project. 
Project_cat.h Defines the message set constants used as the first argument to 

UxCATGETS(). In the message text source file generated for an 
interface, a constant is used for the message set number: $set 
UXMC_INTERFACE The makefile generates a #define for 
each message set constant and puts it in the Project_cat.h file. 
The Project_cat.h file is included by the interface source and 
header files. 

Interface.msg 

The message text source file for an interface. Contains one 
message set. This file is generated by UIM/X. The makefile 
builds the project message catalog from the interface .msg 
files.

Interface_ds.h Defines constants for the default strings. This file is generated 
by UIM/X and is included by the interface source and header 
files. 
UIM/X Motif Developer’s Guide 95



GENERATING AND COMPILING PROJECT CODE 
Generating Message Catalogs 7
When you run the makefile, your message files will be merged into the project 
message catalog. 

Note: Your message files must follow the X/Open standard for message files. 
As well, they must use symbolic constants for message set numbers: 
$quote"
$set MyMSGSET
1 "Message: "
…
The makefile replaces the symbolic constant MyMSGSET with a unique integer 
when it builds the project message catalog. The makefile also generates a 
#define for MyMSGSET in the Project_cat.h file. This allows you to use 
the symbolic constant to retrieve messages. 

The makefile replaces the symbolic constant MyMSGSET with a unique integer 
when it builds the project message catalog. The makefile also generates a 
#define for MyMSGSET in the Project_cat.h file. This allows you to use 
the symbolic constant to retrieve messages. 

Retrieving Messages 
To retrieve messages from your own message files, you use the macro 
UxCATGETS(). In UIM/X, this macro always returns the default string: 

#define UxCATGETS( setId, msgId, ds ) (ds)

The first argument to UxCATGETS() is the message set number. This should 
be the message set constant you put in your message text source file (for 
example, MyMSGSET). The second argument is the message number, and the 
third argument is the default string. 

As long as you use the correct message set constant and the correct message 
number, UxCATGETS() will retrieve the proper message at run time: 

UxCATGETS( MyMSGSET, 1, "MyDefaultString" )

It is not generally a good idea to use UxCATGETS() to retrieve messages 
generated by UIM/X. As you edit interfaces and set properties, the message 
numbers may change each time you generate the interface message files. 

The run time versions of UxCATGETS() are defined in 
uimx_directory/include/UxLib.h (for code that uses the Ux 
Convenience Library) and uimx_directory/config/UxXt.h (for Xt code). 

At run time, UxCATGETS() retrieves the message from the catalog: 
96 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
Retrieving Messages 7
#ifdef UX_CATALOG

#define UxCATGETS( setId, msgId, ds ) \c

atgets( UxMsgCatalog, (setId), (msgId), (ds) )

#else

#define UxCATGETS( setId, msgId, ds ) (ds)

#endif /* UX_CATALOG */

The constant UX_CATALOG is defined by the generated makefile using the -D 
compiler option. This constant controls whether or not a generated application 
uses a project message catalog. 

UxMsgCatalog is the catalog descriptor for the project message catalog. It 
is set in the main program file when the project message catalog is opened: 

nl_catd UxMsgCatalog;

UxMsgCatalog = UxCATOPEN( UX_CATALOG_NAME, 0 );

The macro UxCATOPEN() expands to a call to catopen(). The constant 
UX_CATALOG_NAME is the name of the project catalog file. It is defined in 
the makefile by appending _cat.h to the name of the executable. 

In UIM/X, a project consists of one or more interfaces and, in some cases, one 
or more palettes. Interfaces may contain Action Tables and Translation Tables. 
In addition, when you generate project code, you get a main program file, a 
makefile, a project options file, a message catalog, and resource files for each 
interface. 

You use the Program Layout Editor to customize the main program file and the 
makefile. The Property Editor controls the contents of the generated message 
catalog and resource files. 

Using the Program Layout Editor 
The Program Layout Editor, shown in Figure 7-1, allows you to modify the 
main program file, the explicit event loop, and the makefile automatically 
generated when the code is written for a project. 
UIM/X Motif Developer’s Guide 97



GENERATING AND COMPILING PROJECT CODE 
Using the Program Layout Editor 7
Figure 7-1 The Program Layout Editor

To Use the Program Layout Editor 
1. Open the Program Layout Editor by choosing Tools⇒Program Layout 

Editor from the Project Window. 

2. Enter the application class name in the corresponding text field. The appli-
cation class name is recognized as the name of the application resource 
file in which you establish application-wide resource settings. UIM/X 
automatically uses the application class name specified here in the XtAp-
pInitialize() and UxAppInitialize() functions in the main 
program file. 

The default application class name is the name of the project. 

3. To change the start-up interface, select the interface icon on the Project 
Window representing the desired start-up interface, then choose File Load 
Startup Interface from the Program Layout Editor. 
98 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
To Use the Program Layout Editor 7
4. To change the Main Program File, click on the corresponding Text Editor 
(…) button to access the Text Editor. When finished adding code at the 
appropriate places, click on the Text Editor’s OK button. 

Note: Do not modify any sections preceded by $. UIM/X automatically 
replaces these sections with the appropriate code when the main program is 
generated. 

5. To change the loop type, choose Options⇒Loop⇒Explicit Loop or 
Options⇒Loop⇒Implicit Loop from the Program Layout Editor. If you 
choose Explicit Loop, the Ux Explicit Loop area becomes sensitive. 

6. To add code to the Explicit Loop, or to the Makefile, click on the appropri-
ated Text Editor (…) button. When finished, click on the Text Editor’s OK 
button. 

7. Click on the Apply button on the Program Layout Editor. 

You can now automatically generate code and the corresponding main program 
file and makefile for the project by choosing File⇒Generate Project Code 
from the Project Window. 

Customizing a Main Program File 
The code generated by UIM/X contains, for every interface, an interface 
function to create and possibly pop-up the interface. UIM/X generates the 
function name by prepending create_ or popup_ to the name of the 
top-level widget. The Interface Function can be either a create or a popup 
function. You specify one or the other through the Interface Function Type 
selection of 

the Options menu in the Project Window. Both create the interface—a popup 
function additionally pops up the interface. 

However, to make an executable from the generated C code, a main function is 
needed. This main function performs various initialization tasks and then calls 
the Interface Function of the application’s start-up interface. If the Interface 
Function is a create function, the main function includes a call to 
VisualInterface_Manage() to pop up the interface. Finally, the main 
function starts an event loop. 
UIM/X Motif Developer’s Guide 99



GENERATING AND COMPILING PROJECT CODE 
Customizing a Main Program File 7
Note: If your Interface Function is a popup function and you edit the final 
code and remove the call to VisualInterface_Manage(), the Interface 
Function is still defined as a popup function, and the final code is assumed to 
be responsible for popping up the interface. As a result, the interface will not 
appear. 

UIM/X automatically generates a main program file for your application. This 
main function has the following form: 

#ifdef XOPEN_CATALOG

#include <locale.h>

#endif

#include <UxLib.h>

#include <X11/Xlib.h>

#ifdef _NO_PROTO

int main(argc, argv)

int argc;

char *argv[];

#else

int main(int argc, char *argv[])

#endif

{

swidget mainIface;

swidget create_bulletinBoard1(swidget _V_UxParent);

swidget UxParent = NULL;

#ifdef XOPEN_CATALOG

setlocale(LC_ALL, "");

if (XSupportsLocale()) {

XtSetLanguageProc(NULL, (XtLanguageProc) NULL, 
NULL);

}

#endif

(void) UxInitCat();
100 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
To Use the Program Layout Editor 7
UxTopLevel = XtAppInitialize(&UxAppContext,

app_class_name, NULL, 0,

&argc, argv, NULL, NULL, 0);

UxAppInitialize(app_class_name, &argc, argv);

mainIface = create_bulletinBoard1(UxParent);

VisualInterface_Manage(mainIface, &UxEnv);

UxMainLoop();

/*NOTREACHED*/

return 0;

}

Here it is assumed that the Interface Function is a create function, and that it 
is called create_bulletinBoard1(). The call to UxInitCat() 
initializes the message catalog. The call to XtAppInitialize() 
initializes the X Toolkit and returns UxTopLevel, which is the Widget ID of 
the root widget. UxAppInitialize() performs application-specific 
initialization. Next, the interface is created by calling 
create_bulletinBoard1() and then popped up by 
VisualInterface_Manage(). Finally, UxMainLoop() enters the X 
event loop. It is similar to XtMainLoop(), but correctly handles the freeing 
of the context structure when an interface is deleted. 

Alternatively, the following code can be used instead of UxMainLoop(): 

for (;;)

{

XEvent event;

UxNextEvent(&event);

switch (event.type)

{

/*---------------------------------------------*/
/* Insert code to handle any events that you do */ 
/* not wish to be handled by the interface     */

/*---------------------------------------------*/

default:
UIM/X Motif Developer’s Guide 101



GENERATING AND COMPILING PROJECT CODE 
Adding New Input Sources to the Event Loop 7
UxDispatchEvent(&event);

break;

}
}

UxNextEvent() obtains the next event from the event queue. Depending on 
the type of the event, you can insert code to have the application handle the 
event, or pass it to one interface by calling UxDispatchEvent(). 

Adding New Input Sources to the Event Loop 
You can add new sources of input to the Xt event loop using the procedure 
XtAppAddInput(): 

XtAppAddInput (XtAppContext app_context, int 
source, XtPointer condition, 
XtInputCallbackProc proc, XtPointer 
client_data)

The parameter source is an open file descriptor that can be any source or 
sink of data, such as a regular file or a socket. The parameter condition 
specifies the condition for which an event should be generated: when source 
has pending input, pending output, or a pending exception. Whenever that 
condition arises, the callback proc is called. 

XtAppAddInput() may be called at anytime after 
UxAppInitialize() in your application program. 

In the procedure proc, non-blocking I/O should be used to read from or write 
to source. This ensures that the procedure reads the data available from 
source without blocking to wait for more, so the application can return quickly 
to the main processing loop. Otherwise, the processing of window system 
events will be impaired, making your application less responsive. 

XtAppAddInput() and the procedure type XtInputCallbackProc are 
documented in the X Toolkit Intrinsics Reference Manual. For discussion of 
blocking and non-blocking I/O and the meaning of the event conditions, the 
select system call is a good place to start. 

There is another way to input sources to your application. You can use an 
explicit event loop and add your own input checks to the loop. For example, 
the following code will work, but at a high price: 
102 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
To Use the Program Layout Editor 7
/* Bad example of multiple input handling */

for (;;)

{

if (XtPending())

{

UxNextEvent(&event);

UxDispatchEvent(&event);

}

else if (YourApplicationPending())

YourProcessInput();
}

This code is expensive because your application will cycle through this loop 
testing for input when it should be idle. At the application level of event 
processing, it is difficult to handle multiple input sources without creating such 
a busy wait situation. 

To avoid a busy wait, you can read one of the input sources (usually the X 
event stream) with a blocking I/O call, servicing the others between events on 
the first: 

/* Another bad example of multiple input 
handling*/

for (;;)
{

UxNextEvent(&event);

UxDispatchEvent(&event);

if (YourApplicationPending())

YourProcessInput();
}

This is also unsatisfactory because the application input sources are only 
processed while there is Xt event activity. 

The preferred way to add input sources to an application, without busy waiting 
and without any input stream blocking others, is to use XtAppAddInput(). 
UIM/X Motif Developer’s Guide 103



GENERATING AND COMPILING PROJECT CODE 
Managing Resource Files 7
Managing Resource Files 
When you generate code, UIM/X generates a resource file for each interface 
with Public properties. In the generated code, UIM/X adds a call to the Ux 
Convenience Library function UxLoadResources(). This function ensures 
that the resource file (of the same name as the interface) is merged with the 
database. 

When generating Xt code UIM/X also adds a call to UxLoadResources(). 
However, in Xt code, UxLoadResources() is a stub function in UxXt.c, 
and you must fill in the body. If you do not, the .rf file will not be read, and 
the Public resources are ignored. 

While UIM/X generates a separate resource file for each interface in the 
project, you may want to merge these resource files. By combining resource 
files you conveniently limit the number of places end-users have to go to 
modify widget properties. 

For example, you may want to merge the resource files together and store them 
in the app-defaults directory. Additionally giving the file the application 
class name ensures the resource values will be merged with the resource 
database at program initialization. 

If you store the file under a different name, or in a different directory, you will 
have to modify the search path. 

The X-Compliant Default Search Path 
When a generated application runs, it calls XtAppInitialize(), which 
causes the X resource manager to search a predefined path for resource 
definitions. When several definitions of the same resources are found, the later 
definitions override the earlier. The sources searched for resource definitions 
are the following (in the order presented): 

1. A file with the same name as the application, in the directory 
/usr/lib/X11/app-defaults.

2. Files in the directory given by the environment variable XAPPLRESDIR, 
or, if the variable is not set, in the end-user’s home directory, with the 
name class, where class is the class name of the application. 

3. Resources loaded into the resource database manager. If no resources have 
been loaded this way, the resource manager looks for a .Xdefaults file 
in the end-user’s home directory. 
104 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
Modifying the Search Path 7
4. A file specified by the shell environment variable XENVIRONMENT. 

If this variable is not defined, the resource manager looks for a file named 
.Xdefaults-hostname in the end-user’s home directory. Here, host-
name is the name of the host where the application is running. 

5. Any values specified on the command line using -xrm. 

6. Finally, values specified on the command-line (other than with the -xrm). 
These final values will override those specified by resource defaults, 
regardless of their source. 

Modifying the Search Path
If you move the resource files, you may need to modify the search path. A 
predefined variable UxResourcePath (of type pathlist) is an ordered 
list containing the search path used in locating resource files: 

1. /usr/lib/X11/app-defaults 

2. /usr/lib/X11/app-defaults/AppClassName 

3. /usr/lib/X11/app-defaults/AppClassName/screentype/ 

4. /usr/lib/X11/app-defaults/AppClassName/screentype/resolu-
tion 

5. If XAPPLRESDIR is set: 

• $XAPPLRESDIR/AppClassName 

• $XAPPLRESDIR/AppClassName/screentype 

• $XAPPLRESDIR/AppClassName/screentype/resolution 

Else: 

• $HOME/AppClassName 

• $HOME/AppClassName/screentype 

• $HOME/AppClassName/screentype/resolution 

For compatibility with previous versions of UIM/X, UxResourcePath also 
includes the following paths: 

• ./AppClassName/ 

• ./AppClassName/color/ 

• ./AppClassName/color/resolution 

UIM/X itself does not use UxResourcePath. You can use this path list in a 
generated application to load a resource file that is not in the X-compliant 
default search path: 
UIM/X Motif Developer’s Guide 105



GENERATING AND COMPILING PROJECT CODE 
Managing Resource Files 7
UxLoadResources( UxExpandResourceFilename( 
filename ) );

The call to UxExpandResourceFilename() uses UxResourcePath 
to expand a file name into a full path name. By default, 
UxLoadResources() only looks in the current directory for the file. 

The Ux Convenience Library provides a set of functions (see below) for 
working with path lists such as UxResourcePath. 

Ux Convenience Library and Resource Files 
The Ux Convenience Library contains a number of functions for dealing with 
resource files. These functions allow you to modify the search path, obtain the 
value of a resource, and load resource files into the resource database. 

The following tables provide brief descriptions of each function—for details, 
refer to the UIM/X Reference manual. 

Modifying the 
Search Path 

When you write code to modify the search path, use the Program Layout 
Editor to add your code to the main program. 

The path list UxResourcePath is initialized by UxAppInitialize(). 
If you want to append paths to the default list, add your code after the call to 
UxAppInitialize(). Adding paths to UxResourcePath before 
UxAppInitialize() is called overrides the default search paths. 

Function Description 

UxFileExists() Checks if a file exists in the current path. 

UxInitPath() Initializes a search path. 

UxAddPath() Adds a directory to the search path. 

UxResetPath() Replaces a search path. 

UxFreePath() Frees the memory related to a search path. 

UxGetPath()
Returns the search path. 

UxExpandFilename() 

Given a file name, finds the first occurrence of 
the file in the search path and returns the file 
name prefixed by its directory path.

UxExpandEnv() 
Expands all environment variables in a string. 
106 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
Ux Convenience Library and Resource Files 7
Obtaining 
Resource Values 

Use the following functions to obtain the default value of a resource: 

Setting Resource 
Values 

Use the following functions to merge or overwrite values into the resource 
database: 

Generating Code 
The final step in creating a user interface for an application is to generate the 
code. UIM/X allows you to generate code for the entire project or for selected 
interfaces. 

When generating code, UIM/X may also generate resource files and include 
files. This section describes the roles of these files and the circumstances under 
which they are produced. 

Function Description 

UxExpandResourceFilename() 

Given a file name, finds the first occurrence of 
the file in the UxResourcePath() search 
path and returns the file name prefixed by its 
directory path. 

Function Description

UxGetResource() Gets the value of a resource, given the program and 
resource name. Returns NULL if the resource is not 
found. 

UxGetDefault() Same as UxGetResource(), except you also supply a 
default value that is returned if the resource is not 
found. 

UxGetAppResource() Gets the value of a resource, given the resource name 
and returns NULL if the resource is not found. The 
program name is taken as the first argument to 
UxInitialize(). 

UxGetAppDefault() Same as UxGetAppResource(), except you also 
supply a default value that is returned if the resource 
is not found. 

Function Description

UxLoadResources() Merges a resource file into the database. Does not 
overwrite values of the same name. 

UxOverrideResources() Loads a resource file into the database. Overwrites 
values of the same name. 
UIM/X Motif Developer’s Guide 107



GENERATING AND COMPILING PROJECT CODE 
Generating Code 7
UIM/X uses a utility program, called uxcgen, to generate interface code from 
interface files. 

UIM/X also includes a contributed utility script that generates project code 
from a project file. You can find this utility in 
uimx_directory/contrib/PrjGen. 

Generating Code for a Project 
When you generate code for a project, UIM/X generates code for every 
interface in your project. If any widget’s properties have been set to Public, 
UIM/X automatically generates a resource file for the interface in which the 
widget resides. All Translation Table and Action Table code related to the 
project will also be generated. 

Code generation conforms to the options you specify through the Project 
Window’s Options menu. There, you choose K&R C, ANSI C, or C++, 
instruct UIM/X to also generate UIL code, or instruct UIM/X to make the Ux 
Convenience Library or the Ux Convenience Library C++ Bindings accessible. 

You also instruct UIM/X to generate Include files, message catalogs, and to 
support multiple copies of the same interface. You can also specify the suffixes 
for source files and header files. 

Code generation also conforms to any instructions specified through the 
Program Layout Editor. You can indicate the application class, the start-up 
interface, and whether the event loop is to be explicit or implicit. You can also 
specify application-specific modifications to be incorporated in the main 
program file or in the makefile when these are generated. 

To Generate Project Code 
1. Choose File⇒Generate Project Code As from the Project Window. 

The Generate Code Options dialog box appears, as shown in Figure 7-2. 
108 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
To Generate Project Code 7
Figure 7-2 Generate Code Options Dialog Box

2. Set the desired options. 

3. Click on OK to generate the code, or on Cancel to cancel code generation. 
UIM/X Motif Developer’s Guide 109



GENERATING AND COMPILING PROJECT CODE 
Generating Code for Selected Interfaces 7
Quick Code Generation for Projects 
If you have already generated code for your project, you might prefer to 
choose File⇒Generate Project Code from the Project Window. 

Generate Project Code performs the same functions but does not present the 
Generate Code Options dialog box if the code generation for the project has 
already taken place. All files are automatically written under their current 
names and all options currently in force are respected. 

However, if you select Generate Project Code when generating code for a 
project for the first time, the Generate Code Options dialog is presented. 

Another method of quick code generation is to use Run Mode. Simply click on 
the Run icon in the Project Window’s icon bar, or choose Mode Run from the 
Project Window. Your code is generated and the compiled program runs on 
your screen. 

Generating Code for Selected Interfaces 
UIM/X also allows you to generate code for specific interfaces. You can 
choose any interface icon or icons in the Project Window. Code is generated 
for those interfaces only. No main program file or makefile is generated. 

To Generate Code for Selected Interfaces in the 
Project 
1. In the Project Window, select the interface icons that represent the inter-

faces for which code is to be generated. 

2. Press and hold the Menu mouse button. The Selected Interfaces popup 
menu appears. 

3. Choose Selected Interfaces⇒Generate Code As. 

4. A File Selection box appears. Here, you can override the default filename 
offered for the interface file and indicate the directory in which the file is 
to be stored. 

If you do change the file name and neglect to specify a suffix, for exam-
ple: bulletinBoard, UIM/X automatically appends to the filename 
the suffix specified in the Code Generation Options. 

5. Click on OK. To cancel this function, click on Cancel. 

After you click OK or Cancel, UIM/X displays the File Selection box for 
the next interface you selected. 
110 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
Quick Code Generation for Selected Interfaces 7
Quick Code Generation for Selected Interfaces 
If you have already generated code for selected interfaces, you might prefer to 
choose Selected Interfaces⇒Generate Code. 

Generate Code performs the same function as Generate Code As, but does not 
present the File Selection box unless you are generating code for the first time 
for the selected interfaces. 

However, if you select Generate Code when you are generating code for the 
first time for any interface, the File Selection box is presented. 

The Structure of the Generated Code 
The generated file has a number of components, many of which you can define 
or modify via the Declaration Editor. The standard parts of a generated source 
file are listed below, in the order in which they are generated. 

• Header files/Includes 

• Global Variables 

• Context Structure 

• Translations 

• Auxiliary Code 

• Actions 

• Callbacks 

• Utility functions 

• Interface Function 

In a source file, the context structure enables UIM/X to determine the correct 
interface to act upon when a callback function or action function is called. 

The standard parts of a generated C++ source file are similar, except that there 
is no context structure, because interface specific variables become members 
of the class. 

Generating Header Files 
Setting the Include File toggle in the Code Generation Options dialog causes 
UIM/X to generate an include file for each interface in the project. A generated 
include file contains the definition of the interface’s context structure. It also 
UIM/X Motif Developer’s Guide 111



GENERATING AND COMPILING PROJECT CODE 
The Structure of the Generated Code 7
contains declarations of any method calls associated with the interface. When 
you generate an include file, the generated code file will #include it. 
Otherwise the code file contains an explicit definition of the context structure. 

Using Include Files to Query Properties 
You can use an include file to query an interface’s properties from outside the 
interface. Consider an interface called bulletinBoard1, containing a 
Toggle Button called toggleButton1. Any of the following approaches 
can be used to determine (from outside the interface), if the Toggle Button is 
set: 

• Defining a method for the Toggle Button’s interface. This approach is the 
most robust, as it will function when there are several copies of the 
interface. 

• Monitoring the state of the Toggle Button in the Auxiliary Code section of 
the interface. 

• Setting a global variable each time the button is toggled. 

• Accessing the Toggle Button directly. 

Each of these approaches is discussed below. 

Using Methods One approach uses methods. First, define a method on bulletinBoard1: 

int bulletinBoard1_toggleButton1IsSet(swidget 
UxThis, Environment *pEnv)

{

return strcmp(UxGetSet(toggleButton1), "true") == 
0;

}

When bulletinBoard1 is created, save the return value from the popup or 
create function: 

swidget save_bulletinBoard1;

save_bulletinBoard1 = popup_bulletinBoard1();

To query the state of toggleButton1, call the method: 

toggleButtonState =

bulletinBoard1_toggleButtonIsSet(save_bulletin
Board1,&UxEnv);
112 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
The Main Event Loop 7
Monitoring the 
State of the Toggle 
Button in Auxiliary 
Functions 

Note: Auxiliary functions cannot access data members in C++. 

Another approach is to put a function in the Auxiliary Functions section of the 
Declaration Editor for the interface. This function gets the state of the Toggle 
Button: 

int toggleButton1IsSet()

{

return (strcmp(UxGetSet( toggleButton1 ), 
"true") == 0);

}

Setting a Global 
Variable 

The third solution is to define a variable—toggleButton1_state, for 
example—and set it whenever the toggleButton1’s select or release 
callback is executed. For example, the ArmCallback might be: 

{ extern int toggleButton1_state; 
toggleButton1_state = 1; }

Accessing the 
Toggle Directly 

A fourth approach is to set toggleButton1’s Name property to Global in 
the Declaration properties of the Property Editor. You can then declare it as an 
external variable in other files, and query its state using UxGetSet(): 

extern swidget toggleButton1;

toggleButton1_state = 
(strcmp(UxGetSet(toggleButton1),"true") == 0);

Development Environment and Executable Code 
Differences 

When using a development tool such as UIM/X, it is inevitable that certain 
differences will exist between the development environment and compiled 
code. These differences are briefly discussed below. 

The Main Event Loop 
UIM/X does not use the same event loop as the executable code. UIM/X has to 
steal and process events in Design mode. In Test mode all events are passed to 
the widgets. 
UIM/X Motif Developer’s Guide 113



GENERATING AND COMPILING PROJECT CODE 
Development Environment and Executable Code Differences 7
Translations 
In Design mode, if a Translation Table is being edited and has been put in the 
Translations property of a widget, when the Translation Table is modified, the 
widget will be recreated so that it reflects the new Translation Table. This 
doesn’t happen in compiled code. 

Multiple Copies of an Interface 
Multiple copies of an interface are always supported in Test mode. In compiled 
code, you can choose whether or not to support multiple copies of an interface 
by setting the Context Support toggle in the Code Generation Options dialog. 

Error Checking 
During development, the Ux Convenience Library performs substantial error 
checking and recovery. The version compiled without DESIGN_TIME set 
does not and has much higher performance. Within the makefiles meant to 
generate an augmented version of UIM/X, DESIGN_TIME must be defined in 
order to compile and link your interfaces. 

UxDestroyInterface() and UxDestroySwidget() 
UxDestroyInterface() does not destroy interactively created 
interfaces during development—it unmaps them. UxDestroySwidget() 
pops up a confirmation dialog and does nothing. 

X Toolkit Grabs 
It is extremely dangerous to permit X Toolkit grabs during development. Most 
grabs such as UxPopupInterface(I, exclusive_grab) and 
dialog_system_modal are ignored. 

abort(), assert(), exec(), exit(), fork(), wait() 
These calls are trapped and a dialog appears. 

Public Resources 
At design time, properties set to Public are set using an XtVaSetValues() 
call rather than being merged into the resource database. 
114 UIM/X Motif Developer’s Guide



GENERATING AND COMPILING PROJECT CODE 
Differences Between Test Mode and Compiled Application 7
Problems with Your Compiled Application 
The following topics describe some problems that you may encounter after 
compiling an application interface that has been built with UIM/X. 

Differences Between Test Mode and Compiled 
Application 
The two most common reasons for differences between an interface’s behavior 
in Test mode and its behavior as a compiled application are: 

• During development, your application’s interface inherits property values 
from the Application Defaults. 

Your compiled application will probably reference a different resource file 
with different settings. That resource file is referenced by the XtAppIn-
itialize() and the UxAppInitialize() functions in the Main 
Program File. 

• During development, Shell widgets may not keep track of their size if you 
use the window manager to resize an interface window. To avoid this 
problem, resize interface shells by choosing Selected 
Widgets⇒Other⇒Resize. 

A Debuggable UIM/X Library 
If you suspect that a problem with some UIM/X-generated code is caused by 
the Ux Convenience Library, you may want to test your application using a 
debuggable library. This requires that you have the source code to the Ux 
Convenience Library. 

exclusive_grab and nonexclusive_grab 
In Test mode, the values exclusive_grab and nonexclusive_grab 
are mapped to no_grab. This prevents you from locking up your computer. 
To test exclusive_grab, you must generate and compile the source code 
for the interface. 
UIM/X Motif Developer’s Guide 115



GENERATING AND COMPILING PROJECT CODE 
Problems with Your Compiled Application 7
116 UIM/X Motif Developer’s Guide



Object Property Values A
Overview

The Property Editor is used to set and modify the values of properties for the 
objects of an interface. For efficient use, you need to know what values are 
admissible for each property. In many cases, this is clear from the value initially 
shown for a property. For example: the BorderWidth property accepts an 
integer value. In some cases, however, properties accept a limited number of 
pre-assigned strings. For example: the EditMode property accepts either 
"single_line_edit" or "multi_line_edit". 

This appendix outlines the range of values possible for each property. These are the 
values that can be used in the Property Editor. 

They are also the values that can be used in the UxPut functions, which you may 
wish to include in callback or action code, or in the Declaration Editor. 

Further, they are the values returned by the UxGet functions. In general, a value 
returned by a UxGet function will be an integer or a char *. In the case of a 
char *, a strcmp is sometimes necessary to determine which of the several 
possibilities is being returned. There are no UxPut or UxGet functions for 
callbacks. 

Both the UxPut and UxGet functions are described in the UIM/X Reference 
Manual. 
UIM/X Motif Developer’s Guide 117



A

The following table lists all properties and their types. Properties of type string 
should be enclosed in quotes when entered in the Property Editor. Certain 
properties are of type color; colors can be specified as follows: 

1. You may enter any color name defined in /usr/lib/X11/rgb.txt, for 
example, "blue". 

2. You may enter the rgb components of the color using three, six, nine, or 
twelve hexadecimal digits. In this case, the digits are preceded by a # charac-
ter and enclosed in quotes. Each component is specified by means of one, two, 
three, or four digits respectively, for example, "#00f", 
"#0000ff","#000000fff" and "#00000000ffff". 

Object Property Values
Accelerator string
AcceleratorText string
Accelerators translation table name
ActivateCallback code
AdjustLast “true”, “false”
Adjust Margin “true”, “false”

Alignment
“alignment_center”, “alignment_end”, 

“alignment_beginning”
AllowOverlap “true”, “false”
AllowResize “true”, “false”
AllowShellResize “true”, “false”
AncestorSensitive “true”, “false”
ApplyCallback code
ApplyLabelString string
Argc integer
Argv char *
ArmCallback code
ArmColor color

ArmPixmap
bitmap or pixmap filename enclosed 

in quotes

ArrowDirection
“arrow_up”, “arrow_down”, 

“arrow_left”, “arrow_right”
AudibleWarning “bell”, “none”
AutoShowCursorPosition “true”, “false”
AutoUnmanage “true”, “false”
AutomaticSelection “true”, “false”
Background color

BackgroundPixmap
filename of a bitmap file enclosed 

in quotes
BaseHeight integer
BaseWidth integer
BlinkRate integer
BorderColor color
118 UIM/X Motif Developer’s Guide



A

BorderPixmap
filename of a bitmap file enclosed 

in quotes
BorderWidth short

BottomAttachment

“attach_none”, “attach_form”, 

“attach_opposite_form”, 

“attach_widget”, 

“attach_opposite_widget”, 

“attach_position”, “attach_self”
BottomOffset integer
BottomPosition integer
BottomShadowColor color

BottomShadowPixmap
bitmap or pixmap filename enclosed 

in quotes
BottomWidget widget name enclosed in quotes
BrowseSelectionCallback code
ButtonFontList font name enclosed in quotes
CanBeTopLevel “true”, “false”
CancelButton widget name enclosed in quotes
Cancelcallback code
CancelLabelString string
CanHaveChildren “true”, “false”

CascadePixmap
bitmap or pixmap filename enclosed 

in quotes
CascadingCallback code

ChildHorizontalAlignment
“alignment_center”, “alignment_end”, 

“alignment_beginning”
ChildHorizontalSpacing integer

ChildPlacement
“place_above_selection”, 

“place_below”selection”, “place_top”
Children widget name enclosed in quotes

ChildType

“frame_title_child”, 

“frame_workarea_child”, 

“frame_generic_child”

ChildVerticalAlignment

“alignment_baseline_bottom”, 

“alignment_baseline_top”, 

“alignment_widget_top”, 

“alignment_center”, 

“alignment_widget_bottom”
ClipboardOps “true”, “false”
Colormap string
Columns integer
Command string
CommandChangedCallback code

Object Property Values
UIM/X Motif Developer’s Guide 119



A

CommandEnteredCallback code

CommandWindowLocation
“command_above_workspace”, 

“command_below_workspace”
CompoundEditorName char *

CompoundIcon
bitmap or pixmap filename enclose in 

quotes
CompoundName widget name enclosed in quotes
CompoundResourceSet char *
CompoundSwidgetMethodSet char *
CreateCallback code
CreateManaged “true”, “false”
CreatePopupChildProc code
CursorPosition integer
CursorPositionVisible “true”, “false”
DecimalPoints short
DecrementCallback code
DefaultActionCallback code
DefaultButton widget name enclose in quotes
DefaultButtonShadowThickness integer

DefaultButtonType

“dialog_cancel_button”, 

“dialog_ok_button”, 

“dialog_help_button”
DefaultFontList font name enclosed in quotes
DefaultPosition “true”, “false”
DeleteResponse string
Depth integer
DestroyCallback code

DialogStyle

“dialog_system_modal”, 

“dialog_primary_application_modal”, 

“dialog_modeless”, 

“dialog_work_area”, 

“dialog_full_application_modal”
DialogTitle string

DialogType

“dialog_command”, 

“dialog_file_selection”, 

“dialog_prompt”, “dialog_selection”, 

“dialog_work_area”
Directory string
DirectoryValid “true”, “false”
DirListItemCount integer
DirListItems string
DirListLabelString string
DirMask string
DirSearchProc proc

Object Property Values
120 UIM/X Motif Developer’s Guide



A

DirSpec string
DisarmCallback code
DoubleClickInterval integer
DragCallback code
DragRecursion “none”, “up”

EditMode
“single_line_edit”, 

“multi_line_edit”
Editable “true”, “false”
Editor code

EntryAlignment
“alignment_beginning”, 

“alignment_center”, “alignment_end”
EntryBorder short
EntryCallback code
EntryClass string

EntryVerticalAlignment

“alignment_baseline_buttom”, 

“alignment_baseline_top”, 

“alignment_contents_bottom”, 

“alignment_center”, 

“alignment_contents_top”
ExposeCallback code
ExtendedSelectionCallback code
FileListItemCount integer
FileListItems string
FileListLabelString string
FileSearchProc char *
FileTypeMask char *
FillOnArm “true”, “false”
FillOnSelect “true”, “false”
FilterLabelString string
FocusCallback code
FontList font name enclosed in quotes
Foreground color
FractionBase integer
GainPrimaryCallback callback list
Geometry string
Height short
HeightInc integer
HelpCallback code
HelpLabelString string
HighlightColor color
HighlightOnEnter “true”, “false”

Highlight Pixmap
bitmap or pixmap filename enclosed 

in quotes
HighlightThickness short

Object Property Values
UIM/X Motif Developer’s Guide 121



A

HistoryItemCount integer
HistoryItems string
HistoryMaxItems integer
HistoryVisibleItemCount integer
HorizontalScrollBar widget name enclosed in quotes
HorizontalSpacing short
IconMask string
IconName string
IconNameEncoding atom
IconPixmap string
IconWindow string
IconX integer
IconY integer
Iconic “true”, “false”
Increment integer
IncrementCallback code
IndicatorOn “true”, “false”
IndicatorSize short
IndicatorType “one_of_many”, “n_of_many”
InitialResourcesPersistent “true”, “false”
InitialDelay integer
InitialFocus string
InitialState integer
Input “true”, “false”
InputCallback code
InputMethod string
InsertPosition code
IsAlignable “true”, “false”
IsAligned “true”, “false”
IsAreaSelectable “true”, “false”
IsArrangeable “true”, “false”
IsCompound “true”, “false”
IsDeletable “true”, “false”
IsDraggable “true”, “false”
IsDuplicatable “true”, “false”
IsHomogeneous “true”, “false”
IsInCompound “true”, “false”
IsMovable “true”, “false”
IsNovice “true”, “false”
IsRecreatable “true”, “false”
IsRegion “true”, “false”
IsReorderable “true”, “false”
IsReparentable “true”, “false”
IsResizable “true”, “false”
IsSelectable “true”, “false”

Object Property Values
122 UIM/X Motif Developer’s Guide



A

ItemCount integer
Items string
KeyboardFocusPolicy string
LabelFontList font name enclosed in quotes

LabelInsensitivePixmap
bitmap or pixmap filename enclosed 

in quotes

LabelPixmap
bitmap or pixmap filename enclosed 

in quotes
LabelString string
LabelType “string”, “pixmap”

LeftAttachment

“attach_none”, “attach_form”, 

“attach_opposite_form”, 

“attach_widget”, 

“attach_opposite_widget”, 

“attach_position”, “attach_self”
LeftOffset integer
LeftPosition integer
LeftWidget widget name enclose in quotes
ListItemCount integer
ListItems string
ListLabelString string
ListMarginHeight short
ListMarginWidth short

ListSizePolicy
“constant”, “variable”, 

“resize_if_possible”
ListSpacing short
ListUpdated “true”, “false”
ListVisibleItemCount integer
LosePrimaryCallback callback list
LosingFocusCallback code
MainWindowMarginHeight short
MainWindowMarginWidth short
MapCallback code
MappedWhenManaged “true”, “false”
MappingDelay integer
Margin short
MarginBottom short
MarginHeight short
MarginLeft short
MarginRight short
MarginTop short
MarginWidth short
MaxAspectX integer
MaxAspectY integer

Object Property Values
UIM/X Motif Developer’s Guide 123



A

MaxHeight integer
MaxLength integer
MaxWidth integer
Maximum integer
MenuAccelerator “true”, “false”
MenuHelpWidget widget name enclosed in quotes
MenuHistory widget name enclosed in quotes
MenuPost string

MessageAlignment
“alignment_beginning”, 

“alignment_center”, “alignmnet_end”
MessageString string
MessageWindow widget name enclosed in quotes
MinAspectX integer
MinAspectY integer
MinHeight integer
MinWidth integer
MinimizeButtons “true”, “false”
Minimum integer
Mnemonic KeySym
MnemonicCharSet string
ModifyVerifyCallback code
MotionVerifyCallback code

MsgDialogType

“dialog_error”, 

“dialog_information”, 

“dialog_message”, “dialog_question”, 

“dialog_template”, “dialog_warning”, 

“dialog_working”

MultiClick
“multiclick_discard”, 

“multiclick_keep”
MultipleSelectionCallback code
MustMatch “true”, “false”

MwmDocorations1 integer

MwmFunctions1 integer

MwmInputMode

“mwm_input_modeless”, 

“mwm_input_system_modal”, 

“mwm_input_full_application_modal”, 

“mwm_input_primary_application_modal

”
MwmMenu string
Name widget name

NavigationType

“none”, “tab_group”, 

“sticky_tab_group”, 

“exclusive_tab_group”

Object Property Values
124 UIM/X Motif Developer’s Guide



A

NoMatchCallback code
NoMatchString string
NoResize “true”, “false”
NumChildren integer
NumColumns short
OkCallback code
OkLabelString string
Orientation “vertical”, “horizontal”
OverrideRedirect “true”, “false”

Packing
“pack_tight”, “pack_column”, 

“pack_none”
PageDecrementCallback code
PageIncrement integer
PageIncrementCallback code
PaneMaximum integer
Paneminimum integer
Parent widget name
Pattern string
PendingDelete “true”, “false”
PopdownCallback code
PopupCallback code
PopupEnabled “true”, “false”
PositionIndex integer
PreeditType char *

ProcessingDirection
“max_on_top”, “max_on_bottom”, 

“max_on_left”, “max_on_right”
PromptString string
PushButtonEnable “true”, “false”
QualitySearchDataProc proc
RadioAlwaysOne “true”, “false”
RadioBehavior “true”, “false”
RecomputeSize “true”, “false”
RefigureMode “true”, “false”
RepeatDelay integer
Resizable “true”, “false”
ResizeCallback code
ResizeHeight “true”, “false”

ResizePolicy
“resize_none”, “resize_any”, 

“resize_grow”
ResizeRecursion “none”, “up”, “down”
ResizeWidth “true”, “false”

Object Property Values
UIM/X Motif Developer’s Guide 125



A

RightAttachment

“attach_none”, “attach_form”, 

“attach_opposite_form”, 

“attach_widget”, 

“attach_opposite_widget”, 

“attach_position”, “attach_self”
RightOffset integer
RightPosition integer
RightWidget widget name enclosed in quotes

RowColumnType

“work_area”, “menu_bar”, 

“menu_pulldown”, “menu_popup”, 

“menu_option”
Rows integer
RubberPositioning “true”, “false”
SashHeight short
SashIndent short
SashShadowThickness short
SashWidth short
SaveUnder “true”, “false”
ScaleHeight short
ScaleMultiple short
ScaleWidth short
ScrollBarDisplayPolicy “as_needed”, “static”

ScrollBarPlacement
“top_left”, “bottom_left”, 

“top_right”, “bottom_right”
ScrollHorizontal “true”, “false”
ScrollLeftSide “true”, “false”
ScrollTopSide “true”, “false”
ScrollVertical “true”, “false”
ScrolledWindowMarginHeight short
ScrolledWindowMarginWidth short
ScrollingPolicy “automatic”, “application_defined”
SelectColor color

SelectInsensitivePixmap
bitmap or pixmap filename enclosed 

in quotes

SelectPixmap
bitmap or pixmap filename enclose in 

quotes
SelectThreshold integer
SelectedItemCount integer
SelectedItems string
SelectionArray char *
SelectionArrayCount integer
SelectionLabelString string

SelectionPolicy
“single_select”, “multiple_select”, 

“extended_select”, “browse_select”

Object Property Values
126 UIM/X Motif Developer’s Guide



A

Sensitive “true”, “false”
SeparatorOn integer

SeparatorType

“single_line”, “double_line”, 

“single_dashed_line”, 

“double_dashed_line”, “no_line”, 

“shadow_etched_in”, 

“shadow_etched_out”
Set “true”, “false”
ShadowThickness short

ShadowType

“shadow_in”, “shadow_out”, 

“shadow_etched_in”, 

“shadow_etched_out”
ShellUnitType string
ShowArrows “true”, “false”
ShowAsDefault short
ShowInBrowser “true”, “false”
ShowSeparator “true”, “false”
ShowValue “true”, “false”
SingleSelectionCallback code
SkipAdjust “true”, “false”
SliderSize integer
Source text source
Spacing short

StringDirection

“string_direction_l_to_r”, 

“string_direction_r_to_l”, 

“string_direction_revert”
SubMenuId widget name enclosed in quotes

SymbolPixmap
bitmap or pixmap filename enclosed 

in quotes

TearOffModel
“tear_off_enable”, 

“tear_off_disabled”
Text string
TextAccelerators translation table name
TextColumns integer
TextFontList XmFontList
TextString string
TextTranslations translation table name
Title char *
TitleEncoding atom
TitleString string
ToBottomCallback code
ToTopCallback code

Object Property Values
UIM/X Motif Developer’s Guide 127



A

TopAttachment

“attach_none”, “attach_form”, 

“attach_opposite_form”, 

“attach_widget”, 

“attach_opposite_widget”, 

“attach_position”, “attach_self”
TopCharacter integer
TopItemPosition integer
TopOffset integer
TopPosition integer
TopShadowColor color

TopShadowPixmap
bitmap or pixmap filename enclosed 

in quotes
TopWidget widget name enclosed in quotes
Transient “true”, “false”
TransientFor widget name enclosed in quotes
Translations translation table name
TraversalOn “true”, “false”
TroughColor color

UnitType

“pixels”, “100th_millimeters”, 

“100th_inches”, “100th_points”, 

“100th_font_units”
UnmapCallback code
UseAsyncGeometry “true”, “false”
UsePropEditor “true”, “false”
UserData char *

Value
integer (Note: for text value use 

property name “text”)
ValueChangedCallback code
ValueWcs string
VerifyBell “true”, “false”
VerticalScrollBar widget name enclosed in quotes
VerticalSpacing short
VisibleItemCount integer
VisibleWhenOFf “true”, “false”
Visual visual
VisualPolicy “variable”, “constant”
WaitForWm “true”, “false”
WhichButton Button1, Button2, Button3
Width short
WidthInc integer
WindowGroup string
WinGravity integer
WmTimeout integer
WordWrap “true”, “false”

Object Property Values
128 UIM/X Motif Developer’s Guide



A

1 The Property Editor does not have option menus for these two resources. You 
must enter their values directly. 

The OSF/Motif 1.2 header file Xm/MwmUtil.h defines macros for the valid 
values of these resources (except for the default value, which is -1). You may want 
to use these macros, rather than integer constants, to set the resource values. 

X short
Y short

Object Property Values
UIM/X Motif Developer’s Guide 129



A

130 UIM/X Motif Developer’s Guide



Frequently Asked 
Questions B

Overview
This appendix contains frequently asked questions (FAQs) extracted from customer 
feedback of UIM/X. This information is provided in the interest of enhancing user 
comprehension of UIM/X, helping the user avoid commonly made errors, and 
addressing work-around solutions to specific problems. 
UIM/X Motif Developer’s Guide 131



B

��������	
�����
�������

�	���	
�

�

�
�����	������
����
���
���	��
���

Since the children of a convenience dialog are created dynamically by the Motif 
Toolkit, UIM/X has no way of managing them directly. However, you can access 
these children using the Motif GetChild convenience functions (such as 
XmMessageBoxGetChild). For example, to unmanage the Cancel button in a 
message box, you could use this function in the interface’s Final Code: 

XtUnmanageChild(XmMessageBoxGetChild(UxGetWidget(dia
logBox), XmDIALOG_CANCEL_BUTTON));

����	���	�����������

����
������������	���������� ��

In the Property Editor, you see a client data property for each callback: 

• ActivateCallback 

• ActivateClientData

The ActivateClientData property can be specified as any C pointer expression. The 
value of that expression is passed to the callback as client data. It is available in 
Static callback code in the variable UxClientData. If you use Extern 
callbacks, the client data property is passed as the client data argument to the 
callback function whose name you specify. 

!�������
�"#������
��	$$�
��	
���
�%

#�&���	������
�

����	$���
�'	���
�	$$�
��	
���
�(
�
��
��)�*
�����	�#��$

#��

Yes. The Duplicate command on a Menu Editor does not copy the entire object 
structure. It only duplicates the type of object, its label string, and callback or next 
pane. If you have modified any other properties using the Property Editor, the new 
values for these objects are not copied to the new object. 

+����

����������������	���,�

����
�	�-�����	$��
�
����	�
�����
�,�

��
��
�	����	���	�����

�����������	
���������

��

There are three ways to resolve this problem. 

• If the children of the Paned Window are of the same type, create the first child 
and then copy it using Selected Objects Duplicate. 

• If any of the Paned Window’s children are not valid parents, you can place new 
objects on them. Since they cannot be parents, an object placed on one of them 
automatically becomes a child of the Paned Window. 
132 UIM/X Motif Developer’s Guide



B

• Before adding any children to a Paned Window, set its RefigureMode 

property to false. This prevents the Paned Window from resizing its children 
automatically. After adding all of the children, return RefigureMode to 
true. 

.�����������
�/��	�(�
��0
��1
���	�
�����	$
��$
������
���
���
�'	�
���	�
���
���

When you create a manager object using the Project Window’s Create menu, 
UIM/X automatically creates a shell as a parent of the manager. Properties of this 
automatically created shell are not directly available. However, since access to the 
AllowShellResize property is frequently needed, it is displayed with the manager’s 
core properties as a convenience. 

2�������	��#��	
���
�����
������
�
���1
�#

3�
��
�����

The default value for the RecomputeSize property is true. This means that 
whenever a property is changed that affects the appearance of the object, the object 
will attempt to shrink or grow as needed to exactly fit the new appearance. If the 
RecomputeSize property is set to false, the object never attempts to change 
size on its own. 

4�������	
�
�����
�5�����
��

)�����	�
�����	� ��	���	���
��#��	
���
�$

#��

 By design, the VisibleWhenOff property is always forced to false when 
toggle buttons are used in menus. This is mentioned in the toggle button reference 
information in the OSF/Motif Programmer’s Reference Manual. 

6���	���	����	����	
���$

#����������
��	��	���
��
�
����
��

In general, the solution to any layout problem is to use the proper manager object as 
a parent. In this case, the Form object is probably the best solution. Using the 
Form’s constraint properties, you can attach the menu bar to the top, left, and right 
edges of the Form. 

However, in this specific case, the recommended solution is to use a Main Window 
object, which automatically handles most of the details for creating a window with 
a menu bar and a scrolled work area. 

7�������	
��8�%9:��	$
��$
���
�$�
��
�#

3�
��
�����

UIM/X itself and the application interface you are building share the same process 
space. This means that if your interface calls a function that terminates or exits the 
application, it is likely that the call will also successfully terminate or exit UIM/X. 
There are several exceptions: UIM/X traps the following functions when they are 
encountered in interpreted code: 
UIM/X Motif Developer’s Guide 133



B

abort()
assert()
exit()
XtCloseDisplay()

When UIM/X encounters any of these functions in interpreted code it will issue a 
proper diagnostic message instead of terminating the program. Note that there are 
still ways to terminate the UIM/X session programmatically: 

close(ConnectionNumber(XtDisplay(UxWidget)));

for (i=0; i<_NFILE; i++)

close(i);

kill(getpid(), SIGKILL);

XtDestroyWidget(UxGetWidget(shadowWidget));

To avoid this problem, you can use #ifndef … #endif directives to isolate 
code that you don’t want to execute while working with UIM/X. For example, you 
might surround a call like this: 

#ifndef DESIGN_TIME

kill(getpid(), SIGKILL);

#endif

Since DESIGN_TIME is not defined in your application, the abort() function is 
performed as normal. In UIM/X, however, DESIGN_TIME is defined and the 
abort() function is avoided. 

Although UIM/X does trap calls to these functions in Test mode, Run mode 
actually generates the application, compiles it, and runs it. In this case the 
Interpreter is not involved, and all of the above functions will work as expected. 

If UIM/X does terminate unexpectedly, it will automatically attempt to save the 
project, its interfaces and palettes. If successful, the saved files can be found in the 
directory: 

/tmp/Ux.userName.processNo 

where userName is your user name (or, if none, AUTO), and processNo is the 
process number. 
134 UIM/X Motif Developer’s Guide



B

�;��'�
���#�
���
��	� <=-�
3
�<=-��
������<=��#
���	
���

In Unix it is customary to call a function of the fork() family to create 
subprocesses. UIM/X does not support calls to fork() and intercepts them, 
giving an appropriate diagnostic message. To the code that called fork(), it will 
look as if fork() failed because of a lack of memory. Adding memory would not 
solve this problem; ENOMEM is just a convenient way to provide a believable 
reason for failure to the interpreted application. 

Since you cannot call fork() to obtain new processes, it follows that you also 
cannot call wait() to signify the termination of a child, or call exec() to run 
another executable in a child process. For this reason, UIM/X also traps calls to 
exec() and wait(). 

����/�
���
�
��
���������
�������	#�����	���#��
���

If you type hidden or special characters, such as escape, into any text object 
containing code to be processed by the Interpreter, you may see an error message 
such as: 

error: 2006 unrecognized token

If the font you are using does not display special characters, it may be difficult to 
find and delete special characters. If you encounter this problem, the only way to 
ensure that there are no illegal characters in UIM/X’s windows or your files is to 
save your interface files, edit them manually to remove the special characters, 
restart UIM/X, and then reload your interfaces. 

�����	���	����
�#�
���
�>��
�����	
����	�
�����	������
��#������#
��

The default value for the Translations property is misleading. Although the 
default value displays as an empty string (""), when you set this property, the value 
should be the name of the Translation Table without quotes. To return the 
Translations property to its default value, use the Default toggle button. If 
you enter an empty string and leave the property set to Public or Private, the default 
translations are replaced with an empty table. The Motif default for Translation 
tables is replace, so if you specify an empty string for the Translations 
property, all behavior for the object is destroyed. 

�!��(	$
��$
����

���$� 
����
�
�-���
����
���
�
�	��$��	�*
�����	
��
	��
���
�
������
3�
�����������	#������	��

Due to the complex interactions between objects and their properties, you may have 
to occasionally recreate objects. This is frequently true when you are working with 
properties that are intended to be set only at creation time. These properties are 
defined in the OSF/Motif Programmer’s Reference Manual. 
UIM/X Motif Developer’s Guide 135



B

To recreate an object, select the object, then choose Selected Objects Recreate. To 
recreate an entire interface, select the top-level object, then choose Selected 
Objects Recreate. 

�+�����$�����
���	�#�
��	$
�:���#
���	
���
�$�����������	
��	�
��#����
���	
���
�

$��	��
��	� �
���

Several of the Xt functions which require an application context also come in 
convenience versions which use the default application context, for example, 
XtAppAddInput() and XtAddInput(). 

The code generated by UIM/X creates an application context at initialization via 
the function XtAppInitialize() and records this application context in a 
global variable UxAppContext (of type XtAppContext). If you call the Xt 
functions which use the default application context, you will not be communicating 
with the application context that UIM/X uses. The same problem will occur if you 
make an augmented UIM/X and try to use the Xt functions which use the default 
application context. 

�.�����#�$

�
��8�%9:������$�����������	
����������	�
��#����
��
�
���
�
��
��
�����
����
���$�	����

When you link with a library, only those object modules that are needed to resolve 
the external references are actually linked into your executable. If you don’t refer to 
any of the symbols in your library, the object modules will not get linked in. The 
preferred way to force linking of modules from a library is to use the function 
UxRegisterFunction() to register at least one function from each module. 
This has the side benefit of speeding up access to those functions the first time they 
are called from the Interpreter. 

�2��"	������
��	�#�
���
�83�'	
�

�

�
�?��������

No, with UIM/X you don’t have to use it. You can write your callbacks, resources, 
actions, and other code directly in X, Xt, and Motif. However consider the 
following: 

• Programming directly in X, Xt, and Motif is likely to take longer to develop an 
application, result in much more code, and give only slight gains in portability. 

• You can write your own convenience library for the difficult cases from above 
(that is, re-implement the Ux Convenience Library), but then you have to 
develop, test, and debug it. The Ux Convenience Library has been tested by 
thousands of users. 
136 UIM/X Motif Developer’s Guide



B

• The Ux Convenience Library is small, fast, and easy-to-learn and use. Source 

code is available for the library and it is also very portable (already used on 
thirty different platforms). 

�4�������	
�
���83?	��0
�	#��
�<=��	� ���

����	
���#�
���
�83�'	
�

�

�
�
?��������

If you generate code which does not require the Ux Convenience Library the 
UxLoadResources() function is generated as a stub in UxXt.c. You can 
implement the code yourself using a function like XrmCombineFileDatabase 
to non-destructively merge the resources into the server’s resource database. 

�6��'�
���#�
�8�?�����
��
�
����
�������
��	�$����

Yes, provided you are willing to forgo all the C code handling features of UIM/X. If 
you do, you are limited to external callbacks (C code in external .c files that must 
be loaded into the Interpreter in order for the behavior to be tested). You also lose 
the global declarations and interface specific variables. 

�7������������
��
����	
������
��


�8�?��
��������� ���

If you were to write UIL by hand, all your callbacks would exist in an external .c 
file. When you use uxcgen to generate UIL code for an interface, it also generates 
a C code file containing all your callbacks. The output from uxcgen is similar to 
what you would write if you were writing UIL code by hand. 

�;���	���	������#��#�
��
��
�
����
���������
��	�#�
�8�?��

We don’t recommend doing anything special in structuring the interface if you plan 
to use UIL. UIL is a code generation option. The widget creation is handled in UIL 
but everything else is just C code without using the Ux Convenience Library. 

Keep the following in mind if you are planning to use UIL: 

• You cannot use the UxPut and UxGet functions (unless you use the macros 
from /usr/uimx2.9/contrib/XtCodePuts). 

• You cannot use non-constant C expressions for resource values in the Property 
Editor. 
UIM/X Motif Developer’s Guide 137



B

����/�
���
�
��
��%	��������
����������

	���
��
�����	#�����
�8�%9:�,�	�
����
&���	���

Although supported, the following Motif 1.2 widgets cannot be created 
interactively and cannot be set through the Property Editor: 

• XmDisplay

• XmDragContext 

• XmDragIcon

• XmDropSite 

• XmDropTransfer 

• XmScreen 
138 UIM/X Motif Developer’s Guide



Index
Index

A
abort() 114, 134
Action Table Editor 68, 72
actions

creating 74
definition 68, 72
generated function 79
passing arguments to 79–80

Adjust mouse button x
AllowShellResize 133
Alt key ix
Application Defaults xi
Application Shell object 14
Application Window compound object 17
applications

compiled 115
improving performance 57–65

Arrow Button gadget 16
Arrow Button object 4
assert() 114, 134
augmenting UIM/X 136

B
Browser

Convenience Dialogs in 132
Bulletin Board dialog 12
Bulletin Board object 7

C
C

generated code structure 111
UIL 137

callbacks

and global variables 24
and Xm, Xt, and X calls 24
client-specific data 132
create 22
for generated UIL 137
useful Ux Convenience Library functions 21–

22
catalogs, message 94–97
code, generated

CreateCallback 22
resource files 104
structure 111
UIL code 137

Command object 7
command-line applications 84–89
compound objects

Application Window 17
definition viii
Group Box 18
Radio Box 18
Secondary Window 17

Constraint Editor 60
context structure 114
contribs

default Push Button 47
List 45
main window 32
radio button behavior 46

Core properties
and AllowShellResize resource 133

create Interface Function 99
CreateCallback 23
creating objects

help menu entry 38
Main Window 30

customization
139



Index
end-user 54, 104–107, 113
main program file 99

D
definition

actions 68
compound object viii
interface ix
Motif widget viii
object viii
project ix

dialog 11
Bulletin Board 12
Error 12
File Selection Box 12
Form 12
Information 13
Message Box 13
Prompt 13
Question 13
Selection Box 13
Template 14
Warning 14
Working 14

Dialog objects 39–41
Dialog Shell object 15
DrawingArea object 7
Drawn Button object 4

E
editors

Action Table 68, 72
Constraint 60
Event 68–72
Main Window 30–33
Menu 34–38, 132
Program Layout 98
Property 32, 38, 138
Translation Table 74–77

Enter key ix
See also Return key

Error dialog 12

Event Editor 68–72
events for accelerator tables 77

event loops
adding input sources 102

events
defining 72

exec() 114, 135
exit() 114, 134

F
File Selection Box dialog 12
File Selection Box object 8
fork() 114, 135
Form 12
Form dialog 12
Form object 8, 57–60, 133
Frame object 8

G
gadgets 16

Arrow Button 16
Label 16
Push Button 16
Separator 16
Toggle Button 17

generating code 107–115
for interfaces 110
for projects 108
main programs 99–102

geometry
of objects 54

global variables
defined by UIM/X 24

grab types 21, 115
Group Box compound object 18

H
header files

MwmUtil.h 50
UxSubproc.h 84

Horizontal Scale object 9
Horizontal ScrollBar object 4
140 UIM/X Motif Developer’s Guide



Index
I
include files

generating 112
Information dialog 13
Installation Directories x
Interface Function 91

and Dialog objects 39
create 100
CreateCallback 23
popup 100

interfaces
adding to existing applications 91
and command-line applications 84–89
definition ix
multiple copies 114
Test mode and compiled application differenc-

es 115
Interpreter

illegal characters 136

L
Label gadget 16
Label object 4
Label string 94
List object 5, 41–46

M
main programs 99–102

customizing 99
event loop 101

Main Window Editor 30–33
Main Window object 9, 31

motifMain.prj contrib 32
Manager objects

Bulletin Board 7
Command 7
Drawing Area 7
File Selection Box 8
Form 8
Frame 8
Horizontal Scale 9
Main Window 9

Message Box 9
Paned Window 9
Row Column 10
Scrolled Window 10
Selection Box 10
Vertical Scale 10

Menu Bar object 11, 133
Menu Editor

duplicate command 132
Property Editor 38
reparenting menus and panes 37
using 34–38

Menu mouse button x
menus

creating 34–37
Menu Bar 11
Option Menu 11
Pop-up Menu 11
toggle buttons in 135

Message Box dialog 13
Message Box object 9
message catalogs 94–97
methods

and property values 112
modes

Design and Test mode differences 115
Motif widget

definition viii
mouse

adjust button x
menu button x
select button x
usage x

mouse button
naming conventions for x

MwmUtil.h header file 50

N
naming conventions

menu options ix
mouse buttons vi
Return key ix
UIM/X Motif Developer’s Guide 141



Index
shell prompts x
Non-Visual Shell object 15

O
object operations

recreating 135
objects

and translation tables 77
Application Shell 14
Application Window 17
Arrow Button 4
Arrow Button gadget 16
Bulletin Board 7
Bulletin Board dialog 12
Command 7
compound 17
definition viii
Dialog 11, 39–41
Dialog Shell 15
DrawingArea 7
Drawn Button 4
Error dialog 12
File Selection Box 8
File Selection Box dialog 12
Form 8, 57–60, 133
Form dialog 12
Frame 8
Gadget 16
Group Box 18
Horizontal Scale 9
Horizontal ScrollBar 4
Information dialog 13
Label 4
Label gadget 16
List 5, 41–46
location and size 54
Main Window 9, 31
Manager 7, 54
Menu 11
Menu Bar 11, 133
Message Box 9
Message Box dialog 13

Non-Visual Shell 15
Option Menu 11
Override Shell 15
overriding built-in behavior 67
Paned Window 9
Pop-up Menu 11
Primitive 4
Prompt dialog 13
Push Button 5
Push Button gadget 16
Question dialog 13
Radio Box 18, 46–47
reparenting

menus and panes 37
RowColumn 10, 46, 55
Scrolled List 5
Scrolled Text 5
Scrolled Window 10
Secondary Window 17
Selection Box 10
Selection Box dialog 13
Separator 5
Separator gadget 16
Shell 14
Template dialog 14
Text 6
Text Field 6
Toggle Button 6
Toggle Button gadget 17
TopLevel Shell 15
Transient Shell 15
types of 4–18
Vertical Scale 10
Vertical Scroll Bar 6
Warning dialog 14
Working dialog 14

Option Menu object 11
OSF/Motif Style Guide vii
Override Shell object 15

P
Paned Window object 9
142 UIM/X Motif Developer’s Guide



Index

path lists

resource files 106
UxResourcePath 106

popup Interface Function 100
Pop-up Menu object 11
primitive widgets

Arrow Button 4
Drawn Button 4
Horizontal ScrollBar 4
Label 4
List 5
Push Button 5
Scrolled List 5
Scrolled Text 5
Separator 5
Text 6
Text Field 6
Toggle Button 6
Vertical Scroll Bar 6

PrjGen contrib 108
Program Layout Editor 98
project

definition ix
projects

message catalogs 94–97
Prompt dialog 13
properties

message catalog entries 94
Property Editor 32, 38

and translation tables 77
settings 138

property values
and UxGetProperty() 20
and UxPutProperty() 20
table of 118–129

Push Button gadget 16
Push Button object 5
Push Buttons

establishing a default 47
unexpected change in size 133

Q
Question dialog 13

R
Radio Box compound object 18
Radio Box object 46–47
reparenting objects

menus and panes 37
resource files 104–107

.rf widget resource files 104
and generated code 104
default search path 104
functions for accessing 106
search paths 104

resources
obtaining default value 107
Property Editor settings 138
setting xi

Return key ix
.rf resource file 104
RowColumn object 10, 46, 55
rt_main.c 100

S
Scrolled List object 5
Scrolled Text object 5
Scrolled Window object 10
Secondary Window compound object 17
Select mouse button x
Selection Box dialog 13
Selection Box object 10
Separator gadget 16
Separator object 5
setting

application defaults xi
shells

Application Shell 14
Dialog Shell 15
Non-Visual Shell 15
Override Shell 15
TopLevel Shell 15
Transient Shell 15
UIM/X Motif Developer’s Guide 143



Index
subprocess control
determining when subprocesses exit or stop 90
examples 85
functions 84
UxSubproc.h header file 84

T
Template dialog 14
termination

unexpected 133
Text Field object 6
Text object 6
Toggle Button gadget 17
Toggle Button object 6
TopLevel Shell 15
Transient Shell object 15
Translation Table Editor 74–77
Translation Table List 75
translation tables 67

and UxPutTranslations 78
attaching to objects 78, 135
table policy 77

troubleshooting 132–138
Typographic Conventions  ix

U
UIL 137
unexpected termination 133
Ux Convenience Library 137

and List objects 41
and resource files 106
debuggable version 115

UxAddPath() 106
UxAppendTo() 85
UxAppInitialize() 106
UxCreateSubproc() 84
UxDeleteSubproc() 84
UxDestroyInterface() 22, 114
UxDestroySwidget() 114
UxDispatchEvent() 102
UxDisplay global variable 24
UxExecSubproc() 84

UxExitSubproc() 84
UxExpandEnv() 106
UxExpandFilename() 106
UxExpandResourceFilename() 107
UxFileExists() 106
UxFindSwidget() 22
UxFreePath() 106
UxGetAppDefault() 107
UxGetAppResource() 107
UxGetDefault() 107
UxGetName() 22
UxGetPath() 106
UxGetProperty() 20, 27
UxGetResource() 107
UxGetSubprocPid() 84
UxGetWidget() 22, 25
UxInitialize() 101
UxInitPath() 106
UxInterf.cc 26
UxLib.h 26
UxLoadResources() 107, 137
UxMainLoop() 101
UxMap() 22
UxNextEvent() 102
UxOverrideResources() 107
UxPopdownInterface() 21
UxPopupInterface() 21, 99
UxPutLabelString() 94
UxPutProperty() 20, 27
UxPutTranslations() 78
UxRegisterFunction() 136
UxResetPath() 106
UxResourcePath global variable 106
UxResourcePath() 106
UxRunSubproc() 84
UxScreen global variable 24
UxSendSubproc() 84
UxSetSubprocClosure() 84
UxSetSubprocEcho() 84
UxSetSubprocExitCallback() 84
UxSetSubprocFunction() 84
UxSubproc.h header file 84
144 UIM/X Motif Developer’s Guide



Index

UxThisWidget 26
UxTopLevel global variable 24, 101
UxTransferToBuffer() 85, 89
UxUnmap() 22
UxWidgetToSwidget() 22
UxXt.h 26

V
Vertical Scale object 10
Vertical Scroll Bar object 6

W
wait() 114, 135
Warning dialog 14
widgets

Motif 1.2 138
window manager 48–52

close command 50
commands 50
decorations 49
delete 51
message detection 51

Working dialog 14

X
XmDisplay 138
XmDragContext 138
XmDragIcon 138
XmDropSite 138
XmDropTransfer 138
XmMainWindowSetAreas() 31
XmScreen 138
Xt functions 136
XtAppInitialize() 115
XtCloseDisplay() 134
XtVaSetValues() 114
XtWindow() 24
UIM/X Motif Developer’s Guide 145



Index
146 UIM/X Motif Developer’s Guide


	Preface
	Overview
	Who Should Use this Guide
	Before You Read this Guide
	The UIM/X Document Set and Related Books
	Suggested Reading
	How this Guide Is Organized
	Some Terms You Should Know
	Conventions Used in this Guide
	Typographic Conventions
	Installation Directories
	Using the Mouse

	Setting Application Defaults

	Overview of Motif Widgets 1
	Overview
	Working with the Ux Palette
	The Primitives Category
	The Managers Category
	The Menus Category
	The Dialogs Category
	The Shells Category
	The Gadgets Category
	The Compound Objects Category

	Programming in UIM/X 2
	Overview
	Setting Property Values
	Using C++ Bindings
	Miscellaneous Ux Library Functions
	UxPopupInterface(swidget iface, grabtype gtype)
	UxPopdownInterface(swidget iface)
	UxDestroyInterface(swidget iface)
	Map and Unmap Functions
	Widget Functions

	Using the CreateCallback
	Using UIM/X Global Variables
	Using Xm, Xt, and X Calls
	Generating Xt Code
	Writing Xt Code in UIM/X
	Understanding the Generated Xt Code
	Setting Properties


	Using the Motif Components 3
	Overview
	Building Main Windows
	Opening the Main Window Editor
	Working with a Main Window
	Modifying an Existing Main Window
	Accessing the Property Editor
	Using the motifMain.prj Example

	Building Menus
	Pulldown Menus
	Option Menus
	Pop-up Menus
	Menus and Panes
	Menu Items
	Reordering Panes and Items
	Reparenting Menus and Panes
	Setting Menu Properties
	Setting Menu Connections
	Creating a Help Menu Entry

	Using Convenience Dialogs
	Adding Parameters to an Interface Function to Make it Flexible
	Unmanaging Some Children of Dialogs
	Making Dialogs Application Modal
	Using System Modal Dialogs

	Using the List Object
	Using the List Convenience Functions
	Using Sample Data to Test a List

	Creating a Radio Box
	Adding Behavior to Each Toggle Button
	Determining Which Toggle Button Was Last Selected

	Establishing a Default Button
	Installing Special Accelerators
	Providing a Visual Cue to the Default Button

	Communicating with the Window Manager
	Requesting Window Manager Decoration
	Requesting Window Manager Commands
	Detecting the Window Menu Close Command
	Setting the Delete Response
	Adding a Protocol Callback


	Controlling Appearance 4
	Overview
	Polishing the Layout
	Avoiding Absolute Coordinates
	Planning Ahead for End-User Customization
	Choosing the Right Manager Objects

	Customizing Colors and Fonts
	Using the Form Object
	Guidelines for Form Constraints

	Using the Constraint Editor
	Opening the Constraint Editor
	To Use the Zoom Feature
	Specifying Constraints
	Editing Constraints


	Specifying Application Window Behavior 5
	Overview
	Action Tables and Events
	The Translation Table Editor

	Defining the Events: Using the Event Editor
	Opening the Event Editor
	Defining Events

	Responding to Events: Defining the Actions
	Opening the Action Table Editor
	Working with Actions

	Connecting Events and Actions: Translation Tables
	Working with the Translation Table List
	Working with the Translation Table Editor
	Specifying the Table Policy
	Events for Accelerator Tables

	Attaching the Translation Table to a Widget
	Attaching a Translation Table in the Property Editor

	Advanced Usage: Passing Parameters to Your Actions
	The Action Function Generated by UIM/X
	Adding Arguments to Action Calls


	Adding Interfaces to Existing Applications 6
	Overview
	Adding an Interface to a Command-Line Application
	Functions For Controlling Subprocesses

	Command-Line Example: Database Application
	Sending Output to a Text Object:
	Sending Output to a Text Buffer
	Determining When the Subprocess Exits or is Stopped

	Intermediate Restructuring of an Existing Application

	Generating and Compiling Project Code 7
	Overview
	Generating Resource Files
	Generating Message Catalogs
	Adding Messages to the Project Catalog
	Retrieving Messages

	Using the Program Layout Editor
	To Use the Program Layout Editor

	Customizing a Main Program File
	Adding New Input Sources to the Event Loop
	Managing Resource Files
	The X-Compliant Default Search Path
	Modifying the Search Path
	Ux Convenience Library and Resource Files

	Generating Code
	Generating Code for a Project
	To Generate Project Code
	Quick Code Generation for Projects

	Generating Code for Selected Interfaces
	To Generate Code for Selected Interfaces in the Project
	Quick Code Generation for Selected Interfaces

	The Structure of the Generated Code
	Generating Header Files
	Using Include Files to Query Properties

	Development Environment and Executable Code Differences
	The Main Event Loop
	Translations
	Multiple Copies of an Interface
	Error Checking
	UxDestroyInterface() and UxDestroySwidget()
	X Toolkit Grabs
	abort(), assert(), exec(), exit(), fork(), wait()
	Public Resources

	Problems with Your Compiled Application
	Differences Between Test Mode and Compiled Application
	A Debuggable UIM/X Library
	exclusive_grab and nonexclusive_grab


	Object Property Values A
	Overview

	Frequently Asked Questions B
	Overview

	Index

