UITIN

UIM/X Advanced Topics

ICS|

Integrated Com,

Copyright © 2005 Integrated Computer Solutions, Inc.

The UIM/X Advanced Topics™ manual is copyrighted by Integrated Computer Solutions, Inc., with all rights
reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system, or transmitted
in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without the
prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54 Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060

Fax: 617.621.9555

E-mail: info@ics.com

WWW: http://www.ics.com

UIM/X Trademarks

UIM/X, Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software Development Kit, BX/Win
SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak, ViewKit ObjectPak, VKit,
and ICS Motif are trademarks of Integrated Computer Solutions, Inc.

Motif is a trademark of Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.
X Window System is a trademark of the Massachusetts Institute of Technology.
All other trademarks are properties of their respective owners.

ii UIM/X Advanced Topics

http://www.ics.com

Contents

PrefaCe ... %
Chapter 1—Compound Widgets
Specifying the Widgets in @ CoOMPOUNGcccviiiiiiieiee e 2
The Adjust Button and Compound WiIdgetsocceveiiiiiiiieiniiiee e 2
Creating Compound Properties and Swidget Methodscccccvvvvveeeieicivcciiiieee, 6
Putting a Compound Widget in a Paletteccccvveeveeeeiiii e 8
Installing CompPOoUNd EQItOrScoiiuiiiiiiiiiiiee et 8
Chapter 2—Integrating Widgets
GetliNG STAMEU ... et 12
Swidget Class SOUICE FlESuuiiiiiiiiiie e 14
Writing the Private Header File ..o e e e e e 14
Writing the Swidget Class SOUICE File ... 18
Writing the Public Header File ... 25
BUIIAING UIM/IX ettt 31
Creating Widgets from UIM/X'S MENUScocuuiiiiiiiiiie ettt 31
Customizing UIM/X’'S Create MENUScoiuuiiiiiiiiiiee ettt 32
Customizing the Browser's NeW OPtioNcocciiiieiiiiee e e e e 36
Customizing the Main Window Editor's Option MeNnUSccccccevieiiiiiieeniiieee e 36
DefiNiNg NEW XIYPES ...ttt ettt e e e e s nnneeas 38
Overriding Inherited Class Methodscccooviiiiiiiii e 43
Generating Code and Reading UILcoociiiiiiiiiiieiiiee e 44
Extending the Ux Convenience Library ..o 47
Summary of Naming CONVENLIONSceiieieiiiiiiiiiiiiieee e e e e e s e siirre e e e e e e e e s s s s nnnrnennees 48
Chapter 3—Integrating Components
Understanding What 10 DOuuviiiiiieiiiiii i ar e e e e e e e nneeeeee s 50
Overriding the Geometry-Handling Methodsccccceeiiii i, 56
Generating INtegration COUEcoiiiiiiiiiiiiie e 62
Writing the INtegration COOEevieeiiiiii i e e ae s 64
WIriting the Header Fileuuviiiiiiie i e e e e e e e 65
WItING the SOUICE FlE ..o 71
Writing Initialization Code for UIM/Xuuiiiiiiiee e e e e e 81
AUGMENTING UIM/IX e r e e e e e e s es st e e e e e eeaeeseeaans 82
BUIIAING @ PAIELEEeeiiiiiiiiee et 83

UIM/X Advanced Topics iii

Chapter 4—Building Executables

Using the Custom MaKefilec.oiiiiiiiiii e 88
Using the Build MaKefilecoiveiiiiiiiiiee e 92
AUGMENTING UIMIX .ottt e e e e 94
USING CENITALMK ..ottt e e e e e e e s e eeeeeea e e e e e annnnes 99
Appendix A—Compound Properties.......cccceevvevveeiiinneeeennnns 101
Appendix B—Interface File Formatcccooeevviiiiiennnnnnn. 107
1 L= o T g F= L O 0] g ot =] o) £ PPEERRR 107
FACELS ..ot 108
Interface-SPECific RESOUICESeiiiiiiiiiiee ittt 109
MELNOOS ..ottt 111
COMNNECLIONS ..ttt ettt et s e r e e e ne e e e sn e e e nrn e e e nnre e e snnee s 112
SWIAGEt MEINOASoiiiiiiiiiiee e 113
Loading Interface Files of an Earlier VErsioncccccvvvviriiiee i iiccciiieeieeee e 114
Appendix C—Swidget Class Hierarchy..........cccccceeiiiiinennns 115
Appendix D—ResoUrce TYPES ...ccoivvieiiiieiiieeeeiieeeeeie e 121
UBYPES i s 122
Do 01 T TSP UPPPPRTR 122
Validator And ValuesOf FUNCHONSccoiiiieiiiieniee e 124
Appendix E—Class Methodsccccooevviiiiiiiiiiic e, 129
Appendix F—Resource DescCriptorS.....ccoceveevevieeeinnnnnnn, 155
Resource DesCriptor FIEIAScoooiiiiiieeeeee et e e 156
Appendix G—Ux Builder FUNCLIONScoovviiiiiiiiiiiiieeeeee 159
INAEX ettt 229

iv UIM/X Advanced Topics

Preface

Overview

UIM/X provides adiverse set of configurable tools and capabilities which enable you
to extend and customize UIM/X to suit your own unique application.

Using these features, you can:

e Create compound widgets and compound properties

e Create your own palettes

e Create and integrate new widget classes

e Extend the Ux Convenience Library

« Integrate components you have built yourself or purchased from other vendors
e Build and customize UIM/X executables

* Augment UIM/X executables with object code of other applications

This manual describes the mechanisms which allow you to tailor, add to, or simplify
UIM/X to create a custom GUI builder.

UIM/X Advanced Topics Vv

Vi

Who Should Use this Guide

This manual assumesthat you have some knowledge of programming and ageneral
understanding of the X Window System. You should also know how to use
common items such as menus, buttons, and scroll bars. If you are not familiar with
these items, you may find it useful to review the OSF/Motif User’s Guide.

Before you begin, check with your system administrator to ensure that the software
has been installed as described in UIM/X Installation Guide.

Before You Read this Guide

This guide makes the following assumptions:

e You are familiar with the basic functions of selecting from menus and dialog
boxes; opening, moving, resizing and closing windows; and clicking icons.

* You are acompetent software developer and wish to extend and customize the
standard features of UIM/X to accommodate your unique application.

Related Books

For more information on UIM/X, see the following documents, available at
http://ww.ics.com/support/docs/:

e UIM/X Installation Guide. Explains how to install and run UIM/X. Includes
information on thefiles provided with UIM/X, backwards compatibility issues,
and compiler considerations.

e UIM/X Beginner’s Guide. Introduces UIM/X by presenting Novice Mode, the
simplified Palette that enables new users to be productive immediately.
Includes information on a number of important features for creating, testing
and running applications.

e UIM/X Tutorial Guide. A series of step-by-step tutorials, teaching tools and
techniques that will greatly assist you in developing your own applications.
Features tutorials in Novice Mode, Standard Mode, and on advanced topics.

e UIM/X User’s Guide. Exploresthe UIM/X features common to both Motif and
cross-platform development. Includes discussions of how to use UIM/X’s
editorsto set properties, add behavior, etc.

UIM/X Advanced Topics

For more information on designing user interfaces, see any of the following:

OSF/Motif Syle Guiderelease 1.2 (Prentice Hall, 1993, ISBN 0-13-643123-2)
The Windows Interface Guidelines for Software Design: An Application
Design Guide (Microsoft Corporation, 1995, ISBN 1-55615-679-0)

Human Interface Guidelines: The Apple Desktop Interface (Addison-Wesley,
1987, ISBN 0-201-17753-6)

How this Guide Is Organized

This document comprises four chapters, seven appendices, and an index, organized
asfollows:

Chapter 1, “Compound Widgets,” discusses creating and working with
compound widgets and explains their properties.

Chapter 2, “Integrating Widgets,” describes how to integrate awidget class
into UIM/X.

Chapter 3, “Integrating Components,” describes how to integrate any classinto
UIM/X.

Chapter 4, “Building Executables,” describes how to customize and build
UIM/X executables.

Appendix A, “Compound Properties,” provides alphabetical listings of
compound properties.

Appendix B, “Interface File Format,” describes file format concepts and facets
and defining new classes.

Appendix C, “Swidget Class Hierarchy,” provides agraphical representation of
the hierarchy of swidget classes, as well as atable listing each swidget class,
the corresponding widget class and the swidget class private and public header
files.

Appendix D, “Resource Types,” describes the mechanism for converting
between the different data types expected by swidgets and widgets.

Appendix E, “Class Methods,” contains the reference pages for the class
methods used by UIM/X to operate on widgets.

Appendix F, “Resource Descriptors,” describes data objects called resource
descriptors. Every widget property in UIM/X is described by a resource
descriptor.

Appendix G, “Ux Builder Functions,” contains the reference pages for each of
the Ux Builder Functions.

UIM/X Advanced Topics vii

viii

Conventions Used in this Guide

Unless otherwise noted in the text, we use the following symbolic conventions:

Typeface or
Symbol

M eaning

literal names

Bold words or characters in command descriptions
represent words or values that you must use literally.

user-supplied
values

Italic words or characters in command descriptions
represent values that you must supply. Italic words in text
i@ so indicate the first use of a new term, or emphasis

sample user
input

In interactive examples, information that you must enter
@ppearsin this typeface.

output/source
code

Information that the system displays appearsin this
typeface.

Horizontal ellipsis points indicate that you can repeat the
preceding item one or more times.

Setting Application Defaults

Application Defaults configure the way UIM/X looks and set the default
preferences for many of its operations. You can set the Application Defaults for all
UIM/X users or for asingle user. For more details on setting your Application
Defaults see The UIM/X User’s Guide.

For optimum performance, set the following resources in your Application

Defaults:

Mwm*autoKeyFocus: false

Mwm*clientAutoPlace: false

Mwm*focusAutoRaise: false

Mwm* focusFollowsPointer: true

Mwm*keyboardFocusPolicy: pointer

UIM/X Advanced Topics

If you have a gray-scale monitor, you might try the following settings:
Mwm*activeBackground: #666666
Mwm*activeForeground: #e5e5e5
Mwm*background: #666666
Mwm* foreground: #e5e5eb5
Uimx3 O*calculatedColors: false
Uimx3 O*background: #ededed
Uimx3_0*BottomShadowColor: #000000
Uimx3 O*foreground: #000000
Uimx3 0*TopShadowColor: #ffffff
Uimx3 0*XmText.background: #b3b3b3
Uimx3 0*XmTextField.background: #b3b3b3

Note: The resources above prefixed with Mwm are specific to the Motif Window
Manager. If you are using a different window manager consult your Systems
Administrator for the equivalent settings.

UIM/X Advanced Topics ix

X UIM/X Advanced Topics

Compound Widgets

Overview

A compound widget is a hierarchy of one or more widgets and Component
Instances. For brevity, however, this section refers only to widgetsin its discussion
of compound widgets. Keep in mind that a compound widget can contain
Component I nstances.

Unlike Component I nstances, the instances of a compound widget do not share a
common template. Each time you create an instance of a compound widget, you
create a duplicate of the original. Changes to a compound widget are not
propagated to the instances of that compound widget.

With compound widgets, you can give users the ability to edit the individual
widgetsin an instance of the compound widget. The compound properties allow
you to control the editing operations applicable to each widget in a compound
widget. At the same time, you can have operations such as move, resize, and drag
and drop apply to the compound widget as awhole.

Compound widgets can also have their own specialized editors.

UIM/X Advanced Topics 1

1

Specifying the Widgets in a Compound

A compound widget consists of a parent widget and zero, one, or more
descendants. The parent is the top (and perhaps only) widget in the compound.
Given a hierarchy, you specify the widgets included in the compound widget as
follows:

1. Set the compound property IsCompound to true for the top widget or
Component in the compound.

2. Set the compound property IsInCompound to true for each of the parent’s
descendants that you want to include in the compound. Leave the IsCom-
pound property set to false for the descendants.

You can then specify the editing operations that can be applied to the individ-
ual widgets and Components in the compound.

The Adjust Button and Compound Widgets

A compound widget can be manipulated as a single widget with the Adjust button
(normally the middle mouse button). To do this, you make all widgetsin the
compound except the top widget transparent to the Adjust button.

When awidget is transparent, pressing the Adjust button on the widget causes the
move or resize action to be applied to another widget in the compound. The widget
issaid to be transparent because it appearsto a user that the Adjust buttonis acting
on awidget underneath the one where the mouse pointer is positioned.

Consider the FileSelectionBox widget provided by Motif. It looks like acollection
of many widgets, but no matter where you press the Adjust button, you can only
move or resize afile selection box as awhole. You can achieve this same behavior
by making the individual widgetsin a compound transparent.

For example, consider the form shown in Figure 1-1. Note that although the mouse
pointer is positioned on the Next Screen button, the form is being resized. Pressing
the Adjust button on atransparent button is the same as pressing the Adjust button
on the move or resize region of the form underneath the button.

One advantage of transparent widgets is that the user gets some visual feedback
when they press the Adjust button on a widget where the move or resize action is
disabled. Another isthat transparent widgets visually reinforce the ideathat a
compound widget is an integral whole.

2 UIM/X Advanced Topics

IsRegion

¢ form1 5 A=K

Previous Screen MNext Scr‘qen |
|

Figure 1-1 Regions and Transparent Widgets

There are three compound properties used to make a widget transparent.

Setting IsRegion to t rue makes awidget aregion widget. UIM/X usesregion
widgets to determine whether the Adjust button was pressed on amove or aresize
region.

When the Adjust button is pressed, agrid is superimposed on the region widget
underneath the mouse pointer (see Figure 1-1). Thisgrid divides the widget into
nine different move and resize regions. UIM/X looks at the region where the Adjust
button was pressed, and performs the appropriate move or resize operation.

When the Adjust button is pressed on awidget in acompound where IsRegion is
false, UIM/X triesto find aregion widget in the widget hierarchy. UIM/X will
not perform amove or resize if it cannot find awidget which isaregion.

Note that UIM/X cannot know whether awidget is being moved or dragged until
thewidget isdropped. If aswidget in acompound is reparentable but not moveable,
then the user will be able to drag the widget. If the result is amove, then the
operation is disallowed.

UIM/X Advanced Topics 3

ResizeRecursion

DragRecursion

This property determines the direction in which UIM/X traverses the compound
widget hierarchy when looking for aresizable widget. UIM/X only checks the
value of this property if the region widget is not resizable. Possible values are up,
down, Or none.

This property determines whether or not UIM/X traverses up through the
compound widget hierarchy to look for a draggable widget if the region swidget is
not draggable. Possible values are up or none.

Finding a Region

When the user presses the Adjust button on awidget, UIM/X checks whether the
widget is aregion widget. If the widget is not aregion widget, UIM/X checksthe
value of the widget's I sInCompound property to seeif thewidgetisina
compound.

If the widget is not in acompound, UIM/X does nothing—there is no widget for it
to resize or move.

If the widget isin acompound, UIM/X goes up the hierarchy of the compound
looking for aregion widget. If no region widget is found, UIM/X does nothing. If
UIM/X finds aregion widget, it checks the mouse press location to determine
whether to perform amove or resize.

Once UIM/X knows what action to perform, it hasto find awidget to which it can
apply the action. Thiswidget may or may not be the region widget. The following
sections describe how UIM/X finds resizable and draggable widgets.

Finding a Resizable Widget

If the IsResizable property issetto true for theregion widget, UIM/X allows
the user to resize the widget. Otherwise, UIM/X checks the value of the region
widget'sResizeRecursion property.

TheResizeRecursion property tells UIM/X in which direction it must traverse
the compound widget's hierarchy. If ResizeRecursion isset to none, no
resizeis performed.

4 UIM/X Advanced Topics

UIM/X traverses the compound widget's hierarchy in the specified direction until it
finds one of the following:

e A widget that can beresized. UIM/X then alows the user to resize the widget.

A widget whoseResizeRecursion vaueisnot equal to that of theregion
swidget. If the widget isresizable, UIM/X alows the user to perform aresize.

* A widget that is not in the compound. No resize is performed.

If aresizable widget is not found, nothing happens. If theResizeRecursion of
the region widget is down, only one descendant, if any, is resized.

Finding a Draggable Widget

If the IsDraggable property isset to t rue for theregion widget, UIM/X alows
the user to drag the widget. Otherwise, UIM/X checks the value of the

region widget's DragRecursion property.

The DragRecursion property tells UIM/X whether or not it should look for a
draggable widget by traversing up the compound widget’s hierarchy.

UIM/X traverses up the compound widget’s hierarchy until it finds one of the
following:

e +A widget that can be dragged. UIM/X then allows the user to drag the widget.
When the user drops the widget, UIM/X checksif the widget is

e being moved. If so, UIM/X then checks the value of the widget's
* IsMovable property.

* A widget whose DragRecursion valueisnot equal to that of the region
swidget. If the widget is draggable, UIM/X allows the user to drag the widget.

* A widget that is not in the compound. In this case, nothing happens since no
draggable widget was found.

UIM/X Advanced Topics 5

1

Creating Compound Properties and Swidget
Methods

UIM/X enables you to access and manipulate the properties and swidget methods
of each individual widget in a compound widget. Thisis accomplished through the
use of the CompoundResourceSet and CompoundSwidgetMethodSet
properties.

Compound resources and compound swidget methods, in effect, allow you to
create design-time properties and methods for the individual widgetsin the
compound.

The Group Box, for example, is a compound widget which comprisesa frame, a
label, and a form. If you were to change a Group Box’s background color, only
the color of the frame (the parent widget) would change; the background colors
of the 1abel and form would remain unchanged. This is where compound
resources and compound swidget methods become useful.

Using compound resources and compound swidget methods, you can ensure that
changes applied to the compound widget are applied to the individual widgetsin
the compound. Accessible through the Compound category of the Property Editor,
compound resources and compound swidget methods are specified according to the
following formats:

e For compound resources, a quoted string containing one or more resource
specifiers, asfollows:

“<new_resource>:<swidget1>.<resourcel>,
<swidget2s>.<resourcel2s,

<swidgetNs>.<resourceNs>;”

You separate adjacent resource specifiers with semi-colons. No semi-colonis
required after the last resource specifier.

6 UIM/X Advanced Topics

e For compound swidget methods, a quoted string containing one or more
swidget method specifiers, as follows:

“<new_sw-method>:<swidgetl>.<sw-methodl>,
<swidget2>.<sw-method2s>,

<swidgetN>.<sw-methodNs>;”
You separate adjacent swidget method specifiers with semi-colons. No
semi-colon is required after the last swidget method specifier. This property
cannot be modified if the swidget owning the property is the target of a con-
nection.

Note: Intheinterest of legibility, the above examples have been placed on separate
lines. When you enter design-time properties and swidget methods, specifiers must
be placed on one continuous line.

Thefollowing isan example of how the CompoundResourceSet property may
be set for the Group Box compound widget.

*groupBox.compoundResourceSet:
“Alignment:labelBoxl.childHorizontalAlignment;
Background:groupBoxl .background, labelBox1.background,
formBox1l.background; FontList:labelBoxl.fontList;
Foreground:groupBoxl.foreground, labelBoxl. foreground,
formBoxl.foreground;
LabelPixmap:labelBoxl.labelPixmap;
LabelString:labelBoxl.labelString;
LabelType:labelBoxl.labelType”

This code creates the design-time properties A1ignment, Background,
Foreground, FontList, LabelPixmap, LabelString, and LabelType
to be applied to the respective widgets in the Group Box.

Note: The design-time properties that you create will appear in the Specific
category of the Property Editor.

UIM/X Advanced Topics 7

Compound-
Name

Compoundlicon

Similarly, the CompoundSwidgetMethodSetproperty may be set for the
Group Box compound widget.

*groupBox.compoundSwidgetMethodSet :
“SetBackground:groupBoxl.SetBackground,
labelBox1l.SetBackground, formBoxl.SetBackground;

SetForeground:groupBoxl.SetForeground, labelBoxl.SetF
oreground,

formBoxl.SetForeground; SetLabelPixmap:labelBoxl.SetL
abelPixmap;

SetLabelString:labelBoxl.SetLabelString”

This code creates the design-time swidget methods Set Background,
SetForeground, SetLabelPixmap, and SetLabelString toperformthe
appropriate operations on the respective widgets in the Group Box.

Putting a Compound Widget in a Palette

You put acompound widget in a pal ette as you would any other collection of
widgets. Aswell, you can define the name and the icon used to represent the
compound widget in the palette. UIM/X provides compound properties for the
name and icon of a compound widget.

Note: Once acompound widget isin a palette, its name and icon can be set from
the Edit menu of the palette.

This property holds the name given to the compound widget. Thisnameis
displayed on the palette.

This property identifies theicon used to represent the compound widget. The value
of this property must be the name of the file containing the pixmap or bitmap of the
icon. Valid file formats are X 11 bitmap and XPM.

Installing Compound Editors

Compound widgets can have their own specialized editors. These editors are called
compound editors.

There are two compound properties used to install acompound editor. These
properties are set for the top widget in the compound—that is, the widget where
IsCompound isStrue.

8 UIM/X Advanced Topics

Editor

EditorClientData

Note: UIM/X ignores the settings of the Editor and EditorClientData
properties for the other widgets in a compound—that is, the widgets where
IsInCompound iStrue.

This property allows you to enter the callback which pops up the compound editor.
This callback function is called whenever you do one of the following:

e Create an instance of the compound widget.

» Double-click the Select mouse button on one of the widgets in the compound
widget.

e Select the Compound Editor item from a menu.
¢ An Editor callback function, like all callback functions, takes three arguments:

* Thefirst argument isUxWidget, the widget which triggered the callback.
Thisis always the top widget in the compound widget.

* Thesecond argument isUxClientData, the value entered for the
EditorClientData property of the top widget in the compound.

* Thethird argument isUxCallbackArg, which isNULL for the Compound
Editor callback.

Note: In theinterface files generated by UIM/X, the Editor property isset by a
resource specification that looks like this:
pulletinBoardl.compoundEditor:/ Callback code */

A custom example of how to install acompound editor is provided in the
RadioPanel contrib located in uimx_directory/contrib/RadioPanel.

This property holds any client data to be passed to the callback function that pops
up the compound editor.

When you install a compound editor, the value of the property CompoundName
identifies the compound editor on UIM/X’s menus. For example, if you give the
name Radio Box to a compound widget, the menu item Compound Editor becomes
Radio Box Editor for the compound widget.

UIM/X Advanced Topics 9

10 UIM/X Advanced Topics

Integrating Widgets

Overview
This chapter describes how to integrate awidget classinto UIM/X.

UIM/X fully supports the Motif widget set, which isalibrary of widget classes
derived from the base classes provided by the X Toolkit. The Motif widgets were
developed using the general mechanism provided by the X Toolkit for creating new
widget classes.

Using this mechanism, devel opers can create new widget classes by subclassing
one of the Motif classes, or by directly subclassing one of the base Xt classes.
UIM/X can be extended to support any such custom widget class derived from a
Motif or Xt class.

UIM/X treats anew widget class exactly asit does the Motif widget classes. You
can interactively create and edit instances of the new class, set property values, and
generate code, just as you would for any other widget.

UIM/X Advanced Topics 11

2

Getting Started

To integrate awidget class, you must write a new swidget class and integrate it into
UIM/X.

UIM/X uses swidgets to represent widgets. A swidget is a shadow widget—a
widget's inseparable companion. A swidget is an object containing the code and
data that allows UIM/X to manipulate widgets.

When Ux Convenience Library C++ bindings are being used, an extralevel of
encapsulation exists. Although UIM/X manipulates Motif widgets internally as
swidgets, they are declared in the builder as objects of the Motif wrapper classes
provided by the Ux C++ Convenience Library.

UIM/X defines a swidget class hierarchy that parallels the Motif widget class
hierarchy. When you integrate a subclass of a Motif (or Xt) widget class, you must
subclass the corresponding swidget class. For example, to integrate a subclass of
the Motif Primitive class, you must subclass the UIM/X primitive swidget class.

Note: The name of a UIM/X swidget class is the same as the name of the
corresponding Motif widget class, except that the swidget class name beginswith a
lowercase | etter. The name of the Ux C++ Convenience Library wrapper classfor a
swidget is the same as the name of the corresponding Motif widget, except that the
name of the classis prefixed with “Ux”.

The general procedure for integrating awidget classis as follows:
1. Create aworking directory.

2. If you have the sourcefiles for the new widget class, copy them to your work-
ing directory. If you have only the header files and library for the new widget
class, you will have to modify the supplied Makefile to point to thesefiles. See
Building UIM/X.

12 UIM/X Advanced Topics

3. Copy thefollowing files from uimx_directory/custom/src to your work-
ing directory:

Makefile

Template makefile for compiling and linking the widget source code, the
swidget source code, and the template . ¢ fileslisted below with UIM/X.
Also used to build extended versions of uxcgen and uxreaduil that
support new widget classes.

Cr-menus.c

Template for adding menu items for new widget classes to the UIM/X
Create menus. See Customizing UIM/X's Create Menus.

cr-mwe.c

Template for adding menu items to the option menus in the Main Window
Editor. See Customizing the Main Window Editor’s Option Menus.

uxddcppMF.h

Template for defining the design-time implementation of the wrapper
class member functions.

user-cg-cl.c

Template file for extending uxcgen and uxreaduil, the utilities for
generating code and reading UIL code.

user-class.c

Template for placing callsto the functions that register new swidget
classes with UIM/X (these functions are defined in the source files for the
swidget classes).

user-rtime.c

Template for registering properties for run-time conversion (between the
different data types expected by widgets and swidgets). Thisalowsyou to
use the Ux Convenience Library in the code generated for new widget
classes.

user-xtype.c
Template for defining new xtypes. An xtype specifies the data type and
values of awidget property.

Write the source for a new swidget class.
Fill inthetemplate . c files as required to integrate your new swidget class.

UIM/X Advanced Topics 13

2

6. Modify Makefile to point to the correct files.
7. Compile and link extended versions of uimx, uxcgen, and uxreaduil.

Therest of this chapter is adetailed discussion of how to write a new swidget class
and integrate it with UIM/X. As an example, the discussion refersto the code
required to integrate the Dog and Square widget classes. The source for these
examples can be found in uimx_directory/cont rib/DogAndSquare.

Swidget Class Source Files

The source for a swidget classis contained in two header files and one file of
source code. The names of these files are derived from the name of the swidget
class. For example, the dog swidget class isimplemented in the following files:

e The private header file, dog. c1 . h, defines the swidget's class and instance
structures.

» Thesourcecodefile, dog. cl . ¢, contains the code defining the swidget class.

* Thepublic header file, UxDog . h, contains the definitions of the macros used
to manipulate instances of the swidget class, as well as a definition of the
UxDog wrapper class.

Writing the Private Header File

The private header file of a swidget class (the . ¢1 . h file) definesits class and
instance structures. UIM/X uses these two structures to implement swidget classes
and instances.

The class structure's fields contain the properties—such as pointers to data
structures and methods—common to all instances of the swidget class. The
instance structure contains the internal details of a swidget instance—for example,
pointers to the swidget's Values and Expressions lists.

New swidget classes don’'t add fields to the instance structure, since these fields
contain information used only by UIM/X. For this reason, the following discussion
focuses on the class structure.

The Class Structure

The organization of the class (and the instance) structure is determined by the
swidget class hierarchy from which the new class is derived. The class structure of
the dog swidget class, for example, contains the class fields defined by each of its
superclasses, aswell asits own classfields.

14 UIM/X Advanced Topics

Note: Given the superclass of the new widget class, you can determine which
swidget class to subclass by consulting Appendix C, “ Swidget Class Hierarchy.”
You can use this appendix to find the swidget class corresponding to the superclass
of the new widget class.

A swidget classdefinesits classfieldsin aseparate structure called aclassPart.
ThisClassPart structureisthen combined withthe ClassPart structures of
each of the superclassesto form aClass structure. By convention, these structures
are named UxWdgetNameClassPart and UxWdgetNameClass in the private
header files of the UIM/X swidget classes.

Thedefinitionsof the ClassPart and Class structuresfor the dog swidget class
are shown below:

#include “prim.cl.h” /* swidget-superclass header
file */

/* Definition of the dog class structure */

typedef struct UxDogClassPart

Resource_t *RD_wagTime;
Resource_t *RD_barkTime;
Resource_t *RD_barkCallback;

} UxDogClassPart;

typedef struct UxDogClass

{
UxObjectClassPart object;
UxVeditableClassPart veditble;
UxShadowWidgetClassPart ShadowWidget;
UxRectObjectClassPart RectObject;
UxCoreClassPart Core;
UxPrimitiveClassPart primitive;
UxDogClassPart dog;

} UxDogClass;

UIM/X Advanced Topics 15

Class
Properties

Class Methods

TheUxPrimitiveClassPart structureisdefinedinprim.cl.h, theprivate
header file of the immediate superclass of the dog swidget class. Note that
prim.cl.hisincluded at the top of the dog class private header file.

The private header file of a swidget classincludes the private header file of its
superclass. Thusprim.cl.hincludesCore.cl.h, Core.cl.h includes
RectO.cl.h,and soon. Including prim.cl.h givesyou accessto the
definitions of the ClassPart structures for each of its superclasses.

Note: When you write the private header file for anew swidget class, you can
simply copy and modify the definitions of theClassPart and Class structures
in the private header file of its superclass.

ThecClassPart structure of aswidget class containsafield of type
Resource_t* for each new property defined by the swidget class. The dog
swidget class, for example, defines three new properties. The ClassPart
structures of the superclasses of a swidget class define the properties inherited by
the swidget class.

TheResource t* variablesare pointersto the resource descriptors associated
with the new properties. A resource descriptor isadata structure defined by UIM/X
(seeuimx_directory/custom/include/resource.h). By convention, these
variables are named RD_ propertyName.

These resource descriptors are initialized and installed in the swidget's source
(.cl.c)file

A swidget class inherits the methods of its superclasses. You can replace or
augment inherited methods.

A swidget class can also define new methods. The ClassPart structure contains
afield of type vhandle for each new method defined by the swidget class. The
vhandle variables areinternal identifiers used by UIM/X. By convention, these
variables are named _MethodName. For example, if the dog class was to define a
new method named Woof, the ClassPart structure would look like this:

typedef struct UxDogClassPart

{

vhandle Woof;

Resource_t *RD_wagTime;
Resource_t *RD_barkTime;
Resource_t *RD_barkCallback;

} UxDogClassPart;

16 UIM/X Advanced Topics

New class methods are registered in the swidget’s source (. c1. c) file.

The Instance Structure

As mentioned previously, a swidget class does not need to add fields to the instance
structure. However, an instance structure must still be defined for the swidget class.
The standard approach is to use the definition of the superclass’ instance structure;

typedef primitive dog;
In this example, the dog instance structure is defined to be the instance structure of
the primitive swidget class.

Global Variables

The private header file should contain extern declarations for the global
variables used by the class:

/* Declarations of global variables for dog class */
/* Swidget class ID returned by UxRegister class
* in dog.cl.c.
*/
extern Class_t UxC dog;
/* Class property IDs returned by calls to
* UxFixed class prop in dog.cl.c.
*/
extern binptr UxP DogRD wagTime;
extern binptr UxP_DogRD barkTime;
extern binptr UxP_DogRD barkCallback;

/*
* Class method IDs (if any) returned by calls to

* UxFixed class method in the .cl.c file. There are
none

* for the dog class.

*

* extern binptr UxM Woof;

*/

UIM/X Advanced Topics 17

Summary

The private header file of a swidget class aways has the same basic layout:

An #include of the private header file of the swidget superclass.
A typedef for the ClassPart structure.

A typedef for the Class structure.

A typedef for the instance structure.

extern declarations for the global variables of the swidget class. These
variables are declared and initialized in the swidget’s sourcefile.

The swidget classID (aClass_t variable).
* IDsof class properties.
» IDsof class methods.

Writing the Swidget Class Source File

The swidget class' . c1. c file contains the function that defines the swidget class.
This function registers the swidget class with UIM/X and initializes the class
structure.

This section describes the organization of the . c1. ¢ file, and tells you how to
write the function that registers the swidget class.

Include Files

The . c1. ¢ fileincludes the following files:

<Xm/Xm.h>, the general header file for Motif.
The public header file of the widget class.
"veos.h", for the declarations of VEOS (Internal Object System) functions.

"valuesOf.h", whichasoincludes "validate.h" and "utype.h",
for the declarations of the UxvaluesOf functions, theUxvalidate
functions, and the xtype and utype I Ds. These names are referred to when you
initialize the resource descriptors of the new class properties.

The private header file of the swidget class.

18 UIM/X Advanced Topics

The #include statementsfrom dog. cl . c are shown below:

#include <Xm/Xm.h> /* Motif header file */
#include “Dog.h” /* Widget-class public header file */
#include “veos.h” /* object system */

#include “valuesOf.h” /* ValuesOf & Validator functions */

#include “dog.cl.h” /* private swidget-class header file */

Global Variable Definitions

Following the #include statements, the . c1 . c file should define the global
variables used to hold the swidget class ID, the class property IDs, and the class
method IDs. These variables are assigned values in the function that registers the
dog class.

The dog swidget class defines the following global variables:
Class_t UxC _dog = NULL_CLASS;

binptr UxP_DogRD wagTime;
binptr UxP_DogRD_barkTime;
binptr UxP_DogRD barkCallback;

e UxC_dog, the swidget class ID, is the value returned by
UxRegister class.

e Thebinptr variables are the class property IDs returned by
UxFixed class_prop.

e Thedog class does not define any new class methods. Class method IDs,
which are also binptr variables, are returned by
UxFixed class method.

Defining the Swidget Class

The . c1. ¢ file contains the definition of the function that defines the swidget
class. Thisfunction, conventionally named UxRegister swidgetClass, iscalled
from the function UxAddUserDefClasses inuser-class.c

The function which defines the swidget class has to accomplish two main tasks:

1. Register the swidget class with UIM/X.

2. Initialize the class structure.

UIM/X Advanced Topics 19

Registering the
Swidget Class

Initializing the
Class Structure

General Class
Initialization

2

A swidget classisregistered by calling UxRegister class. Thisisthefirst
thing done by UxRegister dog:

{

UxC _dog = UxRegister class(“dog”,
UxC primitive,
sizeof (dog) ,

sizeof (UxDogClass)) ;

Thiscall registersthe dog swidget class as a subclass of the primitive swidget class
(UxC_primitive istheclass|D of the primitive class). The value returned by
UxRegister class isthelD of the dog class

The class structureisinitialized by a series of function cals. The initialization
process can be broken down as follows:

e Perform generd classinitialization by setting various UIM/X class properties.
These are internal class properties defined by UIM/X, and there are no
resource descriptors associated with these properties.

e Initialize the class resource descriptors:
e Inherit the class properties of the swidget superclasses.

e Initialize the resource descriptors of any new class properties and add them to
the class' resource set (the PList of resource descriptors for the class
properties—see UxGetResourceSet in Appendix G, “Ux Builder
Functions”).

* Register any new or overriding class methods.
A swidget class has a number of properties that can be set during class
initialization. In particular, there are two UIM/X class properties that must be set.

These are the class properties that specify the name of the swidget class public
header file and the name of the corresponding widget class:

/* General class initialization */

UxPutUxFilename (UxC_dog, “UxDog.h”);

UxPutToolKitClass (UxC_dog, (char *) dogWidgetClass
)

20 UIM/X Advanced Topics

Initializing the
Resource
Descriptors

There are anumber of other UIM/X class properties that can be set:

e The name of the bitmap file containing the icon used to represent the swidget
class. This property is set by UxPut IconBitmap.

e The Class Editor properties. These class properties specify the specialized
editor to be used to edit instances of the class. These properties are set by the
UxPutClassEd~* functions.

For example, suppose you wrote a specialized editor for dog swidgets. You could
install this editor by adding the following code in UxRegister dog:

/* The popup function for the editor */

extern swidget UxPopupDogEditor() ;

UxPutClassEdName (UxC dog, “Dog Editor...”);
UxPutClassEdMnemonic (UxC dog, “d”);
UxPutClassEdIsFavorite (UxC dog, 1);
UxPutClassEdForChild (UxC dog, 1);
UxPutClassEdPopup (UxC_dog, UxPopupDogEditor) ;
There are two steps to initializing the resource descriptors of a swidget class. First,

the properties of the swidget superclass must be inherited. Thisis accomplished by
caling UxInheritResources:

UxInheritResources (UxC dog) ;

Note: UxInheritResources must be called before you add any new properties
defined by the swidget class. UxInheritResources gives the derived class (the dog
classin the above example) its own copy of the superclass' resource set. If you
don't cal UxInheritResources, any properties you add will be added to the
resource set of the superclass.

Thisis because a derived class shares the resource descriptor of an inherited
property with the class that originally defined the property. Note that
UxPutClassResource and UxDefineResource can beused to givea
derived class its own resource descriptor for an inherited property.

Second, the resource descriptors of any new properties defined by the swidget class
must be initialized and added to the class' resource set. Before you can do this,
however, you must obtain a class property ID:

UIM/X Advanced Topics 21

UxP_DogRD wagTime = UxFixed class prop(
“RD_wagTime”,
UxC_dog,
T PNTR,
Offset (UxDogClass, dog.RD wagTime));

UxFixed_class_prop registers the wagTime property and returnsitsID. The class
property ID is passed to UxPutClassResource, the function that adds the property’s
resource descriptor to the resource set:

UxPutClassResource (UxC_dog,

UxP_DogRD wagTime,

UxDefineResource (
RD NAME, “wagTime”,
RD_XTNAME, DogNwagTime,
RD UTYPE, UxUT_int,
RD XTYPE, UxXT_ int,
RD VALUESOF, UxValuesOfNonnegativelInt,
RD VALIDATOR, UxValidateNonnegativelInt,
RD DIVISION, UxSPECIFIC,
/* RD_PUT, UxStdPut_int, (default) */
/* RD_GET, UxStdGet_ int, (default) */
/* RD_PASS, UxPASSO, (default) */
RD _END));

In the above code, UxDefineResource initializes aresource descriptor for the
wagTime property and returnsitSResource_t*, whichisthen passed to
UxPutClassResource. This must be repeated for each new property defined
by the swidget class. See Appendix F, “Resource Descriptors,” for a description of
the fields in the resource descriptor.

Note: Note that UxDefineResource specifies the utype and xtype of the new
property. If awidget class declares a property for which there is no corresponding
UIM/X xtype, you must define a new xtype before initializing the resource
descriptor. See Defining New Xtypes.

22 UIM/X Advanced Topics

Registering
New Class
Methods

A derived class can be given its own resource descriptor for an inherited property.
For example, the following call to UxPutClassResource givesthe dog class
its own resource descriptor for the background property defined by the core class:

UxPutClassResource (UxC_dog,
UxP_CoreRD_background,
UxDefineResource
(RD_EXAMPLE, UxGetRD_background (UxC_dog) ,
RD _END));

The parameter RD_EXAMPLE tells UxDefineResource to get acopy of the
resource descriptor specified by the following parameter and re-initialize its fields.

Suppose the dog class defined a class method named Woof. Thiswould require a
number of changesto dog.cl.c:

There would be aglobal declaration at the top of dog. c1 . cfor the ID of the
class method:

binptr UxM_ Woof;

The UxDogClassPart structure would contain afield of type vhandle for
the class method:

typedef struct UxDogClassPart

vhandle Woof

Resource t *RD wagTime;
Resource t *RD barkTime;
Resource_t *RD_barkCallback;

} UxDogClassPart;

UxRegister dog would contain acall to UxFixed class methodto
register the Woof method:

UxM Woof = UxFixed class method(“UxWoof”, UxC Dog,
T void, Offset(UxDogClass,dog. Woof));

After the registration of the Woof method, UxInit method would be
called to install the function to be used as the Woof method:

UxInit method(UxC dog, UxM Woof, WoofFunction) ;

UIM/X Advanced Topics 23

The declaration of Woof Funct ion would also have to be made available in
dog.cl.c.

Class methods are invoked using the UxType get op functions (where Typeis
oneof PNTR, Void, or Int, and correspondsto the return type of the method). For
convenience, you may want to use a macro to invoke a class method. For example,
this macro definition could be added to dog . c1 . h:

#ifndef UxWoof

#define UxWoof (obj) UxType get op(obj, UxM Woof) (
obj)

#endif

Note: If you add anew method, you are responsible for making sure that the
method is not invoked by a swidget or class that does not know about the method.
For example, the Woof method cannot be invoked by the superclasses of the dog
class:

if (UxIsSubclass(sw, UxC dog))UxWoof(sw);

24 UIM/X Advanced Topics

Summary

The .c1.c filefor aswidget class has this basic structure:

*#include statementsfor the required header files:

o <Xm/Xm.h>

e The public header file of the widget class.

e "veosh"

e "vauesOf.h"

* Theprivate header file of the swidget class.

Global declarations for the variables used by the swidget class:

* AcClass_t variablefor the swidget classID.

binptr variablesfor the class property and class method IDs.

The definition of the function UxRegister class. Thisfunction doesthe
following:

* Registersthe classby calling UxRegister class.

e SetsUIM/X class properties by calling UxPut UxFilename and
UxPutToolKitClass.

* Inherits properties by calling UxInheritResources.
* Registers new properties by calling UxFixed class prop.

e Initializes the resource descriptors for new properties by calling
UxDefineResource, and installs the resource descriptors by calling
UxPutClassResource.

* Registers new class methods.

Writing the Public Header File

The public header file for a swidget class contains the conditional definitions of
C++ class hindings, design-time, and run-time macros:

UxPut and UxGet macros for setting and retrieving the values of the new
properties defined by the swidget class.

UxCreate macros for creating instances of the new swidget class.
C++ class declarations.

UIM/X Advanced Topics 25

The design-time macros are used in code compiled with the -DDESIGN TIME
flag, namely UIM/X. The run-time macros are used in applications compiled from
generated code.

Note: When you compile generated code, you define the symbol DESIGN TIME
only if you want to link your application with UIM/X.

The public header filesusean #ifdef .. #else .. #endif construct to
conditionally define the macros. The#ifdef directive tests whether or not the
symbol DESIGN TIME isdefined. For example, UxDog . h, the public header file
for the dog swidget class, has the following structure;

#ifndef UXDog INCLUDED
#define UXDog INCLUDED
#include “Dog.h”/* Widget class public header file */
#include “UxPrim.h”
#if defined(cplusplus) && !defined(XT CODE)
/* Class declaration */
/* Constructors */
/* Initialisation */
/* Resource accessor functions */

#endif /* _ cplusplus */

#ifdef DESIGN TIME
#if defined(cplusplus) && !defined(XT CODE)
/* extern binding */
#endif /* cplusplus */
/* Design-time UxGet and UxPut macros */
/* Design-time create macro */
felse
#if defined(cplusplus) && !defined(XT CODE)
/* Constructors */
/* Initialization */

#endif /* _ cplusplus */

26 UIM/X Advanced Topics

/* Run-time UxGet and UxPut macros */
/* Run-time create macro */

#endif /* DESIGN_TIME */

#endif /* UXDog INCLUDED */

This example shows the include files required by a public header file:

The public header file of the corresponding widget class (UxDog.h above)
must be included.

The public header file of the swidget superclass (UxPrim.h above) must be
included if the symbol DESIGN TIME isdefined.

Design-Time Macros

For each new property defined by the swidget class, the public header file must
define design-time UxPut and UxGet macros.

/* Design-time UxGet and UxPut macros for DogNwagTime
*/
extern binptr UxP DogRD wagTime;
#define UxGetWagTime(sw) \
UxGET int (sw, UxP_DogRD wagTime, “wagTime”)
#define UxPutWagTime(sw, val) \
UxPUT _int (sw, UxP_DogRD wagTime, “wagTime”, val)

In general, the design-time UxGet and UxPut macros should use the UXGET _type
and UxPUT _type functions corresponding to the utype of the property. For
example, if the utype of aproperty is UXUT_string, then the UXGET _string and
UxPUT_string functions should be used.

Note that an extern declaration of the class property ID is required.

You must also define a macro for creating instances of the swidget classin UIM/X:

/* Design-time create macro */
extern Class_t UxC dog;
#define UxCreateDog(name, parent) \

UxCreateSwidget (UxC_dog, name, parent)

UIM/X Advanced Topics 27

2

Design-Time C++ Member Functions

For each new property defined by the swidget class, the file uxddcppMF.cc must
define Get and Set accessor member functions for design-time use. For example:

int UxDog: :GetWagTime () const

{ return UXGET int (UxThis, UxP DogRD wagTime,
“wagTime”) ; }

void UxDog: :SetWagTime (int val)

{ UxPUT int (UxThis, UxP_DogRD wagTime, “wagTime”,
val) ; }

In general, the bodies of these member functions should be equivalent to the bodies
of the corresponding design-time macros.

You must also define a parameterless constructor, a parametered constructor, and a
CreateSwidget member function for the class. For example:

// Constructors
UxDog: :UxDog () {};
UxDog: :UxDog (const char* name, swidget uXParent)

{

CreateSwidget (name, uXParent) ;

}i
Run-Time Macros

For each new property defined by the swidget class, the public header file must also
definerun-time UxPut and UxGet macros:

/* Run-time UxGet and UxPut macros for DogNwagTime */
#define UxGetWagTime(sw) \

(int) UxGetProp(sw, DogNwagTime)
#define UxPutWagTime(sw, val) \

UxPutProp (sw, DogNwagTime, (XtArgVal) (val))

You can use UxGet Prop and UxPut Prop when no run-time conversion of
property valuesis required. Run-time conversion of property valuesis

28 UIM/X Advanced Topics

required when the xtype and utype of a property differ—that is, when the swidget
and the widget don’t use the same data type to represent a property value. Note that
the value returned by UxGet Prop must be cast to the appropriate type.

When run-time conversion of property valuesis required, the macros must use
UxDDGet Prop and UxDDPutProp.

You must also define amacro for creating instances of the swidget classin
compiled generated code:

/* Run-time create macro */
#define UxCreateDog(name, parent)

\UxCreateSwidget (name, dogWidgetClass, parent)

Run-Time C++ Member Functions

For each new property defined by the swidget class, the public header file must also
contain Get and Set accessor member functions for run-time use. For example:

inline int UxDog::GetWagTime (void) const
{ return (int)DDGetProp (DogNwagTime) ;}
inline void UxDog: :SetWagTime (int wval)
{ DDSetProp (DogNwagTime, ((XtArgVal) (val)));};
inline int UxDog::GetBarkTime (void) const
{ return (int)DDGetProp (DogNbarkTime) ;}
inline void UxDog: :SetBarkTime (int wval)

{ DDSetProp (DogNbarkTime, ((XtArgVal) (val)));};

In general, the bodies of these member functions should be equivalent to the bodies
of the corresponding run-time macros.

You must also define a parameterless constructor, a parametered constructor and a
CreateSwidget() member function for the class. For example:

UIM/X Advanced Topics 29

// Constructors

inline UxDog: :UxDog (void) {};

inline UxDog: :UxDog (const char* name, swidget

uXParent)

{

CreateSwidget (name, uXParent) ;

}i

Note: The design-time UxPut and UxGet macros as well as the design-time C++
accessor member functions for existing properties are defined in the public header
files of the UIM/X swidget classes. The run-time macros are defined in the files
UxPutsMF.h and UxGetsMF . h inuimx_directory/custom/include

Summary

The public header file of a swidget class should contain the following elements:

An #include of the public header file of the widget class.

Definitions of the design-time macros for the swidget class:

UxPutProperty and UxGe t Property macros for setting and retrieving the
values of the new properties defined by the swidget class.

A UxCreateSnidget macro for creating instances of the swidget classin
UIM/X.

Definitions of the run-time macros for the swidget class:

UxPutProperty and UxGe t Property macros for setting and retrieving the
values of the new properties defined by the swidget class.

A UxCreateSnidget macro for creating instances of the swidget classin
generated code.

Definitions of the run-time C++ accessor member functions for the swidget
class:

SetProperty and Get Property macros for setting and retrieving the
values of the new properties defined by the swidget class.

A CreateSwidget constructor for creating instances of the swidget class
in generated code.

30 UIM/X Advanced Topics

In addition, the following should be added to the file uxddcppMF . cc:

« Definitions of the design-time C++ accessor member functions for the swidget
class:

e SetProperty and GetProperty macros for setting and retrieving the
values of the new properties defined by the swidget class.

A CreateSwidget constructor for creating instances of the swidget class
in generated code.

Building UIM/X

You can use the makefile uimx_directory/custom/src/Makefile to compile
the source for the new widget and swidget classes and link them with UIM/X.

If you have the source for the widget class, the WIDGET OBJECTS must list the
object filesfor the new widget class. Themacro SWIDGET OBJECTS must list the
object files for the swidget class. For example, you would define these macros as
follows to build aversion of UIM/X that supports the Dog and Square widget
classes:

WIDGET OBJECTS = Dog.o Square.o
SWIDGET_ OBJECTS = dog.cl.o square.cl.o

If you have only the header files and library for a new widget class, you must
modify the makefile to point to thesefiles. You can usethe X CFLAGS macro to
specify the include path, and the UX LIBS macro to specify the library:

X CFLAGS = -I/usr/include/X11R5 -I/where/they/are
UX LIBS = ExistingFLAGS -L/where/they/are -1Xfwf

Aswell, you would have to compile and link any of the template .c filesyou
have modified. See Using the Custom Makefile for more about using this makefile.

Creating Widgets from UIM/X’s Menus

In UIM/X, users create widgets from the Create menus of the Project Window, the
Browser, and the Selected Widgets popup menu. You can add items to these Create
menus to allow users to create instances of a new widget class.

Aswell, you can add items to the Message Window and Work Area option menus
of the Main Window Editor. These option menus create the message window and
work area elements of amain window.

UIM/X Advanced Topics 31

2

Customizing UIM/X’s Create Menus

UIM/X’s Create menus list the types of widgets the user can create. Figure 2-1
shows the Create menu for custom widgets (custom widgets are new widget classes
derived from the base Xt and Motif widget classes).

The Create menus are defined by the functionsin
uimx_directory/custom/src/cr-menus . c. By modifying thisfile, you can
customize the Create menus:

You can add new menu items. For example, when you integrate new widget
classes with UIM/X, you can |et users create instances of the new classes from
the Create menus.

You can remove menu items. For example, you might want to remove the
menu items for hidden classes.

You can rearrange the Create menus. In a custom GUI builder, you might want
to rename and rearrange the items on the Create menus.

 UMIX - Uniitied EEE
File | Create | Edit View Options Mode Tools Help |
@I _[['M Primitives /El %‘ IE @I i]
Interfa :;\:ce : M drawing Area [
————{Menus b etin Board
Palette | pjajggs - frarin
w- Shelts “| vow Column
| Gadgets | g0
command
Messages scrolled Window
' paned Window
main Window
message Box
selection Box
file SelBox
= hotiz Scale =
T v e

Figure 2-1 Example of a Create Menu

32 UIM/X Advanced Topics

In uimx_directory/custom/src/cr-menus. c, thereisafunction for each
Create menu:

» The Create menus of the Project Window.
» The Create menus of the Browser.
» The Create menus of the Selected Objects popup menu.

The following table lists the functions that define UIM/X’s Create menus. Each of
these functions contains a series of callsto UxAddToCreateMenu. Each call to
UxAddToCreateMenu adds an item to amenu. You customize the Create menus
by adding, removing, and modifying callsto UxAddToCreateMenu.

Interface Create menu [Function
Project Window Shells UxSpecifyTopShellsMenu()
Managers UxSpecifyTopManagersMenu()

Dialogs Custom|UxSpecifyTopDialogsMenu()
UxSpecifyTopCustomMenu()

Browser Selected ObjectsManagers UxSpecifyManagersMenu()
popup Primitives UxSpecifyPrimitivesMenu()
Gadgets UxSpecifyGadgetsMenu()
ICustom Menus [UxSpecifyCustomMenu()
UxSpecifyMenusMenu()

The following code adds the Square menu item (see Figure 2-1) to the Project
Window Custom menu. This code is taken from
uimx_directory/contrib/DogAndSquare/cr-menus. C.

UIM/X Advanced Topics 33

void UxSpecifyTopCustomMenu(casc_swgt, rowcol swgt

)
swidget casc_swgt;

swidget rowcol swgt;

extern Class_t UxC square;

(void) UxAddToCreateMenu(rowcol swgt,
“Square”,
g,
TRUE,
NULL,
UxC_square,

NULL) ;

34 UIM/X Advanced Topics

This code shows the general format of the functions that define the Create menus:

Thereisanextern Class_t declaration for each swidget class for which
thereisanitem onthe menu. The Class_t variables are the swidget class
IDsreturned by UxRegister class during classregistration.

In the above example, UxC_square isthe ID of the square swidget class.
This swidget classisregistered in uimx_directory/contrib/DogAnd-
Square/square.cl.c.

A Class_t variableisrequired for each menu item that allows the user to
interactively create awidget—that is, by clicking, pressing, and dragging the
mouse pointer.

UxAddToCreateMenu iscalled once for each item on a menu. For full
details, see the reference page for this function in Appendix G, “Ux Builder
Functions’. In the call to UxAddToCreateMenu in the above example:

e Thefirst argument is the rowColumn swidget (the Custom menu pane)
passed to UxSpecifyTopCustomMenu by UIM/X.

e The next two arguments are the label and mnemonic of the menu item.
These strings can be defined in the UIM/X message system.

e Thefourth argument specifies whether or not the menu item creates a
top-level widget. The value TRUE indicates that atop-level square widget
will be created.

e Thetwo NULL argumentstell UIM/X that there are no user-supplied
functions to be called before and after the user creates a square widget.

* Thesixth argument, the swidget class ID UxC_square, tellsUIM/X
what type of widget to create when the user selects the item from the
menu.

If thisargument iSNULL, the widget is not interactively created using the
mouse. NULL is passed when you want to pop-up a specialized
editor—such as the Menu Editor—to create the widget. This can be done
by passing the popup function for the editor as the fifth argument to
UxAddToCreateMenu. See UxSpecifyMenusMenu in
uimx_directory/custom/src/cr-menus.c.

UIM/X Advanced Topics 35

36

2

Customizing the Browser’s New Option

When the Browser isthe start-up interface, its File menu contains an item named
New. This menu item creates awidget. The class of widgets created by the New
option is specified in the function UxSpecifyTheNewMenu:

swidget UxSpecifyTheNewMenu(rowcol swgt)

swidget rowcol swgt;

extern Class_t UxC drawingArea;
extern void UxSetUntitledName () ;
swidget new;

new = (swidget) UxAddToCreateMenu(rowcol swgt,
CGETS (MS_WB NEW, DS _MS WB NEW),
CGETS (MS_WB NEW ACC, DS MS WB NEW ACC),T
RUE,
(void (*) ()) NULL,
UxC drawingArea,
UxSetUntitledName) ;

return new;

}

Thisfunction isaso defined in uimx_directory/custom/src/cr-menus. c.

By default, the New item creates DrawingArea widgets. To create an instance of
another widget class, simply replace both occurrences of UxC_drawingArea
with another swidget class ID. The function UxSetUntitledName generatesa
unique name for a widget.

Customizing the Main Window Editor’s Option Menus

The Main Window Editor has option menus for creating the work window and
message window components of a main window. You can customize these option
menus.

Thefile uimx_directory/custom/src/cr-mwe . c contains the two functions
that create the Main Window Editor’s option menus.

UIM/X Advanced Topics

Each of these functionsisaseries of callsto the functions UxAddToMweEditor
and UxAddMweEditorSeparator. Refer to the reference pages for these two
functionsin Appendix G, “Ux Builder Functions”.

For example, in uimx_directory/custom/src/cr-mwe. c, the following code
defines the Message Window option menu:

void UxCreateMweMsgWindow (ptr)
void *ptr;

extern Class_t UxC_separator,

UxC_label,

UxC_text,

UxC_ textField;
UxAddToMweEditor (ptr, CGETS_MWE (NONE), (Class_t)O0);
UxAddMweEditorSeparator (ptr);
UxAddToMweEditor (ptr, CGETS_MWE (LABEL), UxC label) ;
UxAddToMweEditor (ptr, CGETS_MWE (TEXT), UxC_text) ;

UxAddToMweEditor (ptr,CGETS_MWE(TEXTFIELD),
UxC textField) ;

}

e TheClass t variables are the swidget class IDs returned by UxRegister_class
during class registration. The Class t variable passed to UxAddToMweEditor
tells UIM/X the class of the swidgets created by the menu item.

e Thefirst call to UxAddToMweEditor adds the None item to the Message
Window option menu. None destroys any previously selected Message
Window swidget. This behavior isachieved by passing (Class_t) 0 asthe
swidget classID.

e UxAddMweEditorSeparator addsaseparator between thefirst two items
on the option menu.

e The subsequent callsto UxAddToMweEditor add menuitemsfor label,
text, and textField swidgets.

UIM/X Advanced Topics 37

The CGETS_MWE macro retrieves Main Window Editor messages from the
message catalog. This macroisdefinedin
uimx_directory/custom/include/cat _macros.h. It calsthe macro
UXCATGETS which isdefined in
uimx_directory/custom/include/uimx_cat.h.

When you add your own menu items, you can just pass the actual message strings,
unless you have set up catalog messages.

You can customize the Message Window option menu by modifying
UxCreateMweMsgWindow. For example, adding the following code to
UxCreateMweMsgWindow would add the Dog menu item to the Message
Window option menu:

extern Class_t UxC _dog;

UxAddToMweEditor (ptr, “Dog”, UxC dog) ;

Figure 2-2 shows the M essage Window option menu obtained by adding this code
10 UxCreateMweMsgWindow.

| Meszsage Window: Mone ﬂ
Label
1 0K | Text _, Cancel |
Dog

Figure 2-2 Message Window Option Menu

Defining New Xtypes

The data types used to store the property values of a swidget are not necessarily the
same as the data types used by the actual widget (in UIM/X, most property values
are stored as strings and integers).

UIM/X provides a mechanism for converting between the different data types
expected by swidgets and widgets. In UIM/X, each property has a utype and an
xtype. The utype specifies the data type of a swidget property. The xtype specifies
the data type and possible values of awidget property. For each utype-xtype pair,
UIM/X defines a converter function to convert val ues between the utype and the

Xtype.

38 UIM/X Advanced Topics

If awidget class declares a property for which thereis no corresponding xtype, you
must do the following before initializing a resource descriptor for the property:

* Defineanew xtype. The ID of the xtype is stored in the resource descriptor of
the property.

« Define and register a converter function for the new xtype.

Aswell, you may want to supply new Validator and ValuesOf functions for the
property. A Validator function validates property values. A ValuesOf function
provides a textual description of the allowable property values.

UIM/X uses the ValuesOf functions to compose error messages and construct
option menus (if a ValuesOf function returns a non-zero value, UIM/X constructs
an option menu for the property). The error messages are displayed in the Message
Window when an invalid property value is entered, and the option menus are used
in the Property Editor to set property values.

You specify the names of the ValuesOf and Validator functionsin the call to
UxDefineResource that initializes the property’s resource descriptor.

Enumerated Xtypes

An enumerated xtype describes awidget property whose value rangeis restricted to
asmall set of values. For example, the xtype UxXT Boolean describesawidget
property whose value is either 0 or 1.

To define an enumerated xtype, fill inthefileuser-xtype.c:

1. Include the public header file of the widget class.

2. Declareaglobal UxXT variable of type int to hold the ID of the new xtype.

3. Definethree static arrays. These arrays describe the values expected by the
swidget, the values expected by the widget, and the names of constants defined

for the values expected by the widget. These arrays are used for type conver-
sion and code generation.

4. Define a converter function (only if the widget expects values of types other
than int or unsigned char). Thereference page for UxAddConv in
Appendix G, “Ux Builder Functions,” describes the required format.

If the widget expects values of type int or unsigned char, you can
use the built-in converters UxSt ringToInt Enum and
UxStringToCharEnum.

5. Define new ValuesOf and Validator functions for the new xtype.

UIM/X Advanced Topics 39

2

6. Addacall to UxAddEnumType in the function UxAddUserDe f Enum-
Types to register your new xtype with UIM/X. The value returned by UxA -
ddEnumType isstored in the UxXT_ variable declared in step 2 above.

Example The Square widget class declares a new property called MajorDimension. The
possible values of this property are SquareWIDTH and SquareHEIGHT (these
two constants are defined in Square . h). The definition of anew xtype for this
property is contained in the file
uimx_directory/contrib/DogAndSquare/user-xtype.c

First, the public header file for the widget classis included:
#include “Square.h”

A global variable isthen declared to hold the ID of the new xtype:
int UxXT MajorDimension;

Next, three static arrays are defined for the new xtype:
static char *uMajorDimension[] = {

“width”, “height”

}i

static int xMajorDimension[] = {
SquareWIDTH, SquareHEIGHT};
static char *dMajorDimension[] = ({
“SquareWIDTH"”, “SquareHEIGHT”};
¢ uMajorDimension containsthe string values accepted by a swidget.
¢ xMajorDimension containsthe values accepted by the widget.

¢ dMajorDimension containsthe constants defined by Motif for the possible
property values.

These three arrays are passed to UxAddEnumType. The ValuesOf and Validator
functions defined for the new xtype refer to the array uMajorDimension.

40 UIM/X Advanced Topics

The ValuesOf function defines the option menu given to the property in the
Property Editor.

int UxValuesOfMajorDimension(list, n)
char ***list;

int *n;

*list = uMajorDimension;
*n = XtNumber (uMajorDimension) ;

return (*n);

}

The Validator function simply checks that a supplied value is one of the strings
contained in uMajorDimension:;

int UxValidateMajorDimension(sw, val)
swidget sw;
char *val;

int i, n = XtNumber (uMajorDimension) ;

if (val != NULL)
{
for (1 = 0; 1 < n; i++)

{

if (strcmp(val, uMajorDimension[i])

Il
1]
o

return (NO_ERROR) ;

}

return (ERROR) ;

UIM/X Advanced Topics 41

Note: The resource descriptor for the property majorDimension contains pointers
totheUxvaluesOfMajorDimension and UxValidateMajorDimension
functions. These function pointers are stored in the resource descriptor by
UxDefineResource. See
uimx_directory/contrib/DogAndSquare/square.cl.c

Finally, the new xtype definition is registered with UIM/X by calling
UxAddEnumType:

void UxAddUserDefEnumTypes ()
{

UxXT_MajorDimension = UxAddEnumType (
SquareNmajorDimension,
sizeof (int),
xMajorDimension,
uMajorDimension,
dMajorDimension,
XtNumber (uMajorDimension) ,

UxStringToIntEnum) ;

}

Note that this call to UxAddEnumType installs the built-in converter
UxStringToIntEnum for the new xtype.

Non-Enumerated Xtypes

Non-enumerated xtypes can take on any value that can be stored in the data type of
the widget property. Like enumerated xtypes, non-enumerated xtypes are defined
by filling inthefileuser-xtype.c:

1. Declareaglobal UxXT_variable of type int to hold the ID of the new xtype.
Define a converter function. The reference page for UxaddConv in

Appendix G, “Ux Builder Functions,” describes the required format.

Define new ValuesOf and Validator functions, if necessary.

Add acall to UxAddXtype inthe function UxAddUserDefTypes toregis

ter your new xtype with UIM/X. The value returned by UxAddXtype is
stored in the UxXT _ variable declared in step 1.

6. Addacaltouxaddconv inthefunction UxaddUserDef Types to register
the converter function for the new xtype.

ok~ N

42 UIM/X Advanced Topics

Overriding Inherited Class Methods

UIM/X operates on widgets through a suite of methods defined in the swidget
classes. For example, when the user attemptsto create a new widget asachild of an
existing widget, amethod is called on the proposed parent to verify that it can
accept such a child. Some classes, such as drawingArea, accept most children.
Other classes, such as scrolledWindow, can have only afixed number of children.
Each class has its own version of the method that implements the class-specific
rules.

A swidget class inherits the methods of its superclasses. You can override these
inherited class methods. Adding new class methods was discussed earlier in this
chapter, in Defining the Swidget Class.

To override an inherited method, you must define afunction and install it asthe
class method. This function can either augment or replace the existing class
method. To augment a class method, use UxType get op to invoke a superclass
method, and then execute any class-specific code:

#include “prim.cl.h”
void UxDogApply(swidget sw)
{
/* Invoke superclass method */
UxVoid get op(UxC primitive, UxM UxApply) (sw
)
/* Dog-specific stuff
*/printf (“Woof ! Woof !\n”);

}

If the function does not invoke the inherited method, then the derived classis
effectively replacing the inherited method.

You install afunction as a class method using the function UxInit method:
UxInit method(UxC dog, UxM UxApply, UxDogApply)

UxInit method must be called from the function which registers the class
(UxRegister dog, inthisexample).

Note: A function installed as an overriding method must have the same return type
and number and type of arguments as the inherited method.

UIM/X Advanced Topics 43

2

Generating Code and Reading UIL

To generate code or load UIL code for a new widget class, you must extend the
uxcgen and uxreaduil utilities. To do this, you must define the new widget
class and its propertiesin thefileuser-cg-cl.c.

Thisfile contains the stub function CgInitUserDefWidgetClasses. You
enter the definition of anew class and its propertiesin this stub function asfollows:;

e Declareastatic variable of typeWGT CLASS INFO. The
WGT_CLASS_INFO structure holds the definition of a new widget class. The
following table lists the fieldsin thewGT CLASS INFO structure.

Field Description
char *name he name of the swidget class.
char *filename he base name for the name of the public

header file of the swidget class. This base
name is put in initial caps, prefixed with
Ux, and given a .h extension. For
example, dog becomes UxDog . h.

char *supername he name of the swidget superclass.

char *xt name he name of the widget class.

char *uil name' he name of the UIL class. The default

- name is

XmClassName.

char *xt filename he public header file for the widget class.

int dialog T thisis a dialog, U otherwise.

int num resources ope number of new properties (the number
elements in the array of RES_INFO
structures).

RES INFO *resources he array of RES_INFO structures.

L You set this field when you want to extend the uxreaduil utility.

* Declareastatic array of typeRES INFO. TheRES INFO structure holds
the definition of a property. This array must contain an element for each new
property defined by the new widget class. Note that theWGT CLASS INFO
structure contains a pointer to the array of RES_INFO structures. The
following table lists the fieldsin theRES _ INFO structure.

44 UIM/X Advanced Topics

Field

Description

char *name

IThe name of the property (the string entered into the resource
descriptor with the RD NAME parameter).

char *xt_name

The Xt name of the property.

char *xt_name_def

IThe defined constant used in Xt code for this property. The
default is XmNpropertyName.

int callback

1 if this property is a callback, 0 otherwise.

int constraint

1 if this property is a constraint, 0 otherwise.

int rt_conv

1 if this property needs run-time conversion, 0 otherwise.

char *converter

The name of the converter function (for Xt code).

int xtype

ID of this resource’s XTYPE.

int wgt_val

1 if this property is of type widget, 0 otherwise.

int wgt_class_val

1 if this property is of type WidgetClass, 0 otherwise.

int pass

0, 1, or 2. Corresponds to the Pass field in the resource
descriptor.

int res-type

IThe type of resource: NORMAL or SYNTHETIC.

char *list_count_res

'The name of the property that counts the number of list items
(for example, selectionArrayCount or listItemCount).

char *attach_res

IThe name of the attachment property associated with a
widget-valued constraint resource.

e Addanextern declaration for each new xtype (the UxXT propertyName
variables) defined inuser-xtype. c.

* Fillinthefieldsof aRES INFO structure for each new property. Fill in the
fieldsof thewGT CLASS INFO structure for the new widget class.

» CdlcgEnterWidgetClassInfo. Theaddressof theWGT CLASS INFO
structure must be passed to CgEnterWidgetClassInfo.

UIM/X Advanced Topics 45

The code shown below declares and fillsin theRES INFO and
WGT_CLASS_ INFO structures for the Dog widget class:

void CgInitUserDefWidgetClasses ()
static WGT CLASS INFO dog_ class;
static RES_INFO dog res[3];

dog res[0] .name = “barkTime”;

dog res[0] .xt name def = “DogNbarkTime”;

dog res[1l] .name = “wagTime”;

dog_res[1] .xt_name_def = “DogNwagTime”;

dog res[2] .name = “barkCallback”;

dog res[2] .xt _name_def = “DogNbarkCallback”;

dog res[2] .callback = 1;

dog_class.name = “dog”;

dog class.filename = “dog”;

dog class.supername = “primitive”;
dog class.xt name = “dogWidgetClass”;
dog class.xt filename = “Dog.h”;
dog_class.num_ resources = 3;

dog class.resources = dog_res;

CgEnterWidgetClassInfo(&dog class) ;

}

Note that the Dog (and the Square) examplesdo not set theuil name field of the
WGT_CLASS_ INFO structure. Thisis because the uxreaduil utility isnot
extended in these examples.

Note: TheRES_INFO and WGT_CLASS INFO structuresaredefinedin
uimx_directory/custom/include/class_info.h

46 UIM/X Advanced Topics

Building uxcgen

You can use the makefile uimx_directory/custom/src/Makefile to compile
user-cg-cl.c andlink itinto an extended version of uxcgen. Notethat if
you define new xtypes, you must also compile and link thefile user-xtype.c.
See Using the Custom Makefile.

Building uxreaduil

You can use the makefile uimx_directory/custom/src/Makefile to compile
user-cg-cl.c andlink itinto an extended version of uxreaduil. Notethat
if you define new xtypes, you must also compile and link thefile
user-xtype.c. See Using the Custom Makefile.

Note: Thereisno point in extending uxreaduil unless you have extended the
UIL interpreter to handle the new widget class.

Extending the Ux Convenience Library

To use the Ux Convenience Library in code generated for a new widget class, you
must register the properties that need run-time conversion. A property needs
run-time conversion if the widget and the swidget expect different types.

You register properties for run-time conversion using UxDDInstall. Thefile
user-rtime.c containsastub function where you can add callsto
UxDDInstall:

void UxAddRuntimeResources ()

{

extern int UxXT MajorDimension;

UxDDInstall (SquareNmajorDimension,
UxUT_string, UxXT MajorDimension) ;

UxDDInstall (SquareNmakeSquare,
UxUT_string, UxXT Boolean) ;}

This code registers the two properties of the Square widget class for run-time
conversion.

UIM/X Advanced Topics 47

Building the Ux Convenience Library

You can use the makefile uimx_directory/custom/src/Makefile to compile
user-rtime.c andreplaceitinthe Ux Convenience Library. See Using the
Custom Makefile.

Summary of Naming Conventions

The following table summarizes the naming conventions for the variables, data
structures, and functions associated with a swidget class.

Name Description

UxClassClassPart The name of the ClassPart structure. This structure
contains the new fields added to the class structure by a
swidget class. For example, UxDogClassPart.

UxClassClass The name of the class structure. For example,
[UxDogClass.

UxClass The name of the instance structure. For example, UxDog.

UxC_class The name of the Class_t variable that holds the

swidget class ID returned by UxRegister class. For
example, UxC_dog.

RD_propertyName IA pointer to the resource descriptor for the property. For
example, RD_wagTime.

UxP_classRD_propertyNamThe class property 1D returned by
e UxFixed class_prop. For example,
UxP_DogRD wagTime.

|_MethodName The vhandle of a class method.

UxM_MethodName A class method ID returned by

UxFixed class_method.

UxRegister class The function which registers the class and initializes the
class structure. For example, UxRegister dog.

48 UIM/X Advanced Topics

Integrating Components

Overview

You can use UIM/X to build applications with components you have built
yourself or purchased from other vendors. To do this, you must integrate your
components with UIM/X. The integration procedure involves the following
steps:

1. Preparing the integration code for your components.

2. Compiling the integration code.

3. Augmenting UIM/X with this compiled code.

4. Putting your components in a palette so you can distribute them to users.
To help you understand how to integrate components with UIM/X, this chapter
provides aconceptual overview of the tasks performed by the integration code.

It also explains how to augment UIM/X with the integration code and put your
components in a pal ette.

“Writing Initialization Code for UIM/X” dissects the integration code for a
typical component.

UIM/X Advanced Topics 49

INTEGRATING COMPONENTS
3 Understanding What to Do

Understanding What to Do

Integrating a component with UIM/X isalot like integrating awidget. To
integrate awidget, you need a swidget. UIM/X uses swidgets to represent
widgets. A swidget is a shadow widget—a widget's inseparable companion.
UIM/X uses swidgetsto hold the code and data it needs to manipul ate widgets.

To integrate a component, you also need a swidget. In fact, you need a special
kind of swidget called an adapter swidget. An adapter swidget connects
UIM/X to the widgets in a component.

When you integrate a widget, you need to write the code that defines the
swidget. You don’t have to do this when you integrate a component. UIM/X
includes a convenience function for creating adapter swidgets (see the
reference page for UxAdapterSwidget () in Appendix G, “Ux Builder
Functions”).

What you do have to do is write some integration code that wraps the
component in a UIM/X-compatible interface. UIM/X, via an adapter swidget,
operates on the component through this interface.

The integration code presents your component to UIM/X asif it was actually
developed in UIM/X. In other words, the integration code gives theillusion of
being the generated code for a UIM/X Component.

This procedureis similar to augmenting UIM/X with the generated code for
UIM/X Components (components created within UIM/X). The differenceis
that you must write, rather than generate, some integration code for each of
your components.

Wrapping Components

A component defines a public interface consisting of a constructor and a suite
of methods. The methods set and retrieve property values, perform operations
on the component, and register event procedures (callbacks).

To integrate a component, you write both a C and a C++ version of a wrapper
around the component. The C wrapper is a set of methods implemented using
the UIM/X Method system. The C++ wrapper is a C++ class.

50 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Wrapping Components

The wrappers give UIM/X and generated code away to operate on the
component. UIM/X and generated C code use the C wrapper and generated
C++ code uses the C++ wrapper. Figure 3-1 shows how the wrapper code
provides an interface between a component and both UIM/X and generated

code.
Generated Generated
¢ Code C++ Code
CWrapper C++Wrapper

Figure 3-1 Wrapping a Component

UIM/X Advanced Topics 51

INTEGRATING COMPONENTS
3 Understanding What to Do

Wrapping a component for integration with UIM/X involves these tasks:

Writing the C wrapper constructor. This function is like the Interface
Function of a UIM/X Component. In UIM/X, the name of thisfunction is
the value of an instance's Constructor property. UIM/X and generated
code calls the wrapper constructor to create instances of the component.

Writing the C++ wrapper constructor.

Writing the wrapper methods. These are functions that wrap the real
methods of the component, and are used in UIM/X and in generated C
code.

For some components, you will need to write wrapper methods that over-
ride methods inherited from the UxVisual I nterface base class, such as
_set x(), get x(),childSite(),andManage ().

Getting a class code for the component. You need a class code to be able
to register methods for the component in the UIM/X Method system.

You use UxNewInterfaceClassId () toget aclasscode for your
base component class, and UxNewSubclassId () toget classcodesfor
its subclasses. This creates a class hierarchy in UIM/X that parallels your
component class hierarchy. In particular, this allows methods to be inher-
ited within UIM/X.

Registering the wrapper methods and their signatures. You do this by
caling UxMethodRegister () and
UxMethodSignatureRegister () withthe classcode of the
component.

Defining the context structure used by UIM/X to create subclasses of the
component.

Defining the C++ wrapper class. This classisused in generated C++ code
and when the wrapper implementation itself is compiled. The member
functions of the class wrap the real methods of the component.

For some components, you will need to write member functions that over-
ride virtual member functions inherited from the UxVisual I nterface base
class, suchas _set x(), get x(),childSite(), andMan-

age ().

Defining C and C++ bindings. These bindings are macros whose
definitions are conditional on the language being used.

52 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Creating Adapter Swidgets

The C bindings use the UIM/X Method system (UxMethodLookup ())
to invoke the wrapper methods. The C++ bindings call member functions
of the component’swrapper class. The binding macros are used by UIM/X
and by generated code to set and retrieve properties and to manipulate the
component.

Creating Adapter Swidgets

UIM/X handles all of the interface elements in a project using swidgets. Each
component must have a constructor function that returns a swidget. When you
build componentsinside UIM/X, this swidget is supplied by the generated
code. For your other components, you must create a special adapter swidget to
connect UIM/X to the Motif elementsin your components.

An adapter swidget isaspecial class of swidget that represents an instance of a
component in UIM/X. The adapter swidget holds on to the design-time (or
run-time, for generated code) swidget information such as the class code used
for method dispatch.

You obtain this class code by calling UxNewInterfaceClassId() or
UxNewSubclassId (). You attach methods to the adapter swidget by
registering methods against this class code.

To create an adapter swidget, you use UxAdapterSwidget (). This
function requires a Motif widget (usually the controlling widget of the
component) and a class code.

Managing Instances

The C wrapper constructor must not manage (in the Xt sense of the word) the
widgets of the underlying component. UIM/X expects the C wrapper
constructor to create the component, call UxAdapterSwidget (), and
return an adapter swidget. At that point, the component should have created its
widgets, but not managed them.

UIM/X manages the component by invoking the method
VisualInterface Manage () onthe component. Componentsinherit a
version of this method from the UxVisualInterface base class, but can provide
their own version if required.

UIM/X Advanced Topics 53

INTEGRATING COMPONENTS
3 Understanding What to Do

Designating a Child Site

Components that can accept children must defineachildsite () method.
This method designates a child site by returning the swidget whose widget can
be used as the parent of the component’s children.

A component’s child site widget is usually the widget linked to the
component’s adapter swidget by UxAdapterSwidget () . If the child site
widget is some other widget, you must create another adapter swidget for that
widget.

Creating Instances of your Components

In UIM/X, you create an Instance when you reuse one interface in another
interface. The interface being reused is called a Component, and each use of
the Component is an Instance.

When you integrate your components with UIM/X, they can be used as
Components too. The user can build an interface with your components and
then reuse it by creating an Instance of it.

UIM/X callsthe method UxCanBeAnInstance () to determine whether or
not the user can create an Instance of a component. If
UxCanBeAnInstance () returns False for acomponent, then the user can
not create an Instance of that component. This means that any interface where
the component is top-level cannot be reused as an Instance.

If UxCanBeAnInstance () returnsTrue, or if the component has no such
method, UIM/X letsthe user create an Instance of the component. So if you
don’t want the user to create Instances of one of your components, you must
define amethod named UxCanBeAnInstance () for the component.

54 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Defining Design-Time Methods 3

#ifdef DESIGN TIME
int UxMessageDialog UxCanBeAnInstance Id = -1;

char* UxMessageDialog UxCanBeAnInstance Name
="UxCanBeAnInstance”;

static int
_MessageDialog UxCanBeAnInstance (swidget sw,

Environment *pEnv)

if (pEnv)
pEnv->major (CORBA: :NO_EXCEPTION) ;
return 0;

}

#endif

Defining Design-Time Methods

In addition to writing wrapper methods for a component’s own methods, you
may have to implement some methods for UIM/X to use internally during
design-time.

The adapter swidget forwards some design-time actions to the underlying
component by trangd ating them into methods. These design-time methods are
UxCheckChildren (), UxDrawHandles (), and
UxObjectToRecreate ():

UIM/X Advanced Topics 55

INTEGRATING COMPONENTS
3 Overriding the Geometry-Handling Methods

* UxCheckChildren () determineswhether or not the parent can accept
the proposed children. By default, the method rejects children if the parent
doesnot haveachildsite () method.

char *UxCheckChildren (swidget parent, Environment
*pEnv, int nkids, Class_t *classes, swidget
*kids) ;

If parent can accept children, UxCheckChildren () returnsNULL.

Otherwise, it returns an error message. The adapter relays the design-time

method UxWidgetCannotAcceptChildren () to this component

method.

e UxDrawHandles () draws selection handles on the component. By
default, it draws the selection handles on the widget passed to
UxAdapterSwidget ().

void UxDrawHandles (swidget adapter, Environment
*pEnv) ;

The adapter relays the design-time method UxDrawHandles () tothe

component method of the same name.

e TUxObjectToRecreate () specifiesthe object to recreate when the
user edits one of the children of a component. By default, it returns the
adapter swidget for the component.

swidget UxObjectToRecreate (swidget

adapter, Environment *pEnv, swidget parent) ;
The adapter relays the design-time methods UxRecreateSwidget ()
and UxRecreateParentOrChild () to this component method.

You use the convenience function UxAdapterDesignMethods () to
register one or more of these methods. See the reference page for

UxAdapterDesignMethods () in Appendix G, “Ux Builder Functions.”

Overriding the Geometry-Handling Methods

The UxVisualInterface base classis an abstract base class that defines accessor
methods for handling instance geometry, both during design time and in
generated code. It defines set and get accessorsfor the x, v, height, and
width propertiesof an instance. These properties appear as Core propertiesin
the Property Editor.

56 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures

When you integrate components with UIM/X, you need to override these
accessor methods with versions that |et the component handle geometry in its
own way.

Adding Event Procedures

Components provide methods for registering event procedures. From the point
of view of acomponent, an event procedure is like a property whose value
happens to be a function pointer. This function will be called when the
component recognizes that an event has occurred. The function must have the
signature expected by the component. For example, the signature for a
KeyDown event might be;

typedef void (*VwKeyDownEventProcedurePtr t)
(VwGuiComponent *comp, void *user data, short
*key, short state);

You could add event procedures as properties by defining set and get
accessors, but this would force the user to define external functions and then
enter function pointers directly in the Property Editor. A more elegant
approach isto give users access to an editor such asthe UIM/X Callback
Editor.

Giving users a Callback Editor for event proceduresis easy, but you must
follow thisrule: al event procedures defined in UIM/X must have the standard
Xt calback signature:

typedef void (*XtCallbackProc) (Widget wid,
XtPointer client data, XtPointer call data) ;

If your component has an event procedure with a different signature, like the
KeyDown example, you must write awrapper event procedure in the
integration code to bridge the gap between Xt-style callback procedures and
the actual event procedure defined by the component.

You can do thisbecausethe call data argument of anXtCallbackProc
is meant to be a structure holding whatever arguments a particular callback
requires. So for an event procedure with special arguments, the wrapper event
procedure will transfer these argumentsinto acall data structure and pass them
along to the user’s callback. For the KeyDown event, the callback structure
would contain thefieldskey and state.

UIM/X Advanced Topics 57

Defining the Event
Procedure

INTEGRATING COMPONENTS
Overriding the Geometry-Handling Methods

You install the wrapper event procedure, not the callback function defined in
the Callback Editor, on the component. When the event occurs, the component
callsthe wrapper event procedure, which composes acall to the user’s callback
function.

This explanation leaves several important questions unanswered. For example,
how do you install awrapper event procedure? And how does UIM/X know to
use the Callback Editor for a given property? Finally, where does the wrapper
event procedure store the Xt CallbackProc pointer? After all, doesn't the
wrapper event procedure need this pointer every time an event occurs?

The answers to these questions define what you must do to give a component

an editable callback property in UIM/X:

1. Toadd an event procedure as a Behavior property, define a special type of
accessor method called a callback accessor. Callback accessors are named
AddEventNameProc(). In this method, you register an event procedure
with the component.

Note: You must use the AddEventNameProc () naming convention to define
a callback accessor. UIM/X examines the name of a method to determine
whether or not it is a callback accessor method.

» Defineacallback structure to hold the arguments passed to the event
procedure by the component.

* Writethe wrapper event procedure registered by the callback accessor.
This procedure stores the arguments received from the component in the
callback structure and then composes a call to the user’s callback function
(exactly how thisis doneis explained below). The callback structureis
passed as call datato the callback.

By defining a callback accessor named AddEventNameProc (), you are
telling UIM/X that the component has a property named EventName, and that
this property belongs in the Behavior category of the Property Editor. UIM/X
automatically makes the Callback Editor available for the property.

58 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures

Thejob of the callback accessor istoinstall awrapper event procedure on the
component. The method accepts an Xt CallbackProc pointer and aclient
data pointer, both of which must be passed on to the wrapper event procedure.

e TheXtCallbackProc pointeristhe callback defined by the user in the
Callback Editor.

e Theclient data pointer is the context structure for the interface. You must
pass this on to the user’s callback. UIM/X usesit to give the user access to
the interface-specific variables and the swidgetsin the interface.

Both the callback and the client data must somehow be passed on to the
wrapper event procedure. If the component allows you to pass user datainto
the event procedure, you can store the callback and the client datain astructure
and pass it as the user data. For example, consider the following callback
accessor:

static void TextBox AddKeyDownEventProc (swidget
UxThis, Environment *pEnv, XtCallbackProc proc,
void *cd)

VwText *pCmpnt =
(VwText *) UxGetComponentRef (UxThis) ;

if (pEnv)
pEnv->major (CORBA: :NO_EXCEPTION) ;
if (pCmpnt) {pCmpnt->PutKeyPressEvent (

(VwKeyPressEventProcedurePtr t)XkKeyPressEv
entHandler,

XkPackageEventHandlerData (proc, cd, pCmpnt)
)

}
}

This method sets an event procedure by calling the component method
PutKeyPressEvent (). Thefirst argument is the event procedure, and the
second the user data.

UIM/X Advanced Topics 59

Defining a
Callback Structure

Writing the Event
Procedure

INTEGRATING COMPONENTS
Overriding the Geometry-Handling Methods

The user dataisobtained from XkPackageEventHandlerData (), which
alocates a structure and stores the callback and the client datain it:

typedef struct evh data {
XtCallbackProc proc;
void* clientData;

} XkEventHandlerData;

XkPackageEventHandlerData () asoinstallsadestroy callback onthe
component (which is passed as the third argument) to free this user data
structure.

An aternative to passing the callback and client data as user data would be to
use the X context manager. The callback accessor would store the callback and
client data, and let the wrapper event procedure retrieve it later.

You need to define a callback structure for each event type that passes special
arguments to the user’s event procedure. In your wrapper event procedure, you
use the callback structure to pass arguments (as call data) to the user’s callback
function. For example, the following callback structure is defined for the
KeyDown, KeyUp, and KeyPress events of a TextBox:

typedef struct xk key cb data ({
unsigned char char code;
short key;
short state;
} XkKeyEventCallbackData;
You need awrapper event procedure only if the event procedure’s signature
does not match Xt CallbackProc. Thejob of the wrapper event procedure

isto build acallback structure containing its arguments and then call the given
callback.

60 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures 3

For example, consider XkKeyDownEventHandler (), the wrapper event
procedure for the TextBox's KeyPress event:

void XkKeyDownEventHandler (VwGuiComponent*
vwcomp,void* cd, short ascii char, short *key,
short state)

XkEventHandlerData* ehd =

(XkEventHandlerData*) cd;

XkKeyEventCallbackData cbd;

if

}

(ehd) {

/*

* Store the arguments in the callback
structure */

cbd.char code = 0;

cbd.key = *key;

cbd.state = state;

/*

* Call the callback passed by the

* AddKeyDownEventProc * method, and pass
along the

* original client data. */

(* (ehd->proc)) (vwcomp->GuiTarget (),
ehd->clientData, (void*) &cbd) ;

*key = cbd.key;

The expression vwcomp- >GuiTarget () isjust thiscomponent’s way of
getting the widget that received the event. The argument key isa pointer
because the user can modify it in the callback.

UIM/X Advanced Topics 61

INTEGRATING COMPONENTS
3 Generating Integration Code

Generating Integration Code

To better understand how to integrate a component with UIM/X, you may wish
to start by integrating a component built in UIM/X.

UIM/X provides a code generation option called Ux Integration Code, so you
can integrate generated C++ classes with UIM/X.

When you have a project that involves alot of Components, you can use an
overnight build process to integrate finished Components into UIM/X. This
keeps the size of the project down, making it easier to load, edit, and test.

When you finish aComponent, you saveits . i file and then remove it from the
project. The overnight build process convertsthe . i fileto C++ code (using
uxcgen), compilesit, and then linksit into UIM/X.

Another reason for integrating a Component into UIM/X isto make it available
to other developers. Typically thisis done by integrating the Component into
UIM/X, creating an Instance, and then putting it in a Palette.

If you intend to generate C++ code for projects and interfaces that use the
Components you integrate with UIM/X, it makes sense to generate C++ code
for the Component.

But UIM/X iswrittenin C, soto link a generated C++ class with UIM/X, you
need extern C wrappers. But that’s not all. You also need some special
integration code to fit the generated class into the design-time framework of
UIM/X. The Ux Integration Code option generates this special integration
code.

These options are not normally available on the standard Code Generation
Options dialog. (Figure 3-2 shows both Standard and Advanced Code
Generation Options dialogs). In order to display the options required, you must
merge two Builder Engine resources into the current X-resource database.

The C wrappers make a C++ class callable from a C program. The Ux
Integration Code allows UIM/X to manage the component.

62 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures 3

%@i@@?&@mﬁm | ' gel E

— Language ——— — Options Defaults ———
< K&R C 7 Include File
<> ANSIC [” Context Support
& Cet 7 Message Catalog
1 UIL Code Source file suffix |ic
Header file suffix |

[T Use Ux Convenience Library

L ise i Convenience idwary Cor Binlings

oK Apply | Cancel |

Figure 3-2 Standard UIM/X Code Generation Options Dialog

These advanced C++ code generation options become available in the UIM/X
Code Generation Optionswhen UxPrjOptionsCGenGenCWrappers and
UxPrjOptionsCGenGenUxIntCode aresetto true. Itissmply a
matter of merging the above resources into the current X-resource database
prior to starting UIM/X, asfollows:
1. Add therequired Builder Engine resources to the resource database:
xrdb -m
Uimx3 0*UxPrjOptionsCGenGenCWrappers.set:true
Uimx3 0*UxPrjOptionsCGenGenUxIntCode.set:true
When you are through typing, press Ctrl-d to end your xrdb session.
2. Start UIM/X from your current directory::

uimx &

UIM/X Advanced Topics 63

INTEGRATING COMPONENTS
3 Writing the Integration Code

Note: When you generate Ux Integration code, you must also use the Ux
Convenience Library and select the Context Support option.

The constant UX_ C controls whether or not the integration code is compiled.
Note that to properly compile the integration code you need to define both
EXTERN C WRAPPERS and UX_C. Infact, you can generate integration code
only if you also generate extern C wrappers.

When you generate integration code for aclass, you can either compile and
link it with UIM/X or with generated code that uses the class:

e Tolink with UIM/X, compile the integration code with the
-DEXTERN C WRAPPERS, -DUX C, -DDESIGN TIME, and
-luimx_directory/custom/include flags.

The -DDESIGN TIME flagisrequired for any code that you intend to
link into the UIM/X executable. The -luimx_directory/cus -
tom/include flag is necessary because UIM/X requires header files
located inthe /custom/include directory to compile the integration
code.

e Tolink with generated C++ code that uses the class, compile the
integration code without these flags.

» Tolink with generated C code that uses the class, compile the integration
code with the -DEXTERN C_WRAPPERS flag.

Note: A component that contains an instance of a second component cannot be
integrated into UIM/X at the same time as the second component—UIM/X
requires that both components be compiled with integration code, while the
component containing the instance expects the instance component’s code to
be compiled normally.

The UIM/X distribution includes a makefile (uimx_directory/config/
Makefile.uimx) for augmenting the UIM/X executable with object code.
You use this makefileto link the integration code into UIM/X. See Augmenting
UIM/X later in this chapter.

Writing the Integration Code

The previous section showed how to integrate interfaces designed in UIM/X
back into UIM/X as components. Any class where awidget can be provided
can be integrated with UIM/X. However, for these you must write the
integration code yourself.

64 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Adding Event Procedures

This section explains how to write the code that integrates your components
with UIM/X. The approach taken isto explain by example, using the
integration code for an actual CheckBox component. For this reason, the
discussion is very specific about the details of files and source code.

You can choose to do some things differently, aslong as you satisfy the
essential requirement for integration. You must wrap your componentsin a
software layer that matches the kind of APl UIM/X generatesfor itsown
components. To do this, your integration code must contain the following
elements:

e A C-callable constructor function that takes a parent swidget asits first
argument and returns a swidget bound to the widget that represents the
component.

e A set of C-callable methods registered through the UIM/X Method
system, so that UIM/X can operate on the component. These include the
Manage (), childSite (), and the set and get accessor methods.

» A context structure or class declaration (for C or C++ code, respectively)
that can be subclassed by the kind of code UIM/X generates.

* A destroy callback on the widget bound to the component’s swidget.
UIM/X usesXtDestroyWidget () on thiswidget to destroy the
component. You must attach a destroy callback to that widget (in the
constructor) to free any extra data structures allocated by your component.

Writing the Header File

When you create a Component in UIM/X and generate code for it, aheader file
is generated. This header fileis specified by an instance’ sHeaderFile
property in UIM/X. To integrate an external component, you have to writeits
header file yourself. In this header file, you do the following:

* Includethe required files.

» Define the C and C++ bindings for the wrapper methods.
» Define the context structure.

e Define a C++ wrapper class for the component.

e Declare the C wrapper constructor, if necessary. Abstract base classes
don't have awrapper constructor, since they are never instantiated
directly.

UIM/X Advanced Topics 65

INTEGRATING COMPONENTS
3 Writing the Header File

Note: When you write the header file for a component, you use conditional
compilation to create a common C and C++ header.

Including the Required Files

The header file for the base component class of your class hierarchy should
include any general header files required by your components. You must also
include the standard UIM/X headers:

#ifdef XT CODE

#include “UxXt.h”
#else

#include “UxLib.h”
#include “uxproto.h”
#endif

The header UxLib . h contains the declarations and definitions for the Ux
Convenience Library. UxXt . h isthe equivalent header for Xt code, whichis
code that does not use the Ux Convenience Library.

The header file of aderived component class should also include the header
file of its superclass.

Defining the C and C++ Bindings

The C and C++ hindings for a component’s wrapper methods are two sets of
macros. The C bindings are macros that expand to calls to
UxMethodLookup (). The C++ bindings are macros that expand to callsto
member functions of the component’s C++ wrapper class. In this example, the
UX_C macro controls whether the C or the C++ bindings are in force:

#ifdef UX C
// #define C bindings
#else// #define C++ bindings

#endif
The C binding for awrapper method is a macro that uses
UxMethodLookup () to find and invoke the method. For example, the C

binding for the Check Box’s _set_Alignment () method is defined as
follows:

66 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Defining the C and C++ Bindings

#define CheckBox set Alignment (UxThis, pEnv,
Value) \

((int (*) UXPROTO ((swidget, Environment *,
int)))\

UxMethodLookup (UxThis,
UxCheckBox__set Alignment Id,\

UxCheckBox set Alignment Name)) (UxThis,
pEnv, Value)

EXTERNC int UxCheckBox set Alignment Id;
EXTERNC char* UxCheckBox set Alignment Name;

All C binding macro definitions follow the same format:

#define Component Method(UxThis, pEnv, Value) \
((int (*) UXPROTO ((swidget, Environment *,
long))) \

UxMethodLookup (UxThis, UxComponent_Method_Id,\

UxComponent Method_Name)) \(UxThis, pEnv,
Value)

EXTERNC int UxComponent Method Id;
EXTERNC char* UxComponent Method Name;
e Component is the name of the component.

¢ Method isthe name of the wrapper method. Thisisthe value assigned to
UxComponent_Method Name in the component’s source file. For
example, set BackColor isthe name of the wrapper method that sets
the component’'s BackColor property.

* UxComponent_Method 1d holdsthe method ID returned by
UxMethodRegister ().

e UxComponent_Method Name isthe method name passed to
UxMethodRegister (). Thisnameisassigned in the component’s
sourcefile.

e The EXTERNC macro controls the linkage of an identifier. For C++ code,
itisdefined asextern "C".For Ccode, itisdefined asextern.

UIM/X Advanced Topics 67

INTEGRATING COMPONENTS
3 Writing the Header File

The C++ binding for awrapper method calls a member function of the C++
wrapper class:

#define Component Method(c,e,v) \
(int) (((_UxCComponent*)UxGetContext (c)) ->Method (e

,V))

Defining the Context Structure

You need to define a stub context structure for each component:
#if UX_C

typedef struct {

int classId;
} _UxCComponent;
else

// C++ wrapper class definition.
#endif

The context structure is used in generated C code. When you subclass the
component, its context structure becomes the base part of the subclass's
context structure. In generated C++ code, the context structure is replaced with
atrue C++ class.

Defining the C++ Wrapper Class

When you integrate components, you must create a hierarchy of wrapper
classes that parallels the hierarchy of your component classes. For example, if
component A is derived from component B, then the wrapper class for
component A is publicly derived from the wrapper class for component B.

The wrapper class for your base component class must be derived from the
UxVisua Interface base class. For example, the CheckBox wrapper class
_UxCCheckBox isderived from UxCComponent, which is derived from
UxVisualInterface

68 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Defining the C++ Wrapper Class

#include <vwcheck.hh>

class _UxCCheckBox : public _UxCComponent

{

protected:
_UxCCheckBox () {}

public:
_UxCCheckBox (swidget parent, String
ObjectName) ;

swidget create CheckBox()
{ return UxThis; }
VwCheck* CheckBox ()
{return (VwCheck*)XkThisComponent; }

// ..inline accessors..

}

The UxVisua Interface class is the base class for every component or interface
classin UIM/X. It defines set and get accessor methods for the x, vy, height,
and width properties. It dso definesthe Manage () and childSite ()
methods. Subclasses of the UxVisual I nterface base class inherit these methods
and can override them as required.

Each wrapper class defines member functionsthat wrap the real methods of the
corresponding component:

e A public member function that returns Xk ThisComponent, cast to the
appropriate type. The data member XkThisComponent isthe class
pointer for the underlying component. It isinherited from the base
wrapper class (see “ Defining the Base Wrapper Class’ on page 70).

For example, the wrapper class for the Check Box defines the following
member function:

UIM/X Advanced Topics 69

INTEGRATING COMPONENTS
3 Writing the Header File

VwCheck* CheckBox ()

{ return (VwCheck*)XkThisComponent; }

This member function is used by the member functions that invoke the
component’s methods.

Public member functions that wrap the component’s real methods (the
inline accessors). These member functions are invoked by the C++
bindings defined earlier in the header file.

For example, the following member function setsthe A1 i gnment prop-
erty of a Check Box:

int set Alignment (Environment*, int value)
return ((int) CheckBox () ->PutAlignment (

(VwToggleAlignment)value)) ;

}

The name of the member function is the same as the name of the C lan-
guage wrapper method registered with the UIM/X Method system. Note
that the Environment pointer isthefirst argument because this method
isCORBA 1.1.

Defining the Base In addition to the member functions that wrap the component methods, the
Wrapper Class base wrapper class a so defines the following data members and member
functions:

A public data member XkThisComponent. At run-time, this data
member stores the class pointer of the underlying component. The C++
wrapper constructor sets XxkThisComponent after it createsthe
underlying component.

Each derived wrapper class provides amember function for accessing this
data member and casting it to the appropriate type.

A congtructor that initializes Xk ThisComponent.
A destructor that destroys XxkThisComponent.

A version of thechildSite () method inherited from the
UxVisualInterface base class.

Versions of the x, y, width, and height property accessor methods
inherited from the UxVisual Interface base class.

70 UIM/X Advanced Topics

INTEGRATING COMPONENTS

Declaring the C Wrapper Constructor 3
Defining a Derived In addition to the member functions that wrap the component’s methods, a
Wrapper Class wrapper class derived from the base wrapper class also defines the following

member functions:
e A public, default constructor that does nothing.

e A public constructor. The constructor definition is placed in the
integration sourcefile.

» A public member function that returns UxThis (the adapter swidget).
The data member UxThi s isinherited from the UxBase base class. The
wrapper class constructor setsUxThis after it creates the underlying
component.

Note: Abstract classes do not require any constructors.

Declaring the C Wrapper Constructor

The header file must contain a declaration for the C wrapper constructor. Note
that you must usethe extern "C" linkage when compiling under C++.

EXTERNC int create CheckBox ClassId
UXPROTO ((void)) ;

EXTERNC swidget create_ CheckBox UXPROTO ((swidget
parent, string Objectname)) ;

Thefunction create CheckBox ClassId() isused by the C wrapper
constructor, and by subclasses of this class, to get a class code and to register
the wrapper methods.

Writing the Source File

In the source file for a component, you do the following:
¢ Include the required files.

e Write the wrapper methods.

e Write the C++ wrapper constructor.

e Writethe C wrapper constructor.

» Register the wrapper methods.

UIM/X Advanced Topics 71

INTEGRATING COMPONENTS
3 Writing the Source File

Including the Required Files

The source file for a component includes the following files:

e The header files required by the underlying component.

e Thewrapper header file for the component.

* TheUIM/X header filesveos . h and uxmethod. h. These header files
arerequired only for design-time code.

Writing the Wrapper Methods

For each component method that you want to expose to UIM/X (including
property accessor methods), you must write awrapper method. A wrapper
method is a static function that you register using UxMethodRegister ().
This function calls the corresponding method of the component itself:

static int CheckBox set Alignment (swidget
UxThis,

Environment *pEnv, int val)

VwCheck *pCmpnt =
(VwCheck*) UxGetComponentRef (UxThis) ;

if (pEnv)
PEnv->major (CORBA: :NO_EXCEPTION) ;
if (pCmpnt) {
return((int) pCmpnt->PutAlignment (
(VwToggleAlignment)val)) ;

}

return ERROR;

}

72 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Writing the Wrapper Methods

This example isthe set accessor for the Check Box's Al ignment property. It
illustrates the essential elements of awrapper method:

» Thereturn type of the wrapper method corresponds to the return type of
the component method.

» Likeall UIM/X methods, the first argument is a swidget (the adapter
swidget). The Environment pointer isthe second argument because
this method is CORBA 1.1. Subsequent arguments are val ues passed to
the component method. For example, a set accessor method takes athird
argument, which is the property value.

* YouuseUxGetComponentRef () toget the component reference (a
pointer to the component) from the adapter swidget, and then cast it to the

appropriate type.

* Yousetthe major field of the Environment structureto
NO_EXCEPTION.

e Youinvoke the component method using the component reference.

For each wrapper method, you must also define the method |d and Name
variables that you declared in the component’s header file:

int UxCheckBox set Alignment Id = -1;

char* UxCheckBox set Alignment Name =
Y set Alignment”;

The Id variable holds the value returned by UxMethodRegister () when
you register the method. Initializethisvariableto - 1. The Name variable holds
the name of the method. You pass this variable to UxMethodRegister ()
when you register the method.

By convention, the name of the function that implements the wrapper method
is derived from the name of the wrapper method. However, the name of the
function is not important—it is the value of the Name variable that identifies
the method in the UIM/X Method system.

The names of property accessors must be _set_Property and
_get_Property, where Property is the name that appears in the Property
Editor. Other wrapper methods use the same name as the component method.

UIM/X Advanced Topics 73

INTEGRATING COMPONENTS
3 Writing the Source File

Understanding the Wrapper Constructors

The constructor is the function that creates instances of a component. You
need two constructors: a C wrapper constructor (an Interface Function) for
UIM/X and generated code and a C++ wrapper constructor.

At design time, the C wrapper constructor does the work. At run time, the C
wrapper constructor invokes the C++ wrapper class constructor. The
design-time C wrapper constructor must return the adapter swidget that
connects UIM/X to the widgets in the component.

Both constructors accept the same arguments. Thefirst argument is the swidget
parent of the component. This argument is always required. Subsequent
arguments are property values passed to the constructor of the underlying
component. In UIM/X, these properties appear as Core propertiesin the
Property Editor.

Writing the C++ Wrapper Constructor

The C++ wrapper constructor creates the underlying component as a member
of the wrapper class. You use conditional compilation to define the wrapper
class constructor only for run-time code:

#ifndef DESIGN TIME

_UxCCheckBox:: UxCCheckBox (swidget parent,
String ObjectName)

Widget widgetParent;

widgetParent = (parent == NULL) °?

XkCreateImplicitShell (ObjectName)
UxGetWidget (parent) ;

VwContainer *vwparent =
VwGetContainerAdaptor (widgetParent) ;

XkThisComponent = new VwCheck (ObjectName,
vwparent,VW DEF X, VW DEF Y, VW DEF WIDTH,
VW_DEF_HEIGHT, VwFalse) ;

VwCheck *real VwCheck = CheckBox() ;
if (parent == NULL && widgetParent != NULL) {

74 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Writing the C++ Wrapper Constructor

//

// Install destroy callback to free implicit
shell when

// component is destroyed.//

XtAddCallback (real VwCheck->GUI (),
XmNdestroyCallback,

(XtCallbackProc) XkDestroyImplicitShell,
widgetParent) ;

}

UxThis = XkAdapter (parent,
create CheckBox ClassId(),this,
XkThisComponent) ;

}

#endif /* DESIGN TIME */

The wrapper class constructor for the Check Box has to do more than just
create the component and get an adapter swidget for it. The processinvolves
some additional stepsthat may or may not apply to your own components:

1. Determinethe parent widget. A CheckBox component must have a parent
widget, so it is parented to a shell widget if no parent is given. This han-
dles the case when the user creates a primitive component on the desktop.
The function XkCreateImplicitShell () createsatoplLevelShell
widget and returnsit.

2. Get the corresponding component for the parent widget. This parent com-
ponent is passed to the component’s class constructor.

3. Create an instance of the component. Store the pointer in XkThisCom-
ponent.

4. Ingtall adestroy callback to free the implicit shell when the component is
destroyed.

5. Get aclass code for the component and register its methods. The Check-
Box constructor does this by calling the function
create CheckBox_ClassId (). Tounderstand what this function
does, see “ Registering the Methods” on page 79.

6. Get an adapter swidget by calling XkAdapter (). Usethis topassa
pointer to the wrapper class object. Store the adapter swidget returned by
XkAdapter () inUxThis. See“Wrapping UxAdapterSwidget()” on
page 77.

UIM/X Advanced Topics 75

INTEGRATING COMPONENTS
3 Writing the Source File

Writing the C Wrapper Constructor

By convention, the C wrapper constructor is named create Component,
where Component is the name of the component. When you put an instance of
acomponent in a palette, you use this name as the value of the instance’'s
Constructor property.

You use conditional compilation to define the C wrapper constructor so that it
uses the wrapper class constructor at run time:

swidget create CheckBox (swidget parent, String
ObjectName)

{

#ifdef DESIGN TIME
Widget widgetParent;
widgetParent = (parent == NULL) °?

XkCreateImplicitShell (ObjectName)
UxGetWidget (parent) ;

VwContainer *vwparent =
VwGetContainerAdaptor (widgetParent) ;

VwCheck *real VwCheck = new VwCheck

(ObjectName, vwparent,VW_DEF X, VW _DEF Y,
VW_DEF_WIDTH, VW _DEF_HEIGHT, VwFalse) ;

if (parent == NULL && widgetParent != NULL) {
//
// Install destroy callback to free implicit
shell when

// component is destroyed.

//

XtAddCallback (real VwCheck->GUI(),
XmNdestroyCallback, (XtCallbackProc)
XkDestroyImplicitShell, widgetParent) ;

}

return XkAdapter (parent,
create CheckBox ClassId(), 0,real VwCheck) ;

#else

76 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Wrapping UxAdapterSwidget()

UxCCheckBox *uxc CheckBox = new _UxCCheckBox
(parent,ObjectName) ;

return uxc_CheckBox-> create CheckBox() ;
#endif

}

The C wrapper constructor is the C-callable version of the C++ wrapper class
constructor. It does what the wrapper class constructor does, with one
exception: it passes 0to XkAdapter () asthewrapper class pointer.

At run time, the C wrapper constructor createsan _UxCCheckBox object.
Thefunction create CheckBox () retrievesthe adapter swidget, which
the wrapper class constructor stores in the data member UxThis.

Wrapping UxAdapterSwidget()

The CheckBox example uses the function Xkadapter () asawrapper for
UxAdapterSwidget (). Thiswrapper function takes care of setting things
up properly so both UIM/X and generated code can work with the CheckBox
component.

The four arguments are the parent swidget, the class code, a pointer to the
wrapper class object, and a pointer to the component. (In the generated code,
the wrapper class object is the context.)

Whilethe codein XkAdapter () isspecific to the CheckBox, it isagood
example of what you have to do:

e Get the principal widget of a component, and get an adapter swidget for
thiswidget by calling UxAdapterSwidget () :

Widget it = vwcomp->GUI () ;

sw = UxAdapterSwidget (it, parent, XtName (it),
clsCode, vwcomp, UxNO_ CONTEXT) ;

e Check whether or not the component can be an instance by calling its
UxCanBeAnInstance () method.

UIM/X Advanced Topics 77

INTEGRATING COMPONENTS
3 Writing the Source File

#ifdef DESIGN TIME

int (*canBeAnInstance) (swidget, void *) =
NULL;
canBeAnInstance = (int (*) (swidget, void *))

UxMethodLookup (sw, -1,
“UxCanBeAnInstance”) ;

if (canBeAnInstance)

{

/* If it cannot be an instance, then we must
mark

* it as a shell.
*/
if (! (*canBeAnInstance) (sw, &UXEnv))

{

XkSetShell (sw) ;

}

Note: A top-level component is either a shell widget or awidget with an
implicit shell. An example of awidget with an implicit shell isthe
FileSelectionBoxDialog widget, which consists of a DialogShell with a
FileSelectionBox widget asits child.

¢ Add acallback to the widget to destroy the component when the widget is
destroyed:

#ifdef DESIGN TIMEXt

AddCallback (it, XmNdestroyCallback,
(XtCallbackProc)
XkComponentWidgetDestroyed, vwcomp) ;

if (XtIsShell(it)) {XtVaSetvValues(it,
XmNdeleteResponse, XmUNMAP, NULL) ;

}

#else

XtAddCallback (it, XmNdestroyCallback,

78 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Registering the Methods

(XtCallbackProc) XkComponentWidgetDestroyed,
uxc_if);

Note: During design time, some shells cause UIM/X to exit when they are
destroyed, so XmNdeleteResponse must be set to XmUNMAP if the widget
isashell.

e Atruntime, store apointer to the wrapper class object with
UxPutContext ():
UxPutContext (sw, (void *) uxc_if);

This makes the wrapper class object the context in generated code. (Hint:
look for callsto UxGetContext () inthe generated code.)

e Instal acallback on the component to clear XkThisComponent (the
component pointer stored in the wrapper class) when the component is
destroyed:

vwcomp->AddDestroyCallback (

(VwCallbackProcedurePtr t)XkComponentDestroyed
, (void *)uxc if);

¢ Return the adapter swidget obtained from UxAdapterSwidget ().

Note: One last thing to note about XxkAdapter () isthefollowing line:

vwcomp->PutUserData (sw) ;

The CheckBox component has auser datafield, which XkAdapter () usesto
store the adapter swidget. This provides away to get the adapter swidget for a
given component.

Registering the Methods

You must register the methods of your component so that UIM/X can call them
from C code. To do this, you use a function separate from the wrapper
constructor. This allows subclasses to check that their base class methods are
registered.

You use a separate function to register the methods. This function contains a
one-time block of code that gets the class code and then registers the methods:

UIM/X Advanced Topics 79

INTEGRATING COMPONENTS
3 Writing the Source File

int create Derived ClassId(void)

{

static int IfClassCode = -1;
if (IfClassCode == -1)

{

IfClassCode = UxNewSubclassId
(create_ Base ClassId())

// Register methods.

return IfClassCode;

}

You use UxNewSubclassId () toget aclass code for the component class.
UxNewSubclassId () acceptsoneargument, whichisthe classcodefor the
component’s base class. To get this class code, you smply call the base class's
ClassId() function.

For the root class of your hierarchy, you call
UxNewInterfaceClassId() instead of UxNewSubclassId().
UxNewInterfaceClassId () registersaclassas asubclass of the
UxVisualInterface baseclass.

Once you have a class code, you can register methods against that code with
UxMethodRegister():

UxCheckBox set Alignment Id =
UxMethodRegister (IfClassCode, UxCheckBox set A
lignment Name, (void (*)
()) _CheckBox set Alignment) ;

Aswell, if you want your methods to be available from the Connection Editor,
you must register the method’s signature using
UxMethodSignatureRegister():

80 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Loading Header Files

UxMethodSignatureRegister (1fClassCode,
UxCheckBox set Alignment Name,

UxCreateMethodSignature (UxCheckBox set Alignm
ent Name, Corbal, “int”, UxEnvArgResource(),
UxGetArgResource (“value”, UxUT int,
“VwAlignLeft”,

XkValidateVwToggleAlignment,
XkValuesOfvwToggleAlignment) ,

NULL)) ;

Writing Initialization Code for UIM/X

Some of the integration code for your components has to take care of
initializing UIM/X. This code makesthe Interpreter aware of your components
and customizes the Property Editor.

The standard way of doing thisisto put all the initialization code in one
function, and then call it from the main program file used to augment UIM/X.

Loading Header Files

You must |oad the integration header files for your components into the
Interpreter during UIM/X initialization. Otherwise, the definitions and
declarations they contain will not be known to UIM/X.

To load a component’s integration header file, you call
UxLoadGlobalInclude () with the name of the header file:

UxLoadGlobalInclude (“xkcheck.h”) ;

You call UxLoadGlobalInclude () frommain () inthe UIM/X main
program file uimx_directory/config/uimx_main.cc. Thisensures that
the header files are loaded before any palette files, so palette files can use
symbols defined in the header files.

Because UxAppInitialize () initidizesthe Interpreter, you can not call
UxLoadGlobalInclude () before UxAppInitialize ()

Registering Functions

You must register the wrapper constructors with the Interpreter during UIM/X
initialization. Otherwise, these functions will not be linked into the augmented
UIM/X executable.

UIM/X Advanced Topics 81

INTEGRATING COMPONENTS
3 Augmenting UIM/X

To register awrapper constructor, you call UxRegisterFunction () with
the name of the function and the function pointer:

UxRegisterFunction (“create CheckBox”,
create_ CheckBox) ;

You call UxRegisterFunction() from UxRegisterFunctions() in the UIM/X
main program file uimx_directory/config/uimx_main.cc.

Installing Option Menus and Resource Editors

You use the functions UxInstanceResource () and
UxGlobalInstanceResource () toinstall option menus and resource
editors for instances of your components. In UIM/X, these functions support
properties added by defining set and get accessor methods on the component.

UxInstanceResource () installs an option menu or resource editor for a
given property of agiven component.

UxGlobalInstanceResource () installsan option menu or resource
editor for aproperty with agiven name. Every property with that name getsthe
same option menu or resource editor. If two components have a property with
the same name, both properties get the same option menu or resource editor.

For example, suppose two components have an A1ignment property, but
each component defines a different set of possible values for the property. If
you use UxGlobalInstanceResource () toinstall an option menu, both
Alignment properties get the same option menu.

See Chapter 2, “Integrating Widgets,” for more information on installing
option menus and registering resource editors.

Augmenting UIM/X

Once you have prepared the integration code for your components, you are
ready to build an augmented UIM/X. By augmenting UIM/X, you give users
the ability to create instances of your components.

To build an augmented UIM/X, you use the templ ate makefile
uimx_directory/ config/Makefile.uimx

1. Create aworking directory.

2. Copy uimx_directory/config/Makefile.uimx to your working
directory. Rename the file to Makefile, and use chmod to make thefile
writable.

82 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Installing Option Menus and Resource Editors

3. Copy any required source files to your working directory. For example,
you may have customized the UIM/X main program file (by modifying
the template file uimx_directory/config/uimx_main.cc).

4, Edit the makefile macros:

a. Use AUGEXEC to change the name of the augmented UIM/X
executable. The default nameisuimx_aug.

b. Use AUGMAIN to change the name for the UIM/X main program
file. The default nameisuimx main.cc.

c. UseAPPL_OBJS tolist any C object files, such asthe main
program file, that you want to link into the augmented executable.

d. UseAPPL, CPLUSOBJS to list any C++ object files you want to
link into the augmented executable. For example, if you did not
compile your integration code into alibrary, you would use
APPL_CPLUSOBJS to list the object files for your integration code.
e. UseEXTRA CFLAGS to add C compiler flags.

f. Use EXTRA CPLUSFLAGS to add C++ compiler flags.

g. Use EXTRA LDFLAGS to add linker flags.

h. Use EXTRA UXLIBS tolist any libraries you want to link into the
augmented executable. For example, you use EXTRA UXLIBS tolist
the design-time library of integration code and the implementation
library for your components.
5. Usetouch to ensure that all dependent files are more recent than their
targets.

6. Invokemake using the name of the augmented executable as the target.

Building a Palette

Once you have integrated your components with UIM/X, you need to give
users away to create instances of these components. You do this by building a
palette that contains an instance of each component.

Before you start creating instances, you need to create a new palette (or open
an existing one), and decide what categories you need. For example, you may
want to divide your components into categories such as Primitives, Dialogs,
and Managers.

Note: Refer to the UIM/X User’s Guide for more information on creating and
editing palettes.

UIM/X Advanced Topics 83

INTEGRATING COMPONENTS
3 Building a Palette

Creating Instances

After you decide where you are going to put your components and create any
new categories or palettes, you can start creating instances:

1
2.

SIS e

Make sure there are no selected interfaces.

Create an empty instance by selecting CreateSubclass from the Project
Window menu bar. (When you create a Subclass without first selecting an
interface, you actually end up creating an empty instance—an instance
that has no component.)

In the augmented UIM/X, your components exist only as compiled
code. To create an instance of one of these components, you fill inthe
Declaration properties of an empty instance. These properties define
the component for an instance.

Double-click on the instance to load it into the Property Editor.

Select Declaration from the Category option menu.

Enter the name of the component in the Component property.

Enter the name of the component’s header fileinthe HeaderFile prop-

erty.

Enter the arguments to the component’s constructor in the ArgDefini -

tion property. The ArgDefinition property isastring of declara-

tions:

“swidget parent; char *name;”

Enter the properties and callbacksin the PropDefinition property.

The PropDefinition property isastring of declarations, onefor each

accessor property or callback:

“int x; int y; int wid; int h; void
(*ClickEvent) () ;”

Note: Sometimes you may not want to give the user access to a property or
event of acomponent. To hide properties and events, omit them from the string
of declarations you enter in the PropDefinition property. The user sees
only the properties and events specified by the PropDefinition property.

9. If the component can accept children, enter the class of the component’s
child siteintheCchildSiteClass property.
10. Click Apply.

84 UIM/X Advanced Topics

INTEGRATING COMPONENTS
Putting Instances in the Palette

Putting Instances in the Palette

You now have an instance to put in the palette. But before you do, you might
want to give it an icon and a name. Otherwise, you will get the same icon and
name shown in the Interfaces Areafor a subclass.

1. Select Compound from the Category option menu.

2. Set CompoundIcon to the name of the file containing the icon you want
to use.

3. Set CompoundName to the name you want to appear in the Palette. Use
the underscore character () to break along name across two or more
lines. Thisonly works if the UIM/X resource splitPalIconNames iS
set to true (itsdefault value). Note also that you can truncate long names
by changing shortPalIconNames from false (its default value) to
true.

4. Click Apply. You are now ready to put the instance in the pal ette.

5. Drag theinstance to the palette and drop it in the appropriate category.
Continue for each component until you have afull palette.

UIM/X Advanced Topics 85

INTEGRATING COMPONENTS
Building a Palette

86 UIM/X Advanced Topics

Building Executables

Overview

This chapter describes how to customize and build UIM/X executables using
the makefiles supplied with UIM/X. These makefiles are generic templates
that you can use to update executables and libraries.

By changing the macro definitionsin a copy of a makefile template, you can
quickly adapt a makefile to new requirements. In most cases, you have only to
change the macros that specify the names of files and paths.

The following makefiles are discussed in this chapter:

uimx_directory/custom/src/Makefile

This makefile template updates executables and libraries that depend on
the source filesin uimx_directory/custom/src.
uimx_directory/build/src/Makefile

This makefile template updates executables and libraries that depend on
the source filesin uimx_directory/build/src.
uimx_directory/config/Makefile.uimx

This makefile augments the UIM/X executable by linking it with object
code from other applications.

uimx_directory/mkinclude/central .mk

This makefile contains the rules and additional macro definitions required
by uimx_directory/config/Makefile.uimx and several contrib
makefiles.

UIM/X Advanced Topics 87

BUILDING EXECUTABLES
4 Using the Custom Makefile

Using the Custom Makefile

Usethe makefile uimx_directory/custom/src/Makefile whenyou want
to do one of the following:

* Makethelibrary 1ibuxcustom.a. Thelibrary must be recompiled
when:

* You modify copies of the source files found in the directory
uimx_directory/custom/src. There are many reasons for
modifying the code in one or more of these files. For example,
you can change UIM/X’s Create menus by modifying the codein
cr-menus . ¢, or you can hard-code UIM/X resources by
inserting code in uimx-conf . c.

* You want to integrate a new widget class with UIM/X.
« Makeanew UIM/X executable. Do this when:
* You modify uimx_directory/custom/src/uimx _main.cc.

e Youwanttolink in anew version of the library
libuxcustom. a.

e Makean extended version of the uxcgen utility. When you integrate new
widget classes with UIM/X, you must extend uxcgen so that it can
generate code for the new widget classes.

Thisinvolves modifying thefilesuser-cg-cl.c and
user-xtype.c inthedirectory uimx_directory/custom/src.

e Make an extended version of theuxreaduil utility. Aswith the
uxcgen utility, you would do this to support new widget classes.

* Makeanew version of the 1ibux. a, the Ux Convenience Library. You
must re-build this library when you integrate a new widget class with
properties that require run-time conversion.

Note: UIM/X must be compiled under ANSI mode.To customize UIM/X with
K&R code, modify the custom makefile
uimx_directory/custom/src/Makefile sothat UIM/X iscompiled
under ANSI mode and the K& R code is compiled under K&R mode.

Note: If the SoftBench Encapsulator is not installed on your system, remove
theflag -DUSING SOFTBENCH from the SB_CFLAGS macro before using
the custom makefile.

88 UIM/X Advanced Topics

BUILDING EXECUTABLES
Custom Makefile Macros

Custom Makefile Macros

Themakefiletemplateuimx_directory/custom/src/Makefile containsa
number of macros that you can redefine when you use the makefile. The
following are some common reasons for changing a macro definition:

e To change the file name of an executable.
e To specify the object files used to update a library or executable.
e To adapt the makefile to adifferent directory structure.

The following table defines the macros that you are most likely to want to
modify. You should also examine the makefile itself.

Macro Name Definition
UIMXDIR UIM/X’s home directory.
UX_CFLAGS Used to specify the path or directory containing the

header files included by the source files in
uimx_directory/custom/src.

LIBUXCUSTOM [The copy of 1ibuxcustom. a being updated. Note
that the makefile template assumes this file is in the

current directory.
LIBUXBUILD IThe copy of 1ibuxbuild.a linked with the UIM/X

executable. Change this macro definition to link an
updated version of the library. For example, you may
have used uimx_directory/build/src/Makefile to

make a new libuxbuild.a.
LIBUXRUNTIME IThe copy of 1ibux.a being modified. Note that the

makefile template assumes that this file is in the
current directory.

EXECUTABLE IThe name of the UIM/X executable. Change this
macro definition if you want another name for your
executable.

CGEN IThe name of the code generation utility.

READUIL IThe name of the utility that reads UIL files.

MATIN

IThe name of the source file containing the main ()
function that initializes UIM/X.

WIDGET OBJECTS IA list of the object files for new widget classes being
integrated with UIM/X.

UIM/X Advanced Topics 89

4

BUILDING EXECUTABLES

4 Using the Custom Makefile
Macro Name Definition
SWIDGET oBJECTS A list of the object files for new swidget classes.
BE_OBJECTS A partial list of the object files in 1ibuxcustom.a.
'You can remove references to files that are unchanged.
SB_CFLAGS Defines the constant USING _SOFTBENCH. If your

system does not have the SoftBench include files, you
should replace this macro’s definition with
“SB_CFLAGS = *“.Otherwise you may get errors if
you recompile any of the files UxIo.c,
UxSbinit.c, UxSbutils.c, and UxSbappl.c.

CUSTOM_OBJECTS A list of the object files used to update
1ibuxcustom.a. The macros WIDGET OBJECTS,
SWIDGET OBJECTS, and BE_OBJECTS are expanded
and added to this list. You can remove references to
files that are unchanged.

RUNTIME_OBJECTS |A list of the object files used to update 1ibux.a. You
can remove references to files that are unchanged. To
archive the run-time object files for components in the
run-time library, add the names of the object files to
this list.

CPLUS OBJECTS A list of the object files compiled in C++.

Invoking Make on the Custom Makefile

The following table lists the targetsin
uimx_directory/custom/src/Makefile whose namesare not macro
values. These targets are constant and are always valid arguments for make,
which will always update the same file(s) each time it is passed one of these
target names.

For example, consider the target and rule lines shown below (these lines are
taken from uimx_directory/ custom/src/Makef ile). The command
make executable updatesthe UIM/X executable no matter what valueis
assigned to the EXECUTABLE macro.

executable: $ (EXECUTABLE)

$ (EXECUTABLE) : libuxcustom $ (MAINOBJ) $ (UXOBJ)

@echo “***** Linking $(EXECUTABLE)“$ (CPLUS)
$ (LDFLAGS) $ (MAINOBJ) $(UXOBJ) $(LIBS) -o \
$ (EXECUTABLE)

90 UIM/X Advanced Topics

BUILDING EXECUTABLES
General Procedure for Using the Custom Makefile

Contrast this with the command make uimx, which only updatesthe
executable if the macro EXECUTABLE is set to uimx. If you change the value
of EXECUTABLE to something other than uimx, there is no longer any target
named uimx in the makefile.

In the following table, entries such as $ (EXECUTABLE) refer to the value of
the macro whose name is enclosed in parentheses.

[Target Name File(s) Updated
libuxcustom libuxcustom.a!
libux libux.a
executable B(EXECUTABLE)
cgen B(CGEN)
readuil BS(READUIL)
all libuxcustom.a
B(EXECUTABLE)
libux.a
B$(CGEN)
B(READUIL)

L Invoking make with no arguments will make the library 1ibuxcustom. a.

General Procedure for Using the Custom Makefile

The general procedure for using the makefile template
uimx_directory/custom/src/Makefile isasfollows:

1. Create aworking directory.

2. Copy uimx_directory/custom/src/Makefile toyour working
directory.

3. Copy uimx_directory/custom/src/uimx_main.cc toyour working
directory.

4. Copy any source files and header filesin uimx_directory/custom/src

or uimx_directory/custom/include that you intend to modify to your
working directory. Edit the files as required.

5. If you areintegrating a new widget class, copy the . cc and . h filesfor
the new widget and swidget classes to your working directory. Modify the
makefile macrosWIDGET OBJECTS and SWIDGET OBJECTS tolist
the object files for the new widget and swidget classes.

UIM/X Advanced Topics 91

4

BUILDING EXECUTABLES
4 Using the Build Makefile

To ensure that make properly handles the file dependencies, you
should list the filesin the following format:

WIDGET OBJECTS = \
$ (LIBUXCUSTOM) (Dog.o)
SWIDGET OBJECTS = \

$ (LIBUXCUSTOM) (dog.cl.o)

Copy thelibraries 1ibuxcustom.a and 1ibux. a to your working
directory from uimx_directory/11ib. Note that the makefile template
already refersto the local copies of these libraries.

Execute the command touch *.cc. Thisensuresthat the sourcefiles
are more recent than the libraries.

Execute the command make all.

Using the Build Makefile

Use the makefile uimx_directory/build/src/Makefile whenyou want
to do one of the following:

Makethelibrary 1ibuxbuild. a. Thelibrary must be recompiled when
you modify copies of the filesin uimx_directory/build/src or
uimx_directory/build/include.

These files control the interfaces and widget classes linked into the
UIM/X executable.

Make anew UIM/X executable. You would do this when:
e You modify uimx_directory/build/src/uimx_main.cc.

* Youwant tolink in anew version of the library
libuxbuild.a.

Note: UIM/X must be compiled under ANSI mode.

92 UIM/X Advanced Topics

BUILDING EXECUTABLES
Build Makefile Macros 4

Build Makefile Macros

The makefile template uimx_directory/build/src/Makefile containsa
number of macros that you can redefine when you use the makefile. The
following are some common reasons for changing a macro definition:

e To change the name of the UIM/X executable.
e To specify the object files used to update a library or executable.

e To adapt the makefile to adifferent directory structure.

The following table defines the macros that you are most likely to want to
modify. We suggest you also examine the makefile itself.

Macro Name Definition

[UIMXDIR UIM/X’s home directory.

[LIBUXBUILD IThe copy of 1ibuxbuild.a being updated. Note that the
makefile template assumes this file is in the current
directory.

[LIBUXCUSTOM IThe copy of 1ibuxcustom.a linked with the UIM/X
executable. Change this macro definition to link an
updated version of the library. For example, you may
have used uimx_directory/custom/src/Makefile to
make a new 1ibuxcustom.a.

IThe name of the source file containing the main ()
function that initializes UIM/X.

EXECUTABLE The name of the UIM/X executable. Change this macro
definition if you want another name for your executable.
BUILD_OBJECTS A list of the object files in 1ibuxbuild.a. You can
remove references to files that are unchanged.

MAIN

Invoking Make on the Build Makefile

The following table lists the target in
uimx_directory/build/src/Makefile whose namesare not macro
values. These targets are constant and are always valid arguments for make,
which will always update the same file(s) each time it is passed one of these
target names.

Entries such as $ (EXECUTABLE) refer to the value of the macro whose
name s enclosed in parentheses.

UIM/X Advanced Topics 93

BUILDING EXECUTABLES

4 Augmenting UIM/X
[Target Name File(s) Updated
libuxbuild libuxbuild.a1
executable $(EXECUTABLE)
all libuxbuild.a $(EXECUTABLE)

L Invoki ng make with no arguments will makethelibrary 1ibuxbuild. a.

General Procedure for Using the Build Makefile

The general procedure for using the makefile template
uimx_directory/build/src/Makefile isasfollows:

1
2.

Create aworking directory.

Copy uimx_directory/build/src/Makefile to your working direc-
tory.

Copy uimx_directory/build/src/uimx_main.cc toyour working
directory.

Copy any source filesin uimx_directory/build/src that you intend to
modify to your working directory. Copy the corresponding header filesfor
these source files to your working directory from
uimx_directory/build/include. Edit thefiles asrequired.

Copy thelibrary 1ibuxbuild. a to your working directory from
uimx_directory/11ib. Note that the makefile template already refersto the
local copy of thislibrary.

Execute the command touch *.cc. Thisensuresthat the source files
are more recent than the library.

Execute the command make all.

Augmenting UIM/X

The UIM/X executable can be augmented with the object code of other
applications. In particular, you can compile code generated by UIM/X and link
it into the UIM/X executable.

Linking object code with UIM/X gives the Interpreter access to the functions
in the object code. The Interpreter can execute any compiled function (or
method) contained within the UIM/X executable.

94 UIM/X Advanced Topics

BUILDING EXECUTABLES

Augmenting UIM/X allows you to:

Simplify the development of an interface for an application program. You
can design the application’sinterface, insert calls to the compiled
application functions, and test the interface, all without having to exit
UIM/X.

Link in Components distributed in object form.

Link interfacesinto the devel opment environment.

Large projects have many interfaces. Asindividual interfaces are finished,
you can remove them from the project and make them part of the UIM/X

development environment. As the project progresses, there will be fewer

interfaces to load, edit, and test.

To do this, you generate the code for the interface, compileit, link it with
UIM/X, and remove the interface from the project (but keep a backup
copy of theinterface's . 1 file).

UIM/X alows you to mix compiled and interpreted code, so you can still
test the entire project—the interfaces you load and create interactively can
call the create functions of the interfaces that exist only as object code.

Use a compiled interface as an editor within UIM/X. Suppose you use
UIM/X to create a specialized widget editor. You can make this editor a
part of UIM/X by compiling its generated code and linking it with UIM/X.

The makefile template uimx_directory/config/Makefile.uimx alows
you to augment UIM/X with C and C++ object filesand libraries.

Note: The object code should not contain amain () function. Any
initialization required by the application can be done fromwithinthemain ()
functionin uimx_directory/config/uimx main.cc. If you needto access
the internal data structures of the swidget classes in augmented UIM/X, you
must make sure that the symbol PRIVATE SWIDGET isdefined when you
compile UIM/X. You can do this by adding the flag -DPRIVATE SWIDGET
to the c£1ags resource or to one of the makefile macrosin
Makefile.uimx.

UIM/X Advanced Topics 95

4

BUILDING EXECUTABLES
4 Augmenting UIM/X

Registering Functions

Thefileuimx_directory/config/uimx_main.cc contains the function
UxRegisterFunctions. You register afunction with the Interpreter by
inserting acall to UxRegisterFunction in UxRegisterFunctions.

Registering a function has two advantages:

e It makesthe address of the function known to the I nterpreter, eliminating
the delay associated with looking up the function the first timeitis
encountered.

¢ |t ensuresthat functions from X, C, or other libraries are included in the
executable, and are thus accessible from the Interpreter.

UxRegisterFunction isdeclared asfollows:

void UxRegisterFunction (char *name, void *fptr) ;

The parameter name is the name of the function, and fptr isa pointer to the
function.

When you register afunction, you must also declareit. (If afunction is not
referenced, it will not be linked into the UIM/X executable.) You can do this
by including the appropriate header fileinuimx_main.cc, or adding an
extern declaration. The following example illustrates both approaches:

#include <math.h>

extern char *yourFunction (void) ;
void UxRegisterFunction ()
UxRegisterFunction(“sin”, sin);

UxRegisterFunction (“yourFunction”,
yourFunction) ;

}

Note: Ensure that the function you are preregistering has been declared with its
proper linkage. A C function must be declared asextern “C”.

96 UIM/X Advanced Topics

BUILDING EXECUTABLES
Registering Globals 4

Registering Globals

Thefileuimx_directory/config/uimx_main.cc contains the function
UxRegisterGlobals. You register aglobal with the Interpreter by
inserting acall to UxRegisterGlobal inUxRegisterGlobals

Registering globals has the same advantages as registering functions.

Note: UIM/X preregistersthe globalsin the C library that are part of the ANSI
standard. To use any other globalsin the C library, you must register them with
the Interpreter.

UxRegisterGlobal isdeclared asfollows:

void UxRegisterGlobal (void *name, void *gptr) ;

The parameter name is the name of the variable, and gpt r isapointer to the
variable.

When you register aglobal, you must also declare it. You can do this by
including the appropriate header filein uimx_main.c, or adding an
extern declaration. The following exampleillustrates the second approach:

{ extern int yourGlobal;

void UxRegisterGlobal () ;

} UxRegisterGlobal (“yourGlobal”,
&yourGlobal) ;

Note: Ensure that the global you are preregistering has been declared with its
proper linkage. A C global must be declared asextern “C”.

Conditional Compilation in Generated Code

When you compile generated code and link it with UIM/X, you may want to
avoid certain function calls. A good exampleisXtCloseDisplay. Caling
this function during testing will terminate the UIM/X session. You can use the
DESIGN TIME symbol to control compilation:

#ifndef DESIGN TIME
XtCloseDisplay (UxDisplay) ;
#endif

UIM/X Advanced Topics 97

General
Procedure for
Using
Makefile.uimx

BUILDING EXECUTABLES
Augmenting UIM/X

Whenyou useMakefile.uimx toaugment UIM/X (seebelow), this symbol
is defined.

Using Makefile.uimx

If you examine uimx_directory/config/Makefile.uimx, you will see
that the makefile contains alimited number of macro definitions. Therulesand
additional macro definitions required to build an augmented UIM/X are
contained in the makefile uimx_directory/mkinclude/central . mk,
which isincluded at the end of Makefile.uimx.

Themacrosin uimx_directory/config/Makefile.uimx define the target
and dependent files for augmenting the UIM/X executable. The following
table describes these macros.

Macro Name Definition

AUGEXEC IThe name of the augmented UIM/X executable. In
uimx_directory/mkinclude/central .mk,

$ (AUGEXEC) is the target that builds an augmented
UIM/ZX.

RUGMAIN The object file for the main program file of the

augmented executable.

APPL_OBJS [The list of C object files to be linked with UIM/X.

IAPPL CPLUSOBJS A list of C++ object files to be linked with UIM/X.

Use this macro to define extra C compiler options
required for compiling the files $ (APPL,_0OBJS) . By
default, this macro sets the -DDESIGN TIME flag.
Generated code must be compiled with the
-DUIMX_INTERNAL flag to make an interface into an
editor in UIM/X. You can also use this macro to add the
-DPRIVATE SWIDGET flag.

EXTRA CFLAGS

EXTRA CPLUSFLAGS |Use this macro to add C++ compiler flags.

EXTRA LDFLAGS Use this macro to define any extra link editor options
required for linking object code with UIM/X.

Use this macro to list the libraries you want linked into
EXTRA UXLIBS the UIM/X executable.

The general procedure for using the makefile
uimx_directory/config/Makefile.uimx isasfollows:

1. Create aworking directory.

98 UIM/X Advanced Topics

BUILDING EXECUTABLES
Using Makefile.uimx

2. Copy uimx_directory/config/Makefile.uimx tothefile Make-
f1ile inyour working directory. Renaming the makefile allows you to
invokemake without specifying the name of the makefile.

3. Copy thefileuimx_directory/config/uimx_main.cc to your work-
ing directory. Insert any required initialization codeinuimx main.cc.
The commentsin uimx_main. cc indicate where such code should be
inserted.

4. Copy the source (or object) files you want to compile and link with
UIM/X to your working directory.

5. Modify the makefile macros described in the above table. Use the macros
to name the executable and to list the object file for each sourcefilein
your working directory.

6. If youwant to make an interface into an editor in UIM/X, compile the
interface’s generated code with the flag -DUIMX INTERNAL.

To do this, add -DUIMX INTERNAL to the EXTRA CFLAGS Macro

asfollows:
EXTRA CFLAGS = -DDESIGN TIME -DUIMX INTERNAL
7. Usetouch to ensure that all the files the target depends on are more
recent than the target.

8. Invokemake. Use the value of the macro AUGEXEC to specify the target.

Using central.mk

The makefile uimx_directory/mkinclude/central . mk containstherules
and additional macro definitions required to augment UIM/X. Thismakefileis
included by Makefile.uimx.

Thetarget and rulelinesin central . mk that build an augmented executable
are shown below:

$ (AUGEXEC) : $ (APPL_OBJS) ¢ (APPL_CPLUSOBJS)
$ (UIMXOBJ) $(CPLUS)\ $ (LDFLAGS)
$ (EXTRA LDFLAGS) -o $@ $(APPL_OBJS)\
$ (APPL_CPLUSOBJS) $ (UIMXOBJ) % (LIBS1)

The macros AUGEXEC, APPL_OBJS, APPL_CPLUSOBJS, and
EXTRA LDFLAGS aredefinedin
uimx_directory/config/Makefile.uimx. See Augmenting UIM/X.

UIM/X Advanced Topics 99

4

BUILDING EXECUTABLES
4 Using central.mk

The other macros are defined in central . mk. The following table describes
some of the macros which you can edit to tailor the compilation and linkage of
an augmented executable.

Macro Name Definition
[UIMXOBJ UIM/X’s object files and libraries.

X, Motif, and other libraries linked into an augmented
LIBS1 executable.

X, Motif, and other libraries linked into an application
[LIBS2 executable.

100 UIM/X Advanced Topics

Compound Properties

CanBeTopLevel

Determines whether the widget can be atop level widget.

CanHaveChildren

Determines whether the widget can have additional children. The widget will not
accept any more children after the property CanHaveChildrenissetto false
and applied.

ClipboardOps

Determines whether the widget can be cut, copied, and pasted. Note that a widget
can only be cut if it is deletable.

CompoundEditorName

Determines the name of a compound widget’s specialized editor.

Compoundlicon

Determines the icon used to represent the compound widget. The value of this
property must be the name of the file containing the pixmap or bitmap of theicon.
Valid file formats are X 11 bitmap and XPM.

CompoundName

Determines the name given to a compound widget. This nameis displayed on the
palette.

CompoundResourceSet

Allows you to create design-time properties for the individual widgetsin a
compound widget.

UIM/X Advanced Topics 101

CompoundSwidgetMethodSet

Allows you to create design-time swidget methods for the individual widgetsin a
compound widget.

DragRecursion

Determines the direction in which UIM/X traverses the compound widget
hierarchy when looking for a dragable widget. UIM/X only checks the value of this
property if the region widget is not dragable.

Editor

Allows you to enter the callback which pops up the compound editor. This callback
function is called whenever you do one of the following:

* Create an instance of the compound widget.

» Double-click the Select mouse button on one of the widgets in the compound
widget.

» Select the Compound Editor item from a menu.

EditorClientData

Determines the client data to be passed to the callback function that pops up the
compound editor.

Note that when you install a compound editor, the value of the property
CompoundName identifies the compound editor on UIM/X’s menus. For
example, if you give the name Radio Box to a compound widget, the menu item
Compound Editor becomes Radio Box Editor for the compound widget.

IsAlignable

Determines whether the widget can be aligned with other widgets. If
IsAlignableissetto false for at least one of the selected widgets, the Align
menu is insensitive.

IsAreaSelectable

Determines whether the widget can be selected using range selection. If the widget
isincluded in arange of selected widgets, UIM/X will disallow the selection. A
widget isonly area-selectable if it isselectable (see IsSelectable).

102 UIM/X Advanced Topics

IsArrangeable

Determines whether the widget can be arranged with other widgets. If
IsArrangeable issetto false for at least one of the selected widgets, the
Arrange menu isinsensitive.

IsCompound

Determines whether the widget is a compound widget; used to set the top widget in
a compound.

IsDeletable

Determines whether the widget can be deleted. Note that awidget can only be cut if
itisdeletable.

IsDraggable

Determines whether the widget can be dragged. Note that you can only move a
widget if it isdraggable.

IsDuplicatable

Determines whether the widget can be duplicated.

IsinCompound
Determines whether the widget is part of a compound widget.

IsMovable

Determines whether the widget can be moved. A widget can be dragged evenif itis
not movable. For example, you can drag and drop awidget in the Property Editor
even if its IsMovable property isset to false. Seealso IsReparentable.

IsNovice
Determines whether the widget is built for UIM/X Novice Mode.

IsRecreatable

Determines whether the widget is recreatable.

UIM/X Advanced Topics 103

IsRegion

Determines whether awidget is aregion widget. UIM/X uses region widgets to
determine whether the Adjust button was pressed on a move or aresize region.

IsReorderable

Determines whether you can change the order of a generation of children. When
you view awidget tree in the Browser, a generation of children is ordered from top
to bottom. You reorder a generation of children as follows:

1. Drag and drop widgetsin the Browser. When you drop a child onits parent, the
child goes to the bottom of the order.

2. Pastewidgetsin the Browser.
3. Usethe exchange operationsin the Menu Editor.

Note: Reordering changes the numeric order of alist of children. For example, the
numeric order of items on amenu corresponds to their relative position—the first
(or top) menu item, the second item, and so on. Adding a new menu item reorders
all menu items below it.

IsReparentable

Determines whether the widget can be given a new parent.
IsResizable

Determines whether the widget can be resized.

IsSelectable

Determines whether the widget can be selected. When this property is set to
false, you cannot select the widget. If awidget is not selectable, then it is not
area-selectable.

ResizeRecursion

Determines the direction in which UIM/X traverses the compound widget
hierarchy when looking for aresizable widget. UIM/X only checksthe value of this
property if the region widget is not resizable.

104 UIM/X Advanced Topics

ShowInBrowser

Determines whether the widget is shown in the Browser. This property istypically
set to £alse when you want to make awidget an invisible part of awidget
hierarchy.

UsePropEditor

Determines whether the widget can be loaded into the Property Editor. Note that
once UsePropEditor isset to false and you remove the widget from the
Property Editor, you cannot load the widget back into the Property Editor.

You can override the UsePropEditor property with the toggle UxPEEd it Any. Set
UxPEEditAny.set totrueand either restart or reset UIM/X.

UIM/X Advanced Topics 105

106 UIM/X Advanced Topics

Interface File Format

File Format Concepts

Object Instantiation

Thefirst task that must be accomplished by the UIM/X Interface File Format (1FF)
isthe task of instantiating an object, for example apushbutton, and setting its
properties. The mechanism for thisisto include aline of the following format:

*ObjectName.class: ObjectClass
and then set properties using the X Toolkit syntax for resource specifications:

*ObjectName.resource: value

Note: When the value of a resource requires more than oneline, each line should
be terminated with the backslash "\" character to indicate that the value continues
on the next line.

The acceptable values for value are defined using the standard resource
converters.

For example, to instantiate apushBut ton and set some of its properties, the
following would be used:

*pushButton.class: pushButton
*pushButton.parent: myrowColumn
*pushButton.x: 100

*pushButton.y: 200
*pushButton.width: 500
*pushButton.height: 600
*pushButton.labelString: “Push Me”

UIM/X Advanced Topics 107

B

Instance-Specific and Proprietary Resources

Builders often have resources which are proprietary, or which only exist on specific
instances of awidget. Examples of the former arethe createManaged resource
added to each widget to determine whether to create the widget managed or
unmanaged, and theallowShellResize resource that UIM/X addsto certain
types of managersto control resize behavior. An example of the latter isa
congtraint resource, which only exists as aresource of the widget when the widget
isachild of, for example, aform widget.

Using the exampl e above, to add a manage resource and a constraint resource to the
pushButton would result in the following:

*pushButton.class:pushButton

*pushButton.
*pushButton.
*pushButton.
*pushButton.
*pushButton.
*pushButton.
*pushButton.
*pushButton.

parent: myrowColumn

x:100

y: 200

width: 500

height: 600

labelString: “Push Me”
createManaged: “true”
leftAttachment: “attach form”

Note: Most instance specific resources are found in the Constraint category of the
Property Editor.Most proprietary resources are found in the Compound and
Declaration categories of the Property Editor.

Facets

It isfrequently required to specify attributes of resources. These “ properties of
properties’ are called facets.

108 UIM/X Advanced Topics

For genuine widget resources, the possible facet values for aresource are the
following:
» source facet

Indicates where the generated codeis to be placed. Specifying the value pub -
1lic indicatesthat the value isto be placed in aresource file. The value of the
callback represents an expression yielding a pointer to a callback function
(which may be external to the interface).

Omitting the value pub1ic specifies that the value of the resource represents
abody of code to be placed in a callback function to be generated.

* lock facet
Specifies whether the resource should be considered locked by UIM/X.
When a padlock symbol is displayed beside the text field where the user
would type in the property vaue, the text field cannot be edited.

Interface-Specific Resources

The following resources, found oncein each . i file, represent information that is
global to the entire interface:

class The class type of the object being described. It can be a
widget name, an instance, a connection_action, or a
connection_event, or a palette.

The constructor code executed prior to creation of the

classconstructor * GUI
portions of the interface.

The destructor code added after the interface GUI has

classdestructor * been
destroyed but before the class is destroyed.

The declaration statements provided in the class

classinc * includes
fields of the class view of the Declarations editor.

classmembers * Class member variables and functions.

* Used only when generating C++ code. Fields where this information is entered by
the user are in the class view page of the Declaration Editor.

UIM/X Advanced Topics 109

classspec *

defaultShell

gbldecl

ispecdecl

ispeclist

ispeclist.ispecname

funcdecl

funcname

funcdef

110 UIM/X Advanced Topics

User- supplied class names to also use as parent of
the interface class being defined.

The type of shell to provide for this component if it is
to be created as a toplevel interface and the root of
the widget hierarchy is not itself a shell.

The values as entered by the user in the global
properties of the Declaration Editor.

The declaration of the instance-specific variables as
declared by the user in the Declaration Editor.

A comma-separated list of instance-specific variable
names.

For each variable name in ispeclist, afacetis
generated that contains the decomposition of the
variable’s name and type. The builder derives this
information from the source entered in ispeclist.

All comments and blanks are removed.
The create/popup function declaration as entered

by the user in the Declaration Editor. Note that it is
legal for the user to include comments and
conditional compilation switches in this value. Note
also that the declaration of the interface function
can have either prototypes (as in C++ function
declarations) or a comma-separated list of

arguments (as in K&R C).
The actual name of the interface function. The

builder extracts this value from the funcdecl
resource. This fields contains only an identifier. Any
comments found in funcdeclare removed.

A decomposition of the signature of the interface
function. The builder extracts this information from
funcdecl.

argdecl

arglist

arglist.argname

icode
fcode

auxdecl

ifacefunctype

Methods

A semicolon-separated list of interface function
arguments. This list is derived from funcdecl.
Comments surrounding the arguments are removed.
A comma-separated list of the names of the
arguments of the interface function.

For each argument of the interface function, a
facet of the resource of arglist is created, defining
the argument’s name and type.

The initial code executed prior to the creation of the

GUI portion of the interface.
The final code executed after the creation of the

interface.

Auxiliary functions supplied by the user.
The type of the interface creation function. Can be

either createor popup.

Components are user-defined segments of GUIs that can be re-used, just as any
widget can bere-used. Their behavior, defined by the user, is provided to UIM/X in
the form of virtual methods.

These methods represent, not only behavior of the component, but also the
declaration of an interface to the component. These interfaces are declared by
defining aget and aset method.

methodType
methodArgs
methodBody

methodSpec

accessSpec

The method return type as entered by

the user.
The arguments of the method as entered

by the user in the Method Editor.
The body of the function as entered by

the user.
The method specifier. Values can be

virtual or static. Used in C++ to
determine the kind of member function
to generate.

The access specifier. Used in
C++-generated code, determines the
access to a method. Values are public,
protected, or private.

UIM/X Advanced Topics 111

corba . .
Determines the CORBA supportin force

for a particular method. Values are:
corba2(env as last argument),
corbal(env as second argument), and
none (N0 env argument).
argument A comma-separated list of the names of
the arguments of the method.
A facet, named after a formal argument
of the method, defining the argument’s
argname.def name and type.

Note that some method names have special meaning for both the builder and the
code generator (uxcgen):

_get_Property A cet method (as seen in the Method Editor).
_set_Property A set method (as seen in the Method Editor).
AddCallbackProc A callback accessor method. UIM/X creates a callback

resource in instances of the component. The method is
expected to have a callback signature.

Connections

The Connection Editor simplifies the user’stask of specifying interface behavior
by providing pick-and-choose mechanisms. To accomplish this, UIM/X savesthe
resulting information as objects, with the properties specifying individual aspects
of the connections.

These objects are of the connection event classand are parented to the
source object of the connection. The source object indicates the presence of
connections on the specific callback of a particular widget.

For each connection belonging to aparticular connection event, an object
of connection action iscreated. The resources of this object specify the
particulars of the method and the actual arguments to be used for the connection.

Theresourcesof aconnection event are: class, name, parent, and
callback.

The following resources of the connection action typearepossible:
target The widget that isthe target of the connection.

method The method to use for the particular connection

112 UIM/X Advanced Topics

argument.argname One facet, named after the formal argument it
represents, giving the actual argument to use for this
formal parameter.

Swidget Methods

The Connection Editor relies on the methods defined for aclass (usually defined in
the Method Editor) to present a choice of methods for the connection. Although
thisis suitable for classes built from UIM/X components, as the user will have
defined some methods, it is less appropriate for Motif widgets.

Swidget methods are provided as an alternative. They define the methods as objects
that supply small segments of code to be pasted into the generated callback code. In
this sense, they are similar to in-line member functionsin C++ or their equivalent
macro-defined functions. Since the language options for code generation are not
known when the interface file is generated, code segments are generated for all
possible choices.

In the code segments, certain reserved words are replaced by the appropriate code
to reference either the source or target widget (or swidget). The following

table indicates how the search strings are replaced. “ Target” isthe action’s target
resource value and “return” is the action’s optional return resource value:

Search String UX Mode Xt Mode
UxTargetSwidget farget target
UxTargetwidget — UXGetwidget(target) target
UXReturn return return

Note that there is ho specia keyword for the source of the connection. However in
a callback, the variable Ux can always be used to refer to the source. Since
connections are always expanded within a callback, UxThisis always avail able for
this purpose.

Note also that the value of the UxReturn resource does not have to appear on the
right-hand side of an assignment expression. UxReturn is expected to be an Ivalue,
consequently its address can be passed to a function. This could be used, for
example, with XtGetValue in Xt code generation mode.

A swidget method can be used as many times as there are

connection actions onaninterface, but only one swidget method object is
written in the interface file. The swidget method object is shared among all
connection_actions.

UIM/X Advanced Topics 113

B

The following are resources specific to the swidgetmethod class object:

methodType The method return type.

methodArgs A semicolon-separated list of method arguments.

The code body supplied for Xt code (C++, ANSI C,
methodBody. Xt K&R C).

The code body supplied for Ux code (C++, ANSI C,
methodBody.Ux K&R C).

The code body supplied for C++ code with C++
methodBody.C++ bindings.

A comma-separated list of argument names of a

arguments method.
The decomposition of the argument’s name and it’s
argname.def type.

Loading Interface Files of an Earlier Version

In . i filesof UIM/X version 2.9, private callbacks began with an open brace “{“
and ended with a corresponding closing brace “}”. These braces are no longer
required, and are removed by UIM/X when loading aversion 2.9 interfacefile.

114 UIM/X Advanced Topics

Swidget Class Hierarchy

Overview

The hierarchy of swidget classes generally parallels the hierarchy of Motif widget
classes. Figure C-1 indicates the depth of subclassing. For each swidget class, the
corresponding widget class and the swidget class' private and public header files
are shown.

UIM/X Advanced Topics 115

—l toggleButtond adget |

lobalGadget |~ pushButtendadaet |

| [

adget

1Gadget

label

scrollBar

W

i

list

f—{ seromeatist |

text

T

H scrolledTexd |

awgwButton

1

scale

_{

form

I—i formDialog

diamingArea
bulletinBoard

panedWindew

messageBoxDidog|

errorDialog

warningDialog

workingDialog

ik

questonDialog

InfarmationDialog

TemplaleDinlog

’ E

fletaleel

THeSelect

|

selectionBoxDialog

—lScrolIedWindowH mainkvindow |

| wiv Shell | | owverrideShell |
| vendorShell | | menusS hall |

I topLeveiShell | | transieniShell I
|appﬁca!lon3hen || nonVisualShell ” dialog8hell l

prompiDialog

Figure C-1 Swidget Class Hierarchy

116 UIM/X Advanced Topics

Boubiale

Private Public
Swidget Class Widget Class Header |Header
applicationShell applicationShellWidgetClass japplSh.cL.h [UxApplSh.h
arrowButton xmArrowButtonWidgetClass farrB.cl.h UXATrrB.h
arrowButtonGadget xmArrowButtonGadgetClass @arrBG.cl.h [UXArrBG.h
bulletinBoard xmBulletinBoardWidgetClass |pboard.cl.h |[UxBboard.h
bulletinBoardDialog XxmBulletinBoardWidgetClass pbD.cl.h UxBbD.h
cascadeButton xmCascadeButtonWidgetClass [cascB.cl.h UxCascB.h
cascadeButtonGadget xmCascadeButtonGadgetClass cascBG.cl.h |[UxCascBG.h
command xmCommandWidgetClass comm.cl.Lh [UxComm.h
composite compositeWidgetClass comp.cl.h UxComp.h
Core widgetClass Core.cl.h UxCore.h
dialogShell xmDialogShellWidgetClass dialSh.cl.h [UxDialSh.h
drawingArea xmDrawingAreaWidgetClass |drArea.cl.h |UxDrArea.h
drawnButton xmDrawnButtonWidgetClass |drawnB.cl.h [UxDrawnB.h
errorDialog xmMessageBoxWidgetClass errorD.cl.h |UxErrorD.h
fileSelectionBox xmFileSelectionBoxWidgetClassffsBox.cl.h UxFsBox.h
fileSelectionBoxDialogxmFileSelectionBoxWidgetClassfsBD.cl.h UxFsBD.h
form xmFormWidgetClass form.cl.h UxForm.h
formDialog xmFormWidgetClass formD.cl.h [UxFormD.h
frame xmFrameWidgetClass frame.cl.h UxFrame.h
gadget xmGadgetClass gadget.cLh |UxGadget.h
informationDialog =~ xmMessageBoxWidgetClass infoD.cl.h UxInfoD.h
label xmLabelWidgetClass label.cl.h UxLabel.h
labelGadget xmLabelGadgetClass labelG.cl.h [UxLabelG.h
list xmListWidgetClass list.cl.h UxList.h
mainWindow xmMainWindowWidgetClass |mainW.cl.h [UxMainW.h

UIM/X Advanced Topics 117

Private [Public
Swidget Class Widget Class Header |Header
manager xmManagerWidgetClass mgr.cl.h UxMgr.h
menusShell xmMenuShellWidgetClass menuSh.cl.h [UxMenuSh.h
messageBox xmMessageBoxWidgetClass msgBox.cl.h [UxMsgBox.h
messageBoxDialog xmMessageBoxWidgetClass msgBD.cl.h [UxMsgBD.h
nonVisualShell xmTopLevelShellWidgetClass |nvSh.cl.h UxNvSh.h
overrideShell overrideShellWidgetClass overSh.cl.h [UxOverSh.h
panedWindow xmPanedWindowW.idgetClass [paneW.cl.h [UxPaneW.h
primitive xmPrimitiveWidgetClass prim.cl.h UxPrim.h
promptDialog xmSelectionBoxWidgetClass prompD.cl.h [UxPrompD.h
pushButton xmPushButtonWidgetClass pushB.cl.h [UxPushB.h
pushButtonGadget [xmPushButtonGadgetClass pushBG.cl.h [UxPushBG.h
questionDialog xmMessageBoxWidgetClass questD.cl.h [UxQuestD.h
RectObject rectObjClass rectO.cl.h UxRectO.h
rowColumn xmRowColumnWidgetClass [rowCol.cl.Lh [UxRowCol.h
scale xmScaleWidgetClass scale.cl.h UxScale.h
scrollBar xmScrollBarWidgetClass scrBar.cl.h [UxScrBar.h
scrolledList xmListWidgetClass scList.cl.h UxScList.h
scrolledText xmTextWidgetClass scText.cLh [UxScText.h

xmScrolledWindowWidgetClas

scrolledWindow s scrw.cl.h UxScrW.h
selectionBox xmSelectionBoxWidgetClass selBox.cl.h {UxSelBox.h
selectionBoxDialog xmSelectionBoxWidgetClass selBD.cl.h [UxSelBD.h
separator xmSeparatorwWidgetClass sep.cl.h UxSep.h
separatorGadget xmSeparatorGadgetClass sepG.cl.h UxSepG.h
shell shellWidgetClass shell.cl.h UxShell.h
templateDialog xmMessageBoxWidgetClass templD.cl.h [UxTemplD.h
text xmTextWidgetClass text.cl.h UxText.h
textField xmTextFieldWidgetClass textF.cl.h UxTextF.h

118 UIM/X Advanced Topics

Private Public
Swidget Class Widget Class Header |Header
toggleButton xmToggleButtonWidgetClass ftogB.cl.h UxTogB.h
toggleButtonGadget xmToggleButtonGadgetClass [togBG.cLh [UxTogBG.h
topLevelShell topLevelShellwWidgetClass topSh.cl.h |UxTopSh.h
transientShell transientShellWidgetClass tranSh.cLh [UxTranSh.h
vendorShell vendorShellWidgetClass vendSh.cl.h |UxVendSh.h

Private
Swidget Class Widget Class Header Public Header
warningDialog xmMessageBoxWidgetClass warnD.cl.h [UxWarnD.h
wMShell wmShellWidgetClass wmsSh.cLh [UxWmSh.h
workingDialog xmMessageBoxWidgetClass workD.cl.h [UxWorkD.h

UIM/X Advanced Topics 119

120 UIM/X Advanced Topics

Resource Types

Overview

In UIM/X, the values of most swidget properties are stored as integers and strings.
The actual data types required by the widgets, however, are not necessarily the
same as those used internally by UIM/X.

UIM/X provides a mechanism for converting between the different data types
expected by swidgets and widgets. The resource descriptor of a property identifies
the data type expected by the swidget, the data type expected by the widget, and the
function used to convert between the two types. As well, the resource descriptor
contains pointers to functions for validating and listing property values.

Utypes and xtypes are defined in

uimx_directory/custom/include/utype.h.

UIM/X Advanced Topics 121

D

Utypes

A utype is adatatype used to hold the value of a swidget property. A utypelD is
stored in the resource descriptor of aswidget property. The following table liststhe
utype |Ds defined by UIM/X and the corresponding data types.

ype ID Data Type
UxUT_cardFunction Cardinal (*) ()
UxUT_char char
UxUT_float float
UxUT 1int int
UxUT_long Tong
UxUT_short short
UxUT_string char*
UxUT_stringTable char**
UxUT_vhandle char*
UxUT _visualPointer Visual*
UxUT_voidFunction void (*) ()
UxUT_XmTextSource XmTextSource

Xtypes

An xtype specifies the data type and possible values of awidget property. UIM/X
uses xtypes to describe the property values accepted by awidget. An xtype ID is
stored in the resource descriptor of a swidget property.

Enumerated Xtypes

An enumerated xtype is adata type with alist of possible values. For example, the
enumerated xtype UxXT_ArrowDirection describes awidget property whose
possible values are XmARROW _UP, XmARROW DOWN, XmARROW LEFT, Of
XmARROW RIGHT. UIM/X convertsenumerated xtypesto either UxUT string

or UxUT_int.

The following table lists the I Ds of the enumerated xtype defined by UIM/X.

122 UIM/X Advanced Topics

Enumerated Xtype IDs

UxXT Alignment

UxXT MessageDialogType

UxXT ArrowDirection

UxXT MultiClick

UxXT AudibleWarning

UxXT_MwmInputMode

UxXT AttachmentType

UxXT NavigationType

UxXT_ Bool

UxXT Orientation

UxXT Boolean

[UxXT Packing

UxXT_ChildType

UxXT ProcessingDirection

UxXT ChildPlacement

[UxXT ResizePolicy

UxXT_ChildVerticalAlignment

[UxXT_RowColumnType

UxXT_ CommandWindowLocation

UxXT ScrollBarDisplayPolicy

UxXT EntryVerticalAlignment

UxXT_ScrollBarPlacement

UxXT_ DefaultButtonType

UxXT ScrollingPolicy

UxXT_ DeleteResponse

UxXT SelectionPolicy

UxXT DialogStyle

UxXT SelectionArray

UxXT DialogType

UxXT SeparatorType

UxXT_EditMode

UxXT ShadowType

UxXT FileTypeMask

UXXT_StringDirection

UxXT IndicatorType

UxXT TearOffModel

UxXT InitialWindowState

UxXT UnitType

[UxXT KeyboardFocusPolicy

UxXT VisualPolicy

UxXT LabelType

UxXT WinGravity

UxXT ListSizePolicy

Non-Enumerated Xtypes

Non-enumerated xtypes can take on any value that can be stored in the data type of
the widget property. The following table lists the non-enumerated xtypes defined
by UIM/X. Aswell, for each non-enumerated xtype, the table lists the utype used to
represent the property value. UIM/X installs converters for each xtype, utype pair
listed. If thereis no utype listed, it is because no conversion is required—the xtype

and utype are the same data type.

Xtype 1D Utype Converted To
UxXT Accelerators [UxXUT string
UxXT Atom xUT_string

UxXT bitmap

[UxXUT string

UxXT_ BorderPixmap

xUT_string

[UxXT BottomShadowPixmap

[UxXUT string

UxXT_ char

UxXT Colormap [UxUT long
UxXT CreatePopupChildProc xUT voidFunction
UxXT Dimension [UXUT int

UxXT DirListItems

xUT_string

UxXT DirSearchProc

[UxUT voidFunction

UIM/X Advanced Topics 123

Xtype TD

Utype Converted To

UxXT FileListItems

UxUT string

XXT_FileSearchProc

UxUT voidFunction

UxXT FontStruct

UXUT string

*XT _HighlightPixmap

UxUT string

UxXT HistorylItems

UXUT string

UxXT InsertPosition

UxXUT cardFunction

xXT 1nt

UxUT int

UxXT_Items

UXUT:strlng

xXT KeySym

UxUT string

0xXT Listltems

UXUT string

xXT Pixel

UxUT string

UXXT:Pleap

UXUT string

xXT Position

UxUT int

UXXT:Qual1fySearchDataProc

0XUT_voidFunction

XXT_SelectedItems

UxUT string

UxXT short

UxUT short

xXT String

UxUT string

0xXT_StringOrNull

UXUT string

XXT_TopShadowPixmap

UxUT string

UxXT_Translations

UxUT string

UxXT ValueWcs

UXUT string

XXT_VisualPointer

UxXT Widget

UXUT string

XXT_WidgetClass

UxUT string

UxXT WidgetList

UxUT stringTable

XXT_Window

UxUT string

0%XT_X1ID

UXUT string

xXT_ XmFontList

UxUT string

UxXT XmString

UXUT string

xXT XmTextSource

Validator And ValuesOf Functions

For each xtype defined by UIM/X, there is a ValuesOf function and a Validator

function:

e A VauesOf function provides atextual description of the allowable property

values. UIM/X usesthis text:

* To compose the error messages displayed in the Message Window when

aninvalid property valueis entered.

e To construct an option menu for the property in the Property Editor.

e A Vadlidator function validates a property value.

The names of the ValuesOf and Validator functions are derived from the name of
the associated xtype. For example, the xtype UxXT Alignment hasthe
associated functionsUxvValuesOfAlignment andUxValidateAlignment

124 UIM/X Advanced Topics

The following table lists the Vaidator and ValuesOf functions defined by
UIM/X. The declarations for these functions are contained in the files
uimx_directory/custom/include/valuesOf .h and
uimx_directory/custom/include/validate.h.

alidator Function

aluesOfT Function

UxValidateAccelerators

[UxValuesOfAccelerators

UxValidateAlignment [UxValuesOfAlignment
xValidateAny xValuesOfAny
UxValidateArgc [UxValuesOfArgc
xValidateArgv xValuesOfArgv
UxValidateArrowDirection [UxValuesOfArrowDirection
xValidateAtom xValuesOfAtom
UxValidateAudibleWarning [UxValuesOfAudibleWarning
xValidateBitmap -

UxValidateBool [UxValuesOfBool
xValidateBoolean xValuesOfBoolean

UxValidateBottomAttachment

[UxValuesOfAttachmentType

xValidateBottomWidget

xValuesOfConstraintWidget

- [UxValuesOfCallback
xValidateCardFunction xValuesOfCardFunction
UxValidateChar [UxValuesOfChar
xValidateChiIdPlacement xValuesOfChildPlacement
UxValidateChildType [UxValuesOfChildType
xValuesOfChildVerticalAlign
UxValidateChildVerticalAlignmentment

xValidateChildrenList

xValuesOfChildrenList

UxValidateCmpndResSet

[UxValuesOfCmpndResSet

UxValidateCmpndSwidgetMethodSet

xValuesOfCmpndSwidgetMethod
Set

UxValidateColormap [UxValuesOfColormap
xValuesOfCommandWindowLocat
UxValidateCommandWindowLocation [ion

UxValidateConstraintWidget

[UxValuesOfConstraintWidget

xValidateDecimalPoints

xValuesOfDecimalPoints

UxValidateDefaultButtonType

[UxValuesOfDefaultButtonType

xValidateDeleteResponse

xValuesOfDeleteResponse

UxValidateDescendantWidget

[UxValuesOfDescendantWidget

xValidateDialogStyle

xValuesOfDialogStyle

UxValidateDialogType

[UxValuesOfDialogType

xValidateDimension

xValuesOfDimension

UxValidateDirListItemCount

[UxValidateDirListItemCount

xValidateDirListItems

xValuesOfXmStringTable

UxValidateDragRecursion

[UxValuesOfDragRecursion

xValidateEditMode

xValuesOfEditMode

UxValidateEntryClass

[UxValuesOfEntryClass

UxValidateEntryVerticalAlignment

xValuesOfEntryVerticalAlign
ment

xValidateFileListItemCount

xValuesOfItemCount

UxValidateFileListItems

[UxValuesOfXmStringTable

xValidateFileTypeMask

xValuesOfFileTypeMask

UxValidateFontStruct

[UxValuesOfFontStruct

UIM/X Advanced Topics 125

alidator Function

aluesOfT Function

UxValidateGenericItemsOrItemCoun)
t

UxValidateGeometry

UxValidateGeometry

UxValidateHistoryItemCount

[UxValuesOfItemCount

UxValidateHistoryItems

UxValuesOfXmStringTable

UxValidateImage

UxValuesOfImage

UxValidateIndicatorType

[UxValuesOfIndicatorType

UxValidateInitialWindowState

UxValuesOfInitialWindowState

[UxValuesOfInput

UxValidateInt

UxValuesOfInt

UxValidateIsHomogeneous

[UxValuesOfIsHomogeneous

UxValidateItemCount

[UxValuesOfItemCount

UxValidateItems UxValuesOfXmStringTable
UxValuesOfKeyboardFocusPolic

UxValidateKeyboardFocusPolicy 4

UxValidateKeysym UxValuesOfKeysym

UxValidateLabelType UxValuesOfLabelType

UxValidateLeftAttachment

UxValuesOfAttachmentType

UxValidateLeftWidget

UxValuesOfConstraintWidget

UxValidateListItemCount

UxValuesOfItemCount

UxValidateListItems

UxValuesOfXmStringTable

UxValidateListSizePolicy

[UxValuesOfListSizePolicy

UxValidateMaximum

UxValuesOfScaleMinMaxValue

UxValidateMenuHistoryWidget

UxValuesOfMenuHistoryWidget

UxValidateMenuPost

[UxValuesOfMenuPost

UxValidateMinimum

UxValuesOfScaleMinMaxValue

UxValidateMsgDialogType

UxValuesOfDialogType

UxValidateMultiClick

UxValuesOfMultiClick

UxValidateMwmInputMode

UxValuesOfMwmInputMode

UxValidateNavigationType

UxValuesOfNavigationType

UxValidateNonnegativeInt

UxValuesOfNonnegativeInt

UxValidateNonnegativeShort

UxValuesOfNonnegativeShort

UxValidateOrientation

[UxValuesOfOrientation

UxValidatePacking

[UxValuesOfPacking

UxValidatePaneMaximum

UxValuesOfPaneMaximum

UxValidatePaneMinimum

UxValuesOfPaneMinimum

UxValidatePixel UxValuesOfPixel
UxValidatePixmap UxValuesOfPixmap
UxValidatePointer UxValuesOfPointer

UxValidatePosition

UxValuesOfPosition

UxValidatePositionIndex

UxValuesOfPositionIndex

UxValidatePositiveDimension

UxValuesOfPositiveDimension

UxValidatePositivelInt

[UxValuesOfPositivelInt

UxValidatePositiveShort

UxValuesOfPositiveShort

UxValidateProcessingDirection

UxValuesOfProcessingDirectio
n

UxValidateRadioBehavior

UxValuesOfRadioBehavior

UxValidateResizePolicy

[UxValuesOfResizePolicy

UxValidateResizeRecursion

UxValuesOfResizeRecursion

UxValidateRightAttachment

UxValuesOfAttachmentType

UxValidateRightWidget

UxValuesOfConstraintWidget

UxValidateRowColumnType

[UxValuesOfRowColumnType

UxValuesOfScaleMinMaxValue

UxValidateScaleMultiple

UxValuesOfScaleMultiple

126 UIM/X Advanced Topics

alidator Function

aluesOfT Function

UxValidateScrollBarDisplayPolicy

[UxValuesOfScrollBarDisplayPo
licy

UxValidateScrollBarPlacement

[UxValuesOfScrollBarPlacement

xValidateScrollingPolicy

xValuesOfScrollingPolicy

UxValidateSelectedItemCount

[UxValuesOfItemCount

xValidateSelectedItems

xValuesOfSelectedItems

UxValidateSelectionArray

[UxValuesOfSelectionArray

UxValidateSelectionArrayCount

xValuesOfSelectionArrayCoun
t

UxValidateSelectionPolicy

[UxValuesOfSelectionbPolicy

xValidateSeparatorType

xValuesOfSeparatorType

UxValidateShadowThickness

[UxValuesOfShadowThickness

xValidateShadowType xValuesOfShadowType
UxValidateShort [UxValuesOfShort

xValidateShortDimension xValuesOfShortDimension
UxValidateString [UxValuesOfString

xValidateStringDirection

xValuesOfStringDirection

UxValidateStringTable

[UxValuesOfStringTable

xValidateTearOffModel

xValuesOfTearOffModel

UxValidateTopAttachment

[UxValuesOfAttachmentType

xValidateTopWidget

xValuesOfConstraintWidget

UxValidateTopItemPosition

[UxValuesOfTopItemPosition

UxValidateTranslationString

xValidateTranslations

xValuesOfTranslations

UxValidateUnitType [UxValuesOfUnitType
xValidateUserData xValuesOfUserData

UxValidateValue [UxValuesOfSBMinMaxValue
xValidateValueWcs xValuesOfValueWcs

UxValidateVisualPointer

[UxValuesOfVisualPointer

xValidateVisualPolicy

xValuesOfVisualPolicy

UxValidateVoidFunction

[UxValuesOfVoidFunction

UxValidateWhichButton

xValidateWidget

xValuesOfWidget

UxValidateWidgetClass

[UxValuesOfWidgetClass

xValidateWinGravity

xValuesOfWinGravity

UxValidateWindow [UxValuesOfwindow
xValidateXID xValuesOfXID

UxValidateXmFontList [UxValuesOfXmFontList
xValidateXmString xValuesOfXmString

UxValidateXmStringTable

[UxValuesOfXmStringTable

xValidateXmTextSource

xValuesOfXmTextSource

UIM/X Advanced Topics 127

128 UIM/X Advanced Topics

Class Methods

Overview

Thisappendix containsthe reference pages for the class methods used by UIM/X to
operate on widgets. These methods are defined in the swidget classes. For example,
when the user attempts to create a new widget as a child of an existing widget, a
method is called on the proposed parent to verify that it can accept such a child.
Some classes, such as drawingArea, accept most children. Other classes, such as
scrolledWindow, can have only afixed number of children. Each class hasits own
version of the method that implements the class-specific rules.

A swidget class inherits the methods of its superclasses. You can override these
inherited class methods. See Chapter 2, “Integrating Widgets.”

UIM/X Advanced Topics 129

E init

init
Initializes an instance of a swidget class.
Method ID UxM_init
Synopsis void init (swidget sw);
Arguments sw A swidget.
Return Value None.
Description The init method initializes the fields of a swidget’'s instance structure.
Example /* macro to invoke method */
#define init (sw) UxVoid get op(sw, UxM init) (sw);
See Also UxType get_ op in Appendix G, “Ux Builder Functions”

130 UIM/X Advanced Topics

Method ID
Synopsis
Arguments
Return Value

Description

Example

See Also

UxApply

UxApply
Recreates a swidget hierarchy and exposes the selected swidgets.
UxM_UxApply
void UxApply (swidget sw) ;
sw A swidget.
None.
UxApply calsUxBuild and then redisplays (exposes) all selected swidgets.

The method is named Uxapply because it is often the last thing done to a swidget
when an editor (such as the Property Editor) is applied.

swidget RadioBox;/* rowColumn swidget */

PList ¢ *buttons;/* list toggleButton children of
RadioBox. */

/* Build list of edited buttons */

UxReorder (buttons, RadioBox, 0);

UxApply (RadioBox) ;

UxBuild, uimx_directory/contrib/BuilderEngine/radio. i for the
complete source for the above example.

UIM/X Advanced Topics 131

E

E UxBuild

UxBuild

Recreates a swidget hierarchy.
Method ID UxM_UxBuild
Synopsis void UxBuild(swidget sw, Boolean manage) ;
Arguments sw A swidget.

manage A flag indicating whether or not to pop-up any top-level swidgets

when they are recreated.

Return Value None.
Description UxBuild usesthe method UxRecreateParentOrChild to determine which

swidget to recreate. Once the proper swidget has been found, UxBui1d recreates
the swidget and its descendants:

e It unrealizesthe swidget and its descendants.

e It evaluatesthe Expressionslist and re-initializes the Values list of the swidget
and each of its descendants.

« It validatesthe properties of the swidget and its descendants (invalid property
values are not applied).

* It redlizesthe swidget and its descendants, and pops-up any top-level swidgets.

Note: Overridden subclass methods should always call this version of the method.

132 UIM/X Advanced Topics

UxCanLoseChild E

UxCanLoseChild
Invoked when a child of a swidget is about to be reparented or destroyed.
Method ID UxM_UxCanL oseChild

Synopsis int UxCanLoseChild(swidget parent, swidget child,
swidget newParent) ;

Arguments parent The parent swidget.
child A child swidget.

newParent The new parent swidget, if child isbeing reparented. NULL
otherwise.

Return Value UxCanLoseChild returnsNO_ERROR toindicate that child can be reparented
or destroyed, ERROR otherwise.

Description Removing a child from a constraining parent may violate some cross-dependency.
For example, removing a child from aform may break attachment dependencies.

This method can be used to check with the user before removing a child from a
parent. Aswell, this method could be used to issue observer updateswhen achild is
removed.

UIM/X Advanced Topics 133

Synopsis

Arguments

Return Value

Description

E

UxCheckChildren

UxCheckChildren

Determines whether an adapter swidget isavalid parent for a set of children.

char *UxCheckChildren (swidget parent, Environment
*env, int numChildren, class_t *childClasses,
swidget *children) ;

parent The parent adapter swidget.

env A pointer to a CORBA-compliant Environment structure declared
inuimx_directory/include/UxCorba . h. You can pass
&UxEnvto all methods.

numcChildren The number of children.
childClasses The class of each child.
children The children

UxCheckChildren returns an error message if the parent cannot accept one or
more of the proposed children, and NULL otherwise.

The adapter swidget always relays the UIM/X method
UxWidgetCannotAcceptChildren to the component by calling the method
UxCheckChildren onitself. The component can register the method
UxCheckChildren with its own class code if it wants to validate the interactive
reparenting and creation of children swidgets.

A convenient way to do thisisto call UxadapterDesignMethods. If no
method is registered, the adapter will accept any child aslong asthereisa
designated child site.

134 UIM/X Advanced Topics

UxChildAdded E

UxChildAdded
Invoked after a child is added to a swidget.

Method ID UxM_UxChildAdded
Synopsis void UxChildAdded (swidget parent, swidget child) ;
Arguments parent The parent swidget.

child A child swidget.

Return Value None.

Description UxChildadded informsa parent swidget that a child is being added. This
method can be used to clean up (for example, to issue observer updates) when a
child is added.

UIM/X Advanced Topics 135

E UxChildRemoved

UxChildRemoved
Invoked when a child swidget is removed from its parent.
Method ID UxM_UxChildRemoved

Synopsis void UxChildRemoved (swidget parent, swidget child,

swidget newParent) ;

Arguments parent The parent swidget.
child A child swidget.
newParent The new parent swidget, if child isbeing reparented. NULL
otherwise.
Return Value None.
Description UxChildRemoved informsaparent swidget that achild has been removed. This

method can be used to clean up (for example, to issue observer updates) when a
child is removed.

136 UIM/X Advanced Topics

UxClassValidate E

UxClassValidate

Validates the property values of an instance of a swidget class.

Method ID UxM_UxClassValidate
Synopsis int UxClassValidate(swidget sw, Resource t **res);
Arguments sw Swidget whose Values list is validated.
res Output parameter.
Return Value UxClassValidate exitsand returns ERROR when it finds the first invalid

property value. A pointer to theinvalid property’s resource descriptor is passed
back in res. Thereturn value NO _ERROR indicates that all property values are
valid.

Description UxClassValidate sequencesthrough sw's Valuelist, applying to each
property value the Validator function found in the property’s resource descriptor.
The Declaration properties are skipped.

If UxClassValidate findsaninvalid property value, it outputs a message
(using the property’s ValuesOf function) to the Message Area of the start-up
interface and returns.

UIM/X Advanced Topics 137

E UxClearExpressions

UxClearExpressions

Removes all initial value expressions from a swidget's Expressions list.

Method ID UxM_UxClearExpressions

Synopsis void UxClearExpressions (swidget sw) ;

Arguments sw A swidget.

Return Value None.

Description UxClearExpressions clearsaswidget's Expressionslist by destroying all

initial value expressions and removing their entries from the Expressions list.

138 UIM/X Advanced Topics

Method ID
Synopsis
Arguments
Return Value

Description

UxClearValues

UxClearValues
Removes all entries from a swidget's Valuesllist.
UxM_UxClearValues
void UxClearValues (swidget sw) ;
sw A swidget.
None.

UxClearValues clearsthe Valueslist of aswidget by destroying the associated
data structures and removing their entries from the Valueslist.

UIM/X Advanced Topics 139

E

E

UxDrawHandles

UxDrawHandles

Draws selection handles around a widget.

Method ID UxM_UxDrawHandles

Synopsis void UxDrawHandles (swidget sw) ;

Arguments sw A swidget.

Return Value None.

Description UxDrawHandles draws selection handles around the widget and any gadget

children that have swidgets in the selected list.

140 UIM/X Advanced Topics

UxDrawHandles E

UxDrawHandles
Draws selection handles around an adapter widget.

Synopsis void UxDrawHandles (swidget sw, Environment *env) ;
Arguments sw An adapter swidget.
env A pointer to aCORBA-compliant Environment structuredeclaredin
uimx_directory/include/UxCorba.h. Youcanpass &UxEnvtoal
methods.
Return Value None.
Description The adapter swidget relays the UIM/X method UxDrawHandles to the

component by calling the method of the same name on itself. The component can
register the method UxDrawHandles with its own class codeif it has special
needs for its selection handles.

UIM/X Advanced Topics 141

E UxHandlePostCreation

UxHandlePostCreation
Invoked after a swidget is created.

Method ID UxM _UxHandlePostCreation

Synopsis void UxHandlePostCreation(swidget sw) ;
Arguments sw A swidget.

Return Value None.

Description UIM/X uses this method to ensure that the children of a MainWindow or

ScrolledWindow swidget are managed correctly. This method gets the children of
the swidget sw and ultimately calls either XmMainWindowSetAreas or
XmScrolledWindowSetArea.

142 UIM/X Advanced Topics

Method ID
Synopsis
Arguments

Return Value

Description

UxInteractiveChildCreate E

UxInteractiveChildCreate

Supplies an error message if the interactive creation of a child swidget is not
permitted.

UxM_UxInteractiveChildCreate
char *InteractiveChildCreate(swidget sw);
sw The proposed parent swidget.

Returns NULL if the user isallowed to interactively create achild of sw. Otherwise,
the method returns an error message.

This method specifies whether or not achild can beinteractively created for agiven
swidget.

UIM/X Advanced Topics 143

E

UxInteractiveCreateAndApply

UxInteractiveCreateAndApply

Creates and applies a new swidget after the user has dragged and released the
Select mouse button.

Method ID UxM_UxInteractiveCreateAndApply

Synopsis swidget InteractiveCreateAndApply(Class t cl,
swidget parent, Position cx, Position cy,
Dimension dx, Dimension dy, int toplevel, Position
mx, Position my);

Arguments d The class of swidget to create.

parent The parent of the swidget being created. This parameter isSNULL if a
top-level swidget is being created.

cX, ¢y The coordinates of the mouse pointer when the Select button was
released.

dx, dy The differences between the mouse pointer coordinates mx and my
and the coordinates of the upper-left inner corner of the parent
swidget.

toplevel TRUE if atop-level swidget isto be created, FALSE otherwise.

mx, my The coordinates of the mouse pointer when the Select button was
pressed.
Return Value Returns the new swidget.
Description Creates an instance of the swidget class c1 and sizesit according to the passed

coordinates. If parent iSNULL, it isset to UxParent.

144 UIM/X Advanced Topics

UxMakeArglist E

UxMakeArglist
Creates an XtArglist from the swidget's Values list.

Method ID UxM_UxMakeArglist
Synopsis int UxSwidgetMakeArglist (swidget sw, Arg al], int
pass) ;
Arguments sw A swidget.
a A list of Arg structures.
pass UxPASSO0, UXPASS1, Or UxPASS2
Return Value UxMakeArglist returns the number of properties added to arglist.
Description UxMakeArglist createsan XtArglist from aswidget’'s Valueslist by converting

the value in each entry.

UIM/X Advanced Topics 145

E

UxMenusMenuSensitivities

UxMenusMenuSensitivities
Sets the sensitivities of the items on the Menus submenu.
Method ID UxM_UxMenusMenuSensitivities

Synopsis void UxMenusMenuSensitivities(swidget sw, int
*popup, int *pulldown, int *option);

Arguments sw A swidget.

popup Returns True or False toindicate whether or not sw can have a
popup menu as a child.

pulldown Returns True or False toindicate whether or not sw can havea
pulldown menu as a child.

option Returns True or False toindicate whether or not sw can have an
option menu as a child.
Return Value None.
Description UxMenusMenuSensitivities controlsthe sensitivities of the Popup,
Pulldown, and Option items on the Menus submenu of the Selected Objects popup
menu.

146 UIM/X Advanced Topics

UxObjectToRecreate E

UxObjectToRecreate
Determines whether to recreate an adapter swidget or one of its ancestors.

Synopsis UxObjectToRecreate (swidget child, Environment *env,
swidget parent) ;

Arguments child A child adapter swidget.

env A pointer to a CORBA-compliant Environment structure
declared in uimx_directory/include/UxCorba . h. You can pass
&UxEnvto all methods.

parent A parent swidget.
Return Value Returns the swidget to be recreated.

Description The adapter swidget relaysthe UIM/X methodsUxRecreateParentOrChild
and UxRecreateSwidget to the component by calling the method
UxObjectToRecreate onitsef. The component can register the method
UxObjectToRecreate withits own class code to determine which swidget to
recreate when the adapter swidget when the adapter swidget must be recreated. The
return value could be the adapter or one of its ancestors.

A convenient way isto call UxAdapterDesignMethods. If no method is
registered, the adapter will return the component.

UIM/X Advanced Topics 147

E

UxRealize
UxRealize
Resalizes the swidget tree into an X widget tree.
Method ID UxM_UxReadlize
Synopsis widget UxRealize (swidget sw)
Arguments sw A swidget
Return Value Returns the widget for swidget sw.
Description If the swidget has no X widget, UxRealize reaizesthe swidget treeinto an X

widget tree, using all the valuesin the swidget's Resources lists.

148 UIM/X Advanced Topics

Method ID
Synopsis
Arguments
Return Value

Description

UxRecreateParentOrChild

UxRecreateParentOrChild

Determines whether to recreate a swidget or one of its ancestors.
UxM _UxRecreateParentOrChild
swidget UxRecreateParentOrChild(swidget sw);
sw A swidget.
Returns the swidget to be recreated.

UxRecreateParentOrChild determines whether a swidget or one of its
ancestors must be recreated. This method tells you which swidget you must
recreate to ensure that the swidget sw is properly recreated.

Note: UIM/X recreates a swidget by first destroying (unrealizing) it and then
creating (realizing) it.

UIM/X Advanced Topics 149

E UxRecreateSwidget

UxRecreateSwidget
Determines whether a child or a parent swidget should be recreated.

Method ID UxM_UxRecreateSwidget
Synopsis swidget UxRecreateSwidget (swidget child, swidget
parent) ;
Arguments child A child swidget.
parent The parent swidget.
Return Value Returns child or parent, whichever should be recreated in response to a

geometry changeto child.

Description UxRecreateSwidget determineswhether or not you must recreate the parent to
properly recreate a child.

150 UIM/X Advanced Topics

Method ID
Synopsis
Arguments
Return Value

Description

UxSetNonarglist

UxSetNonarglist

Sets a property value that cannot be set by Xt Setvalues.

UxM_UxSetNonarglist

void UxSetNonarglist (swidget sw);

sw A swidget.

None.

UxSetNonarglist iscalled to set property values such as accelerators and

trandlations.

UIM/X Advanced Topics 151

E

E

UxUnrealize
UxUnrealize
Destroys the underlying widget.
Method ID UxM_UxUnrealize
Synopsis void UxUnrealize (swidget sw);
Arguments sw A swidget.
Return Value None.
Description UxUnrealize destroys the underlying widget.

152 UIM/X Advanced Topics

UxValidMoveOrResize

UxValidMoveOrResize

Determines whether or not a valid move or resize operation is being

performed.
Method ID UxM_UxValidMoveOrResize
Synopsis char *UxValidMoveOrResize (swidget sw, int *action,

swidget *actual sw) ;
Arguments sw The swidget being moved or resized.
action Either DO_MOVEOr DO_RESIZE. The method may reset this value.
actual_sw Returns the actual swidget to move or resize.

Return Value UxValidMoveOrResize returns NULL if action can be performed on
actual sw. Otherwise, an error message is returned.

Description UxValidMoveOrResize determines whether or not sw or some other swidget
(aparent or child) can be moved or resized. actual sw aways contains the
swidget to move or resize.

If the requested action isillegal, the method may permit the alternate action to be
performed. For example, if *action isDO_RESIZE and swisamenu bar,
UxValidMoveOrResize Sefs *action to DO_MOVE and returns.

UIM/X Advanced Topics 153

E UxWidgetCannotAcceptChildren

UxWidgetCannotAcceptChildren

Determines whether or not a swidget isavalid parent for a set of children.

Method ID UxM_UxWidgetCannotAcceptChildren

Synopsis char *UxWidgetCannotAcceptChildren (swidget parent,
int numChildren, Class_t *childClasses, swidget
*children) ;

Arguments parent The parent swidget.

numcChildren The number of children.
childClasses The class of each child.
children The children.

Return Value UxWidgetCannotAcceptChildren returnsan error message if the parent
cannot accept one or more of the proposed children, and NULL otherwise.

Description UxWidgetCannotAcceptChildren isused to validate the interactive
reparenting and creation of swidgets.

154 UIM/X Advanced Topics

Resource Descriptors

Overview

Every widget property in UIM/X is described by a data object called a resource
descriptor. This data object is defined in the header file
uimx_directory/custom/include/resource.h. ItisaResource t
structure, with access macros defined for itsfields.

Every swidget class holds two PLists of resource descriptors: the resource set and
the constraint set. The resource set isthe list of resource descriptors for the
properties declared by the class. The constraint set isthe list of resource descriptors
for the constraint properties of the class. You can use UxGetResourceSet and
UxGetConstraints to get these lists.

When you define new properties for widget classes, you use
UxDefineResource to create and initialize new resource descriptors. The
argumentsto UxDefineResource aresimply alist of valuesfor thefields of the
resource descriptor, keyed with keys from the enumeration RD_Key t, whichis
also defined in uimx_directory/custom/include/resource.h.

For components, you use UxInstanceResource () and
UxGlobalInstanceResource ().

UIM/X Advanced Topics 155

F

Resource Descriptor Fields

Field

Description

Default

Format

Format string for making C code from the
property value. For example, "\"%s\"".

NULL1

UimxName

The name of the property for interface files and
UxGetand UxPut macros. For example,
"allowShellResize™".

None

UxXtName

The name used in XtSetValues,
KtGetValues, and XtAddCallback. For
example, "allowShellResize".

UimxName

PrintName

The name used in the Property Editor and in
messages. For example,
"AllowShellResize".

UimxName with
the first letter
capitalized.

UType

The utype of the property. One of the UxUT _
constants from uimx_directory/custom/
include/utype.h.

UxUT_int

XType

The xtype of the property (the type used in
KtGetValuesand XtSetValues). One of the
UxXT_ variables from uimx_directory/
custom/include/utype.h.

UXXT_int

Division

he category In the Property Editor. Possible
values are UxCORE, UxSPECIFIC,
UxCONSTRAINT, UxBEHAVIOR, UXDECL, and
[UxCOMPOUND.

UxCORE

Toolkit

True Or False indicating whether or not the
property value can be set with XtSetvalues.

True

Treatment

Indicates how the Interpreter treats the value.
Possible values are UxSTATEMENT (for
callbacks), UxEXPRESSION (for properties),
and UxLITERAL (for names).

[UXEXPRESSION2

Pass

Indicates when during widget creation the
property value is set: UxPASSO0 - initial
Creation UxPASS1 -just after creation UxPASS2
after all widgets created

UxPASSO

156 UIM/X Advanced Topics

Field Description Default
Controls the sensitivity of the property in the
Property Editor. If set to True, the property is
insensitive, and the lock pixmap is displayed

ReadOnly beside the property name. False
True Or False indicating whether or not the

CanBePublic property can be set in a resource file. True
True Or False indicating whether or not the

Editable property appears in the Property Editor. True
True Or False indicating whether or not the
Editor pushButton is available for the property

NoEditBtn in the Property Editor. False
Pointer to a function that returns a description

ValuesOf of possible values of a property. NULL
Pointer to a function that validates an input

\Validator property value. NULL

UIM/ X installs

GetFunction

Pointer to the function used to get the xtype
value from the widget and convert the result
into a utype value. Not used by callback
properties.

the appropriate
function based on
the value of the
UType field.

PutFunction

Pointer to the function that converts a utype
\value to an xtype value and passes the result to
the widget. Not used by callback properties.

UIM/ZX installs
the appropriate
function based on
the value of the
UType field.

CopyFunction

Pointer to a function that makes a copy of a
utype value for storage in the swidget.

UxCopyString
if UType is
UxUT_ string.
NULL otherwise.

FreeFunction

Pointer to a function that frees a copy of a value
made with CopyFunction.

UxFreeif UType
iSUXUT_string.
NULL otherwise.

Pointer to a popup editor function for the

EditFunction property. NULL
Pointer to a Tunction Used tO WrITE a resource
specification to a file.

SaveFunction NULL3

UIM/X Advanced Topics 157

Field Description Default

User data field for extending and customizing
UIM/X. Users can add their own property data
UserDataRD in this field. NULL

L For callbacks, "{(void) %s (UxWidget, UxClientData,
UxCallbackArg) ; }".

For userData properties, " (XtPointer) 0x%1x".
For properties whose utype isUxXUT_string, "\"%s\"".
Otherwise the default isNULL.

2. UIM/X sets Treatmentto UxSTATEMENTIf Division issetto
UxBEHAVTOR.

3-If thisfield isNULL, UIM/X usesits own default functions for writing properties.
Most of these fields apply only to resource properties. A callback can be defined
simply by supplying aUimxName and specifying that theDivision is
UxBEHAVIOR.

158 UIM/X Advanced Topics

Ux Builder Functions

Overview

This appendix contains detailed descriptions of each of the Ux Builder Functions.
In afew cases, agroup of functions are described on a single reference page (for
example, the UxType get_op functions for looking up class methods) because
they perform similar or related operations.

Note: The functions described in this appendix are used to extend and customize
UIM/X. They are not for use in generated applications.

UIM/X Advanced Topics 159

Synopsis

Arguments

Return Value

Description

Example

G UxAdapterDesignMethods()

UxAdapterDesignMethods|()
Registers design-time component methods.

#include <UxLib.h>

void UxAdapterDesignMethods (int clsCode, void
*checkChildren, void *drawHandles, void
*objectToRecreate) ;

clsCode The class code for the component.

checkChildren Function pointer for the UxCheckChildren () method.
drawHandlesFunction pointer for the UxDrawHandles () method.
objectToRecreateFFunction pointer for the UxObjectToRecreate () method.
None.

UxAdapterDesignMethods () isaconvenience function for registering
design-time methods for a given component. You register amethod by passing a
function pointer. You pass NULL if you don’'t want to register a method.

#ifdef DESIGN TIME

int UxComponent_UxCheckChildren Id = -1;

char* UxComponent UxCheckChildren Name =
"UxCheckChildren";

static char* Component UxCheckChildren(swidget sw,

Environment *pEnv)

{

if (pEnv)
PEnv->major (CORBA: :NO_EXCEPTION) ;

return "This component cannot have children.";

}

#endif

int create_ Component ClassId(void)

{

160 UIM/X Advanced Topics

UxAdapterDesignMethods()

static int IfClassCode = -1;
if (IfClassCode == -1)

{

IfClassCode = UxNewInterfaceClassId() ;

#ifdef DESIGN TIME

UxAdapterDesignMethods (IfClassCode, Compone
nt UxCheckChildren, NULL, NULL) ;

#endif

}

return (IfClassCode) ;

UIM/X Advanced Topics 161

Synopsis

Arguments

Return Value

Description

G UxAdapterSwidget()

UxAdapterSwidget()

Creates an adapter swidget for a component.

#ifdef XT CODE
#include <UxXt.h>

#else
#include <UxLib.h>

#endif

swidget UxAdapterSwidget (Widget wid, swidget
parent, char *name, int clsCode, void* cmptRef,
void* context) ;

wid A widget. Thiswidget must be the controlling widget from the
component.
parent The parent swidget of the widget. Thisvalueis passed to the

component’s constructor.

name The name given to the adapter swidget. You can simply pass
XtName (wid).

clsCode The class code for the component. This value is obtained from
UxNewInterfaceClassId () or UxNewSubclassId().

cmptRef The component reference (a pointer to the component). Thisvalueis
stored in the instance structure of the adapter swidget.

context A pointer to the context structure for the adapter swidget. This should
be NULL (or UxNO_CONTEXT) for the adapter swidget created in the
body of a GUI component’s constructor. If you create a separate
adapter swidget for a child site widget, pass the component’s context
(obtained by calling UxGetContext ()).

Returns an adapter swidget.

UxAdapterSwidget () createsan adapter swidget used to represent awidget in
UIM/X. You use adapter swidgets to integrate componentsinto UIM/X.

You use UxAdapterSwidget () to get aswidget that can be returned by a
component constructor (its Interface Function) or by achildsite () method.

162 UIM/X Advanced Topics

UxAdapterSwidget() G

To integrate a component into UIM/X, you write a constructor that returns an
adapter swidget. This adapter swidget is connected to the underlying component
through the UIM/X Method system.

You don't have to destroy the adapter swidget. UxAdapterSwidget () addsa
destroy callback to the widget wid that destroys the swidget for you. You are
responsible, however, for destroying the component. You can do this by adding a
destroy callback to wid that destroys the component.

See Also UxAdapterDesignM ethods(), UxGetComponentRef (), UxPutComponentRef()

UIM/X Advanced Topics 163

G UxAddConv()

UxAddConv()

Installs a type converter.

Synopsis #include <utype.h>

void UxAddConv(int utype, int xtype, int
(*conv_fcn) ());

Arguments utype ID of the utype.

xtype ID of the xtype.

conv_fcn The converter function to be used.
Return Value None.

Description UxAddConv () installs conv_fcn as the converter to be used when converting
property values between the given ut ype and xtype. UIM/X storesthe

converter functionsin an internal table—the xtype and utype IDs are the indices to
the table.

The converter function should follow the following format:

int convert A B(swidget sw, utype *udata, Xtype*xdata,int
flag, int xtype);

¢ swisthe swidget requiring the conversion.
* *udataistheUIM/X value, and *xdata isthe Xt value.
e flag indicatesthe direction of conversion:
* TO_UIMXtoconvert *xdata to *udata.
* TO_Xtoconvert *udata to *xdata.
e xtype isthelD of the property xtype.

If aconverter has aready been installed for this pair of types, an error message is
given.You should install aconverter for anew xtypeif the property values expected
by the widgets do not match those expected by the swidgets. Thisisdone by calling
UxAddConv () from the function UxAddUserDefXtypes () in
uimx_directory/custom/src/user-xtype.c

164 UIM/X Advanced Topics

UxAddConv() G

Example Widgets expect the values of some constraint properties to be widget pointers but
swidgets expect them to be swidget names. Thus, a converter is needed to switch
between widget pointers and swidget names. The following code outlines such a
converter:

int convert name Widget (swidget swgt, char
**ptr name, Widget *ptr wgt, int flag, int xtype)

int status = NO_ERROR;
if (flag == TO UIMX)
{

if (*ptr _wgt != NULL)

*ptr name XtName (*ptr wgt);
else

*ptr_name = "";

else

swidget named swgt = UxNameToSwidget (swgt,
*ptr name) ;

if (named swgt == NULL)

*ptr_wgt = NULL;
else

*ptr wgt = UxGetWidget (named swgt);
if (*ptr wgt == NULL)

status = ERROR;

}

return (status);

}

This converter would be installed by the following function call:

UxAddConv (UxUT string, UxXT Widget,
convert name Widget) ;

UIM/X Advanced Topics 165

G UxAddConv()

See Also Appendix D, “Resource Types,” for listings of the utype and xtype | Ds defined by
UIM/X, UXAddEnumType(), UxAddXtype(), UxCallConverter()

166 UIM/X Advanced Topics

UxAddEnumType() G

UxAddEnumType()
Adds the definition of an enumerated xtype.
Synopsis #include <utype.h>

int UxAddEnumType(char* name, int xt_ size,

unsigned char *xt vals, char** uimx vals, char**
xdef vals, int num vals, int (*converter) ());

Arguments name The name of the xtype.
xt_size The size of the xtype.
xt_vals Array of Xt values.
uimx_vals Array of UIM/X values.
xdef vals Array of Xt-defined constants.
num_vals The number of array elements.

converter The converter function. UIM/X supplies two pre-defined
conversion functions: UxStringToCharEnum and
UxStringToIntEnum.

Return Value UxAddEnumType () returns the ID of the new xtype. By convention, the
xtype IDs are stored in global variables named UxXT xtype.

Description UxAddEnumType () instalsthe arrays of possible valuesand the converter for an
enumerated xtype. Xtypes describe the data type and possible values of awidget
property (as opposed to a swidget property, which is described by a utype). An
enumerated xtype is a data type with afixed list of possible values.

UxAddEnumType () doesitswork by calling UxAddxtype () and
UxAddConv ().

Note that most enumerated properties are of typeunsigned char and usethe
converter UxStringToCharEnum (). The exceptions are of type int and use
the converter UxStringToIntEnum().

UIM/X Advanced Topics 167

Synopsis

Arguments

Return Value

Description

Example

G UxAddMweEditorSeparator()

UxAddMweEditorSeparator()

Adds a separator to one of the option menus in the Main Window Editor.
void UxAddMweEditorSeparator (void *ptr);

ptr An opaqgue pointer to an internal data structure used to manage
the Main Window Editor option menu. UIM/X passes the
appropriate pointer to UxCreateMweWorkArea and
UxCreateMweMsgWindow.

None.

The Work Area and Message Window option menus in the Main Window
Editor are defined by the functions UxCreateMweWorkArea and
UxCreateMweMsgWindow in uimx_directory/custom/src/cr-mwe. c

To add a separator to the Work Area option menu, add a call to
UxAddMweEditorSeparator () in UxCreateMweWorkArea. To add a
separator to the Message Window option menu, add a call to
UxAddMweEditorSeparator () in UxCreateMweMsgWindow.
void UxCreateMweMsgWindow(ptr)
void *ptr;
{
extern Class_t UxC_separator,
UxC_label,
UxC_text,
UxC_textField;

UxAddToMweEditor (ptr, CGETS_MWE (NONE) ,
(Class_t)0);

UxAddMweEditorSeparator(ptr);

UxAddToMweEditor (ptr, CGETS_MWE(LABEL),
UxC label) ;

UxAddToMweEditor (ptr, CGETS_MWE(TEXT),
UxC_text) ;

UxAddToMweEditor (ptr, CGETS_MWE(TEXTFIELD),
UxC_textField) ;

}

168 UIM/X Advanced Topics

UxAddMweEditorSeparator() G

See Also UxAddToMweEditor(), “ Customizing the Main Window Editor’s Option Menus’
in Chapter 2, “Integrating Widgets’

UIM/X Advanced Topics 169

G UxAddToCreateMenu()

UxAddToCreateMenu()
Adds an item to a Create menu.
Synopsis swidget UxAddToCreateMenu (swidget rowcol sw, char*
label,char* mnemonic, int toplevel flag, void
(*before func) (), Class_t cl, void

(*after func) ());

Arguments rowcol_sw
label

mnemonic

| dentifies the rowColumn swidget (the menu pane) of a Create menu.
Specifies the label for the new menu item.

Specifies the mnemonic for the menu item.

toplevel_flag TRUE if the menu item creates atop-level widget; FALSE if the menu

item creates a parented widget.

before_funcSpecifies the function called before the user interactively creates an

cl

after_func

instance of the swidget class. before func iscaled by the callback
function registered with the XmNactivateCallback property of the
pushButton.

The callback callsbefore func with asingle argument which isthe
swidget under the mouse pointer when the user interactively creates a
new swidget.

Specifies the class of the swidget instances created by the menu item. If
clisNULL, thereis no interactive creation and after func isnot
caled. When clisNULL, before func can be used to pop-up a
specialized editor for creating swidgets—for example, UIM/X’s Menu
Editor.

Specifies the function called after the user interactively creates an
instance of the swidget class. after_ func iscalled by the callback
function registered with the XmNactivateCallback property of the
pushbutton.

The callback callsatter func with asingle argument which isthe
new swidget.

Return Value UxAddToCreateMenu () returnsthe swidget variable of the new pushButton

swidget.

170 UIM/X Advanced Topics

Description

Example

UxAddToCreateMenu()

UxAddToCreateMenu () adds apushButton menu item to the menu pane
rowcol sw. The pushButton isgiven the specified label and mnemonic. When
the user clicks on the pushButton:

» Thecallback registered with XmNactivateCallback callsbefore func (if it
is not NULL). The callback passes a swidget variableto before func:

e When the user creates a swidget from the Sel ected Widgets popup, the
swidget for which the menu was popped-up is passed to before func.

e When the user creates a swidget from a Browser Create menu, the first
swidget in the list of selected swidgetsis passedtobefore func. If
there are no selected swidgets, the value NULL is passed to
before_func.

e Whenthe user creates a swidget from a Project Window Create menu, the
value NULL is always passed to before func. Thisis becausethe
Project Window Create menus create top-level swidgets that have no
parents.

e If c1isnot NULL, the user then interactively creates an instance of the swidget
class. after func (if itisnot NULL) is called immediately after the
swidget is created. after funccan beused to pop-up a specialized
editor—UIM/X’s Main Window Editor is popped-up by an atter func.

UIM/X’s Create menus are defined by functionsin
uimx_directory/custom/src/cr-menus . c. For each Create menu, thereisa
function containing a series of callsto UxAddToCreateMenu () . You can add
new items to these menus by adding callsto UxAddToCreateMenu () inthe
appropriate function.

In uimx_directory/custom/src/cr-menus. ¢, the function
UxSpecifyTopCustomMenu () definesthe Project Window’s Custom Create
menu. The call to UxAddToCreateMenu () shown below adds a menu item for
the Square widget class to that Create menu:

void UxSpecifyTopCustomMenu(casc_swgt, rowcol swgt

)
swidget casc_swgt;

swidget rowcol swgt;
extern Class_t UxC_square;

(void) UxAddToCreateMenu(rowcol swgt, "Square",

UIM/X Advanced Topics 171

G

G UxAddToCreateMenu()

g,
TRUE,

(void (*) ()) NULL,
UxC_square,

(void (*) ()) NULL);

}
See Also “Customizing UIM/X’s Create Menus® in Chapter 2, “Integrating Widgets'.

172 UIM/X Advanced Topics

UxAddToMweEditor() G

UxAddToMweEditor()

Adds a menu item to one of the Main Window Editor’s option menus.

Synopsis void UxAddToMweEditor (void *ptr, char* label,
Class_t cl);

Arguments ptr An opaque pointer to an internal data structure used to manage
the Main Window Editor option menu. UIM/X passes the
appropriate pointer to UxCreateMweWorkArea and
UxCreateMweMsgWindow.

label Specifies the label of the menu item.
cl Identifies the swidget class associated with the menu item.
Return Value None.
Description The Work Area and Message Window option menus in the Main Window Editor

are defined by the functions UxCreateMweWorkArea and
UxCreateMweMsgWindow in uimx_directory/custom/src/cr-mwe.c.

These functions contain aseries of callsto UxAddToMweEditor () . Each call to
UxAddToMweEditor () adds apushButton menu item to one of the option
menus in the Main Window Editor.

To add an item to the Work Area option menu, add acall to
UxAddToMweEditor () inUxCreateMweWorkArea. To add an item to the
Message Window option menu, add a call to UxAddToMweEditor () in
UxCreateMweMsgWindow.

Note: Passing UxC_separator (Or UxC_separatorGadget) asthe swidget
class ID (the c1 parameter) adds a separator to the menu.

Items on the Work Area option menu must be subclasses of the manager swidget
class (UxC_manager). Items on the Message Window option menu must be
subclasses of the primitive swidget class (UxC_primitive).

Example void UxCreateMweWorkArea(ptr)

void *ptr;

externClass_t UxC separator,

UxC _bulletinBoard,

UIM/X Advanced Topics 173

G UxAddToMweEditor()

UxC drawingArea,
UxC fileSelectionBox,
UxC_form,
UxC_frame,

UxC mainWindow,

UxC _messageBox,

UxC panedWindow,
UxC_rowColumn,
UxC_scale,
UxC_scrolledWindow,
UxC_selectionBox,
UxC_square;

UxAddToMweEditor (ptr, CGETS_MWE (NONE) ,
(Class_t)O0);

UxAddMweEditorSeparator (ptr);
UxAddToMweEditor (ptr, CGETS_MWE (BULLTNBRD) ,
UxC bulletinBoard) ;

UxAddToMweEditor (ptr, CGETS_MWE (DRWGAREA) ,
UxC drawingArea) ;

UxAddToMweEditor (ptr, CGETS_MWE(FILESELBOX),
UxC fileSelectionBox) ;

UxAddToMweEditor (ptr, CGETS_MWE (FORM) ,
UxC_form) ;

UxAddToMweEditor (ptr, CGETS_MWE(FRAME),
UxC_ frame) ;

UxAddToMweEditor (ptr, CGETS_MWE(MAINWND),
UxC _mainWindow) ;

UxAddToMweEditor (ptr, CGETS_MWE(MSGBOX),
UxC_messageBox) ;

UxAddToMweEditor (ptr, CGETS_MWE(PANEDWND),
UxC_ panedWindow) ;

UxAddToMweEditor (ptr, CGETS_MWE (ROWCOLUMN) ,

174 UIM/X Advanced Topics

UxAddToMweEditor() G

UxC_rowColumn) ;

UxAddToMweEditor (ptr, CGETS_MWE(SCALE),
UxC_scale) ;

UxAddToMweEditor (ptr, CGETS_MWE(SCRLWND),
UxC_scrolledWindow) ;

UxAddToMweEditor (ptr, CGETS_MWE(SELBOX),
UxC_selectionBox) ;

UxAddToMweEditor (ptr, “Square”, UxC square) ;
}

See Also UxAddMweEditorSeparator(), “ Customizing the Main Window Editor’s Option
Menus’ in Chapter 2, “Integrating Widgets”

UIM/X Advanced Topics 175

G UxAddXtype()

UxAddXtype()

Adds a new xtype definition.

Synopsis #include <utype.h>

int UxAddXtype(char *name, int size);

Arguments name The name of the xtype.
size The size of the new type.
Return Value UxAddXtype () returnsthe D the new xtype. By convention, the xtype IDs are

stored in global variables named UxXT _xtype.

Description UxAddXtype () addsan xtypefor anew datatype of an Xt property. If you add a
new swidget class that has a property for which the values expected by the widget
are of adifferent data type or have a different set of permissible values than any of
the existing properties, you must add a new xtype. You do this by adding acall to
UxAddXxtype () inthefunction UxAddUserDefXtypes in
uimx_directory/custom/src/user-xtype.c

UxAddConv () registersafunction to be used to convert between the new xtype
and a given utype.

Example int UxXT Widget = UxAddXtype("Widget™",
sizeof (Widget)) ;
See Also “Defining New Xtypes' in Chapter 2, “Integrating Widgets’ , UxAddConv(),
UxAddEnumType()

176 UIM/X Advanced Topics

UxCallConverter() G

UxCallConverter()

Calls the function that converts between a given utype and a given xtype.

Synopsis #include <utype.h>

int UxCallConverter(swidget sw, int utype, char
**ydata, int xtype, char* xdata, int flag);

Arguments sw Swidget whose property value is being converted.
utype A utypeID (aUxUT_variable).
udata The UIM/X data.
xtype AnxtypeID (aUxXT_variable).
xdata The X data.

flag Flag indicating the direction of conversion. TO_X convertsudatato
xdata. TO_UIMX convertsxdatatoudata.

Return Value If aconverter function existsfor xtype and utype, UxCallConverter ()
returns the value returned by the converter function. Otherwise
UxCallConverter () outputsan error message to stderr and returns
ERROR.

Description UxCallConverter () looks-up and calls the converter function registered (by
UxAddConv ()) for aspecific utype, xtype pair.

Examples #include <utype.h>
swidget sw;

Resource t *res;

UxCallConverter (sw, (int) (res->XType), uvalue,
(int) (res->UType), xvalue, TO UIMX);

See Also UxAddConv(), UXAddEnumType()

UIM/X Advanced Topics 177

G UxCreateMethodSignature()

UxCreateMethodSignature()

Creates a method signature from a description of the method arguments.

Synopsis #include <uxmethod.h>

struct Method t *UxCreateMethodSignature (char
*mname, VTCorbaSupport corba, char *rettype,

)
Arguments mname The method name.

corba The kind of CORBA support. This determines the presence and position
of the CORBA environment in the method arguments.

rettype Thereturn type of the method.

A possibly empty, NULL-terminated list of resource descriptors
describing the method arguments.

Return Value Returns the method signature.

Description A method signature is the description of the arguments of a method and its return
type. The builder needs this information at design time to determine how to call
compiled-in methods and how to display them in the Connection Editor.

UxCreateMethodSignature () createsthe signature that you register with
UxMethodSignatureRegister (). For backward compatibility, if you do not
register asignature, the builder will assumeitisa CORBA 1 method, and it will not
be available in the Connection Editor.

You use enumerated values to specify the presence and position of the CORBA
environment in the method arguments. Use Corbal if the environment isthe
second argument. Use Corba?2 if the environment is the last argument. Use
CorbaNONE if there is no environment.

Thevalue of rettype should be NULL if the method returns void, otherwise
rettype isthetypeasit appearsin the source code, surrounded by double quotes.
For example, use *int” for amethod returning int.

The following arguments are alist of Resource t* describing the method
arguments in the same order as they appear in the method. The target swidget that
appears as the first argument in C is omitted. The function
UxEnvArgResource () returnstheResource t* needed to specify the
CORBA environment. TheResource_t* for other arguments is obtained by
caling UxGetArgResource () . Seethat reference page for details.

178 UIM/X Advanced Topics

UxCreateMethodSignature() G

Thelist must be NULL-terminated.

Example UxCreateMethodSignature (* set height”, Corbal, NULL,
UxEnvArgResource (),

UxGetArgResource (“height”, UxUT_ int,
“0” ,UxValidateInt, UxValuesOfInt),

NULL) ;

See Also UxEnvArgResource(), UxGetArgResource(), UxM ethodSignaturel ookup(),
UxMethodSignatureRegister()

UIM/X Advanced Topics 179

G UxDDGetProp()

UxDDGetProp()
Getsthe value of a swidget property.

Synopsis #include <UxLib.h>

XtArgVal UxDDGetProp (swidget sw, char* name) ;

Arguments sw A swidget.
name The name of the property (an XmNor Xt N constant).

Return Value UxDDGetProp () returns the specified property value if successful, and 0
otherwise.

Description UxDDGetProp () ispart of the Ux Convenience Library. Thisfunction isused to

define the run-time versions of the UxGet Property macros (in the swidget class
public header files).

UxDDGetProp () isused when run-time conversion of property valuesis
required. Run-time conversion is required when the data type of the values
expected by the swidget and awidget are not the same. Note that any such property
should be installed in the Ux Convenience Library using UxDDInstall().

UxGetProp () isused to define run-time UxGe t Property macros for properties
that do not require run-time conversion.

Example #define UxGetSelectColor (o) \
(char *)UxDDGetProp (o, XmNselectColor)

See Also UxDDlInstall(), UxDDPutProp(), UxGetProp(), UxPutProp()

180 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Description

Example

See Also

UxDDiInstall()

UxDDlInstall()
Registers a property for run-time conversion.
#include <UxLib.h>
#include <utype.h>
void UxDDInstall (char *name, int utype, int xtype);
name The name of the property.

utype The ID of the utype (one of the UxUT variables declared in
uimx_directory/custom/include/utype.h).

xtype The ID of the xtype (one of the UxXT variables declared in
uimx_directory/custom/include/utype.h).

None.

UxDDInstall () registersaproperty needing conversion with the Ux
Convenience Library. A property needs conversion when the values expected by
the swidget do not match those expected by the widget.

UxDDInstall (XmNalignment, UxUT_string,
UxXT_Alignment) ;

UxDDGetProp()

UIM/X Advanced Topics 181

G

G UxDDPutProp()

UxDDPutProp()
Sets the current value of a swidget property.

Synopsis #include <UxLib.h>

int UxDDPutProp (swidget sw, char *name, XtArgVal
value) ;

Arguments sw A swidget.
name The name of the property (an XmNor XtN constant).
value The property value.
Return Value UxDDPutProp () returnsNO_ERROR if successful, ERROR otherwise.

Description UxDDPutProp () ispart of the Ux Convenience Library. Thisfunction isused to
define the run-time versions of the UxPutProperty macros (in the swidget class
public header files).

UxDDPutProp () isused when run-time conversion of property valuesis
required. Run-time conversion is required when the data type of the values
expected by the swidget and awidget are not the same. Note that any such property
should be installed in the Ux Convenience Library using

UxDDInstall() .
UxPutProp () isused to define run-time UxPutProperty macros for properties
that do not require run-time conversion.

Example #define UxPutWinGravity (o, v) \
UxDDPutProp (o, XmNwinGravity, ((XtArgvVal) (v))
See Also UxDDGetProp(), UxDDlInstall (), UxGetProp(), UxPutProp()

182 UIM/X Advanced Topics

UxDefineResource() G

UxDefineResource()
Creates and initializes a new resource descriptor.

Synopsis #include <resource.h>

Resource t *UxDefineResource([name, value,].. RD_END

)i

Arguments name One of values of the enumerated type RD_key t. These values
identify the fields in the resource descriptor structure. The
value RD_END terminates the argument list.

value The value to be stored in afield of the resource descriptor

Return Value Returns a pointer to anew resource descriptor. Thereturn valueis usually passed as
the third parameter in acall to UxPutClassResource.

Description UxDefineResource () alocatesaresource descriptor (aResource t
structure) and initializes its fields according the name/value pairs in the argument
list.

Example #include <resource.h>

#include <label.cl.hs>

/* for UxC label, UxP LabelRD alignment */
#include <swidget.h>

/* for UxPutClassResource */
#include <valuesOf.hs>

/* for UxValuesOf, UxValidate functions */

/* and UxUT, UxXT variables */
UxPutClassResource (UxC_label,

UxP_LabelRD alignment,

UxDefineResource (

RD_NAME, "alignment", /* You must supply a name.
*/

RD_UTYPE, UxUT string,

RD _XTYPE, UxXT Alignment,

RD DIVISION, UxSPECIFIC,

UIM/X Advanced Topics 183

Types

G

UxDefineResource()

RD VALIDATOR, UxValidateAlignment,

RD_VALUESOF, UxValuesOfAlignment,

RD END));

aso defined in resource . h.

The resource descriptor isaResource_t structure. Thisstructure is defined in
uimx_directory/custom/include/resource.h. TheRD key t
enumeration is

Key

Field/Purpose

Type

RD_END

Terminates the argument list.

None

RD_EXAMPLE

Gets a copy of the specified
resource descriptor.

Resource_t*

RD NAME
- UimxName char*
RD UTYPE
UType short
RD XTYPE
- XType short
RD XTNAME
- UxXtName char*
RD PRINTNAME
- PrintName char*
RD UIMXNAME
- UimxName char*
RD VALIDATOR
- Validator int (*)()
RD VALUESOF
- ValuesOf int (*)()
RD PUTFUNCTION
- PutFunction int(*)()
RD GETFUNCTION
- GetFunction int(*)()
RD TOOLKIT
- Toolkit Boolean
RD_PASS
Pass Pass_t (see below)
RD_DIVISION Division t (see
Division below)
RD READONLY
B ReadOnly Boolean
RD CANBEPUBLIC
- CanBePublic Boolean
RD EDITABLE
- Editable short
RD_NOEDITEIN NoEditBtn Boolean

RD_COPYFUNCTION

CopyFunction

XtArgVal (*)()

RD_FREEFUNCTION

FreeFunction

void (*)()

184 UIM/X Advanced Topics

UxDefineResource() G

Key Field/Purpose Type

RD_EDITFUNCTION

- EditFunction void (*)()
RD_FORMAT

- Format char*
RD_TREATMENT Exprireatment_t (see

Treatment below)

RD_SAVEFUNCTION

- SaveFunction void (*)()
RD_USERDATARD UserDataRD XtPointer

The following enumerated types are also used to initialize a resource descriptor:
typedef enum
UxPASSO = 0, /* Widget creation argument list. */
UxPASS1 = 1, /* Design time: creation arg list. */

UxPASS2 = 2 /* XtSetValues after interface tree
exists. */

} pass_t;

typedef enum {

UxCORE = O,
UxSPECIFIC = 1,
UxBEHAVIOR = 2,

UxCONSTRAINT = 3,
UxDECL = 4, /* Widget declaration properties */
UxCOMPOUND = 5 /* UIM/X internal compound props */

} Division t;

typedef enum { /* How does the interpreter see it?
* /JUxLITERAL, /* For name, other variable names
* /JUXEXPRESSION, /* For resources */UxSTATEMENT /*
For callbacks */

} ExprTreatment t;

See Also UxPutClassResource(), Appendix F, “ Resource Descriptors,” for a description of
the fields in the resource descriptor.

UIM/X Advanced Topics 185

Synopsis

Arguments
Return Value

Description

See Also

G UxEnvArgResource()

UxEnvArgResource()

Returns a resource descriptor for the CORBA environment.
#include <uxmethod.h>
Resource t *UxEnvArgResource (void) ;
None.
Returns a resource descriptor for the CORBA environment.

UxEnvArgResource () returns the resource descriptor for the CORBA
environment that is needed by UxCreateMethodSignature () when
creating the signature for Corbal or Corba2 methods. The resource
descriptor is stored in a static variable. The same one is returned for every
call. The caller should not free the return value.

UxCreateM ethodSignature(), UxGetArgResource()

186 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Example

See Also

UxFixed_class_method()

UxFixed_class_method() G

Adds a new class method for the specified swidget class.

#include <veos.h>

binptr UxFixed class method(char *name, Class _t cl,

int data_type, int offset);
name Name of the method.
cl Swidget class being initialized.
data type D of datatype.

offset Offset of the method-handle within the class structure

The return value is the id of the new method and should be stored in the

UxM_MethodName global variable.

UxM UxWidgetCannotAcceptChildren =

UxFixed class_method(

"UxWidgetCannotAcceptChildren",

UxC_RectObject,
T PNTR,
Offset (UxRectObjectClass,

RectObject. UxWidgetCannotAcceptChildren)) ;

UxInit_method()

UIM/X Advanced Topics 187

G

UxFixed_class_prop()

UxFixed_class_prop()
Registers a new class property for a swidget class.

Synopsis #include <veos.h>

binptr UxFixed class prop (char *name, Class_t cl,
int data_type, int offset);

Arguments name The name of the property.
cl The swidget class for which the property is being registered.

data type Identifiesthe datatype of the property. For properties, this parameter
isalways T PNTR, since the actual field in the class structureis a
Resource_t*pointer. The T_ typesare defined in
uimx_directory/custom/include/vtypes.h.

offset Offset of the property within the class structure.

Return Value Returnsthe ID of the new property. This value should be stored in a
UxP_ PropertyName global variable.

Example UxP_CoreRD background =
UxFixed class_prop ("RD background",
UxC_Core,
T PNTR,
Offset (UxCoreClass,

Core.RD _background)) ;

See Also UxPutClassResource()

188 UIM/X Advanced Topics

Synopsis

Arguments

Description

Example

See Also

UXGET _type()

UXGET _type() G

These functions are only used in defining the DESIGN _TIME versions of the
UxGet macrosin the swidget class public header file.

#include <stdgetput.h>

type UxGET_type(swidget swgt, binptr bp, char *name);

swgt Swidget to get value from.
bp ID of property.
name

Name of property (used in error message if the property does not exist
for the swidget class).

The UxGET_type() functions call the "get_function’ for the specified property to
get the current property value from the specified swidget. UIM/X displays an error
dialog box (by calling UxGUIError) if the property does not exist for the swidget
class of the specified swidget.

OneUxXGET type() function existsfor each utype:

Function Name Utype Return Value
UxGET_1nt UxUT_1int int
UxGET_float UxUT_fToat float
UxGET_short UxUT_short short
UxGET_Tong UxUT long Tong
UxGET_string UxUT_string char *
UxGET_char UxUT_char char
UxGET_voidFunction UxUT voidFunction void (*) ()
UxGET_cardFunction UxUT_cardFunction Cardinal

(*) 0
UxGET_visualPointer UxUT visualPointer Visual *
UxGET_stringTable UxUT _stringTable char **
UxGET XmTextSource UxUT_XmTextSource XmTextSource

alignment = UxGET string(swgt,

UxP LabelRD alignment,

UxDefineResource(), UxPUT_type ()

"alignment") ;

UIM/X Advanced Topics 189

G UxGetArgResource()

UxGetArgResource()
Creates a resource descriptor for an argument in a method signature.

Synopsis #include <uxmethod.h>

Resource t *UxGetArgResource (char *name, int utype,
char *defvalue, void *validator, void *valuesof) ;

Arguments name The argument name as it appears in the Connection Editor.
utype The utype of the argument.
defvalue The default value in the Connection Editor.
validator ~ The Validator function.
valuesof The VauesOf function.
Return Value Returns the resource descriptor for the argument.

Description UxGetArgResource () isaconvenience function that creates aresource
descriptor tailored to the needs of a method signature. UxGetArgResource()
can create aresource descriptor and initialize the necessary fields for one argument
inacal to UxCreateMethodSignature ().

The return value should never be freed. It is the responsibility of the caller to
supply a“name” argument that will be valid until the termination of the executable.

See Also UxDefineResource() , UXEnvArgResource()

190 UIM/X Advanced Topics

UxGetComponentRef()

UxGetComponentRef()
Retrieves the component reference from an adapter swidget.

Synopsis #ifdef XT CODE
#include <UxXt.h>
felse
#include <UxLib.h>
#endif

void* UxGetComponentRef (swidget sw);
Arguments sw An adapter swidget.

Return Value A pointer to the external component. UxGetComponentRef () returns
NULL if the swidget is not a subclass of the adapter swidget class.

Description UxGetComponentRef () and UxPutComponentRef () are accessorsfor the
component reference field of an adapter swidget. UxAdapterSwidget () sets
the component reference field when it creates the adapter swidget.

The component reference field stores a pointer to an external component (a
third-party object) integrated with UIM/X.

Example The wrapper methods for the components use UxGet ComponentRef () to get
the component from an adapter swidget:

static int CheckBox set Alignment (swidget UxThis,
Environment *pEnv, int val)

VwCheck *pCmpnt =
(VwCheck*) UxGetComponentRef (UxThis) ;

if (pEnv)
pEnv->major (CORBA: :NO_EXCEPTION) ;
if (pCmpnt) {
return((int) pCmpnt->PutAlignment (
(VwToggleAlignment)val)) ;

}

return ERROR;

UIM/X Advanced Topics 191

}
See Also UxPutComponentRef ()

192 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Description

Example

See Also

UxGetProp()

UxGetProp()

Getsthe current value of aswidget property.

#include <UxLib.h>

XtArgVal UxGetProp (swidget sw, char *name) ;
sw A swidget.
name The name of the property (an XmNor XtN constant).

UxGetProp () returns the requested property value if successful, and 0
otherwise.

UxGetProp () is part of the Ux Convenience Library. This function is used
to define the run-time versions of the UxGetProperty macros (in the
swidget class public header files).

UxGetProp () is used when run-time conversion of property values is not
required. Run-time conversion is required when the data type of the values
expected by the swidget and a widget are not the same. UxDDGetProp () is
used to define run-time UxGetPropert()y macros for properties that require
run-time conversion.

#define UxGetTitle (o) (char *)UxGetProp (o, XmNtitle)

UxDDGetProp(), UxDDPutProp(),UxPutProp(), “ Run-Time Macros’ in Chapter 2,
“Integrating Widgets’

UIM/X Advanced Topics 193

G UxGetResourceSet()

UxGetResourceSet()
Getsthe list of resource descriptors defined for a swidget class.
Synopsis #include <plist.h>
#include <swidget.h>

PList c* UxGetResourceSet (object* obj);

Arguments obj Aninstance of a swidget class (a swidget type variable) or a swidget
classID (aClass_t typevariable).
Return Value UxGetResourceSet () returnsapointer to the swidget class' PList of resource
descriptors.
Description Each swidget class has a PList of resource descriptors named ResourceSet.

This function returnsthat PList of Resource t* pointers. The entriesin the
resource set are the defined properties for the swidget class.

The entries correspond to the properties that appear in the Property Editor for an
instance of the swidget class, with the exception of the Constraints properties.

The order of the resource set is undefined.

194 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Description

UxGloballnstanceResource()

UxGloballnstanceResource()

Registers a global resource descriptor for a component property.
#include <resource.h>

void UxGlaobalInstanceResource(char * propname, Resource t *res);
propname The property name.

res A resource descriptor.

None.

UxGlobalInstanceResource () registersaglobal resource descriptor for a
component property. The registration is global because it appliesto a property of
that name in any component.

You can create component properties by adding arguments to the component
constructor. These properties will appear in the Core category of the Property
Editor.

You can also create get and set property accessor methodsin the Method Editor.
These properties will appear in the Specific category of the Property Editor.

For example, suppose you have built a set of components, each of which declares
an interface function with an argument named textBackground. All instances
of these components have a text Background property. You can register a
resource descriptor for this common property with asingle call to
UxGlobalInstanceResource () (otherwise UxInstanceResource ()
would have to be called once for each Component).

Note: Notethat it is the name of the property textBackground that is common
to all instances. The type of the argument is not necessarily the samein each
component constructor. You are responsible for ensuring that the type of the
component property matches the type of value expected by the Validator function
(if any) in the resource descriptor.

By registering resource descriptors for the properties of instances, you can install
specialized popup editors (such as the Color Viewer), option menus, and input
validation routines. By default, the Property Editor only allows you to use the Text
Editor to set the initial values of the properties of an instance.

When you load an instance into the Property Editor, UIM/X triesto find a
registered resource descriptor for each of the properties of the instance.

UIM/X Advanced Topics 195

G

Example

G

UxGloballnstanceResource()

For example, suppose you load an instance of a component named formField
into the Property Editor, and that the instance has a property named
textBackground (which appearsin the Property Editor as TextBackground).

First, UIM/X triesto find a resource descriptor registered under the names
formField and textBackground by UxInstanceResource (). If nosuch
resource descriptor is found, UIM/X then triesto find a global resource descriptor
registered under the name textBackground by
UxGlobalInstanceResource ().

Note: Resource descriptors registered with UxInstanceResource () take
precedence over those registered with UxGlobalInstanceResource ().

If UIM/X finds aregistered resource descriptor, it copiesthe ValuesOf,
Validator, and EditFunction fields of the registered resource descriptor
into the actual resource descriptor used by the property:

The EditFunction field specifies afunction that pops up a specialized editor.
ThevaluesOf field can be used to install an option menu.
Thevalidatorfield specifiesthe input validation routine for the property.

Typically, you would use UxDef ineResource to create and initialize the
resource descriptors that you register. To register an existing resource descriptor,
you would use one of the UxGetRD_property macros.

Note: You must register a resource descriptor for a component argument before
you create the component.

This exampl e registers a resource descriptor for the property named
textBackground. The code that doesthisis placed in afunction called
SetupInstanceResources.

#include <resource.h>
#include <uxgui.hs>

#include <textF.cl.h>

/* It is assumed that these functions have been
written. */

extern int ValuesOfTextBackground() ;

196 UIM/X Advanced Topics

UxGloballnstanceResource() G

extern int ValidateTextBackground() ;

void SetupInstanceResources ()

{
/*
* Install the Color Viewer,
ValuesOfTextBackground, and
* ValidateTextBackground as the defaults for the
* textBackground property of all Instances.

*

* UxInstanceResource can be used to replace these
defaults
* for instances of a given Component.

*/

Resource t *res = UxDefineResource (
/* You must supply a name. */
RD NAME, "TextBackground",

RD_EDITFUNCTION, (void (*) ())
UxGUIPopupColorView,

RD_VALUESOF, ValuesOfTextBackground,
RD VALIDATOR, ValidateTextBackground,RD END) ;

UxGlobalInstanceResource ("textBackground", res

)i
}

See Also UxDefineResource(), UxInstanceResource(), UxValuesOf Xtype(),
UxValidateXtype()

UIM/X Advanced Topics 197

Synopsis

Arguments

Return Value

Description

See Also

G UxInheritedMethodUnregister()

UxInheritedMethodUnregister()

Unregisters amethod you inherit from one of your base classes.

#include <uxmethod.h>

void UxInheritedMethodUnregister (int clsCode, char
*mname) ;

clsCode A class code obtained from UxNewSubclassId ().
mname The method name.
None.

Usually, amethod implemented by a base class isinherited by all its derived
classes. You might find cases where you would like to implement amethod in a
base class, but it should not be inherited by all its derived classes. At design time,
you can turn off inheritance of the method by calling
UxInheritedMethodUnregister () withthederived class code and method
name.

The Connection Editor builds its list of methods by searching for al registered
method signatures on the target class and all its base classes. If it finds that a
method was unregistered, it will remove it from the list.

UxMethodRegister(), UxMethodSignatureRegister()

198 UIM/X Advanced Topics

UxInheritResources() G

UxInheritResources()

Gives a swidget class the properties defined by its superclasses.

Synopsis #include <swidget.h>

void UxInheritResources(Class_t cl);

Arguments cl A swidget class ID.
Return Value None.
Description UxInheritResources () initializesthe swidget class’ PLists of resource

descriptors. A swidget class has two PLists of resource descriptors: its resource set
and its constraint set. UxInheritResources () givesaswidget classits own
copies of the superclass' resource and constraint sets. The actual resource
descriptors, however, are shared by the classes.

UxInheritResources () must be called when you register a new swidget
class. Until UxInheritResources () iscaled, aclassand its superclass aso
share the same copy of the resource and constraint sets.

Note: After UxInheritResources () hasbeen called,
UxPutClassResource () canbe used to give aderived classits own resource
descriptor for an inherited property.

See Also “Defining New Xtypes' in Chapter 2, “Integrating Widgets’,
UxPutClassResource()

UIM/X Advanced Topics 199

Synopsis

Arguments

Example

See Also

G UxInit_method()

UxInit_method()

Installs afunction as a class method for a swidget class.

#include <veos.h>

void UxInit method(Class_t cl, binptr method id,
void (*fcn) ());

cl Swidget class being initialized.
method_id ID of method (the return value from UxFixed class_method).
fen Function to be used.

UxInit method(UxC_ label, UxM Init, init label);

UxFixed class_method()

200 UIM/X Advanced Topics

UxInstanceResource()

UxInstanceResource()
Registers a resource descriptor for a property of a given component.

Synopsis #include <resource.h>

void UxInstanceResource (char *component, char
*propname, Resource t *res) ;

Arguments component The name of the Component.

propname The property name.

res A resource descriptor.
Return Value None.
Description UxInstanceResource () registersaresource descriptor for aproperty of a

given component. The descriptor will apply to all instances of that component.

You can create component properties by adding arguments to the component
constructor. These properties will appear in the Core category of the Property
Editor.

You can also create get and set property accessor methodsin the Method Editor.
These properties will appear in the Specific category of the Property Editor.

By registering resource descriptors for the properties of instances, you can install
specialized popup editors (such as the Color Viewer), option menus, and input
validation routines. The Property Editor only allows you to use the Text Editor to
set theinitial values of these properties.

When you load an Instance into the Property Editor, UIM/X triesto find a
registered resource descriptor for each of the properties of the instance.

For example, suppose you load an instance of a component named formField into
the Property Editor, and that the Instance has a Specific property named
textBackground (which appearsin the Property Editor as TextBackground).

First, UIM/X triesto find aresource descriptor registered under the names
formField and textBackground by UxInstanceResource (). If nosuch
resource descriptor is found, UIM/X then triesto find a global resource descriptor
registered under the name textBackgroundby
UxGlobalInstanceResource().

Note: Resource descriptors registered with UxInstanceResource () take
precedence over those registered with UxGlobalInstanceResource ().

UIM/X Advanced Topics 201

G UxInstanceResource()

If UIM/X finds aregistered resource descriptor, it copiesthe ValuesOf,
Validator, and EditFunction fields of the registered resource descriptor
into the actual resource descriptor used by the property:

e TheEditFunction field specifies afunction that pops up a specialized
editor.

¢ ThevaluesOf field can be used to install an option menu.
e Thevalidatorfied specifiesthe input validation routine for the property.

Typically, you would use UxDef ineResource () to create and initialize the
resource descriptors that you register. To register an existing resource descriptor,
you would use one of the UxGet RD macros.

Note: You must register a resource descriptor for a Component argument before
you create the Component.

Example This exampl e registers resource descriptors for two of the properties of a
Component named formField. The code that doesthisis placed in afunction called
SetupInstanceResources.

#include <resource.h>

#include <textF.cl.h>

static int ValuesOfLabels() ;

void SetupInstanceResources ()

{

/* Install the Color Viewer for the textColor
argument

* of the formField Component. The EditFunction
field of the

* resource descriptor returned by
UxGetRD background holds

* the popup function for the Color Viewer.
*

* The Validator and ValuesOf fields of the
background
* property are appropriate for our textBackground

202 UIM/X Advanced Topics

UxInstanceResource()

property
* as well, so we’ll use the background resource
descriptor.

*/

Resource_t *res = UxGetRD_background (
UxC textField);

UxInstanceResource("formField",
"textBackground", res);

/* Install an option menu for the labelString
argument. */

res = UxDefineResource (
/* You must supply a name. */
RD NAME, "labelString",
RD VALUESOF, ValuesOfLabels,RD_END) ;

UxInstanceResource("formField", "labelString", res

)i

static int ValuesOfLabels(char *** menultems, int*

numItems)
static char *Items|[] = { "Name", "Date", "Phone"
*menultems = Items;

*numItems = XtNumber (Items) ;

return *numltems;

}

See Also UxDefineResource(), UxGloball nstanceResource(), UxVal uesOf X type(),
UxValidateXtype()

UIM/X Advanced Topics 203

G UxIsinterface()

UxlIsInterface()
This function detects top-level swidgets.
Synopsis #include <swidget.h>
int UxIsInterface (swidget sw) ;
Arguments sw An adapter swidget.

Return Value Thisfunction returns true if sw isthetop-level swidget in an interface;
false otherwise.

Description A swidget is the top-level swidget in an interfaceif it is one of the following:
e asubclass of Shell
e aconvenience dialog created from the Dialog creation menu
e amanager with an implicit shell supplied by UIM/X

The USER widgets for which UxIsInterface () returnstrue correspond to
the interfaces shown in the project window; the name of the shell swidget is the
name of the interface window; the name of top-level swidget appears on the
interface icon.

See Also UxGetParent in the UIM/X Reference Manual

204 UIM/X Advanced Topics

UxIsSubclass()

UxIsSubclass()

Thisfunction determinesif an object is an instance of a given class or a subclass of
that class.

Synopsis #include <veos.h>

int UxIsSubclass (object* obj, Class_t cl);

Description Thisfunction returns t rue if the argument is an instance of theclass c1 ora
classderived fromcl; false otherwise.

Example UxIsSubclass (sw, UxC manager) ;

returns true if and only if the given swidget sw is an instance of any manager class
(such as bulletinBoard, form, or fileSelectionBox).

UIM/X Advanced Topics 205

G

Synopsis

Arguments
Return Value

Description

Example

G UxLoadGloballnclude()

UxLoadGloballnclude()
Load an include file into the global reference environment.
#include <UxLib.h>
void UxLoadGlobalInclude(char *include file);
include fileThe name of theincludefile.
None.

UxLoadGlobalInclude () includesafilein the reference translation unit,
which is a collection of definitions shared by all trandation units. UIM/X usesthe
reference trandlation unit to include the standard UIM/X, Motif, Xt, X, and system
header filesfor usein all trandation units.

#ifdef DESIGN TIME
UxLoadGlobalInclude ("xkcheck.h") ;
#endif

206 UIM/X Advanced Topics

UxMethodLookup()

UxMethodLookup()
Retrieves the implementation of a method for a given class.
Synopsis #ifdef XT CODE
#include <UxXt.h>
#else

#include <UxLib.h>

#endif
void* UxMethodLookup (swidget sw, int mid, char
*mname) ;
Arguments sw A swidget.
mid A method ID obtained from UxMethodRegister ().
mname The method name.
Return Value Returns the function pointer for the method implementation registered for the

swidget's interface class.

If the lookup fails at run time, UxMet hodLookup () returns a pointer to a
function that dways returns 0. If the lookup fails at design time,
UxMethodLookup () returnso.

Description UxMethodLookup () findsthe implementation of a method for a given class.
The classis obtained from the swidget sw, which istypically the top-level swidget
of aninterface.

If there isno entry in the method table for the given class, UxMethodLookup ()
searches the method table for a superclass version of the method.

Note that you can call UxMethodLookup () without amethod ID. If you pass - 1
as the method 1D, UxMethodLookup () searches an internal table of method
names for the method 1D corresponding to mname.

Example Generated C code defines method invocation macros that use
UxMethodLookup () :

#ifndef bulletinBoardl set Background

#define bulletinBoardl set Background(UxThis,
pPEnv, color) \

((int (*) ()) UxMethodLookup (UxThis, \

UIM/X Advanced Topics 207

G UxMethodLookup()

UxbulletinBoardl set Background Id,\
UxbulletinBoardl set Background Name)) \
(UxThis, pEnv, color)

#endif

See Also UxMethodRegister(), UxNewl nterfaceClassld(), UxNewSubclassld()

208 UIM/X Advanced Topics

UxMethodRegister()

UxMethodRegister()
Registers a method for agiven class.

Synopsis #ifdef XT CODE

#include <UxXt.hs>
#else

#include <UxLib.h>
#endif

int* UxMethodRegister (int clsCode, char *mname,

void (*function) ());

Arguments clsCode A class code obtained from UxNewInterfaceClassId ()or
UxNewSubclassId().
mname The method name.

function The method implementation.
Return Value Returnsaunique ID.

Description UxMethodRegister () registers amethod by storing the function pointer in a
method table. Thistable isindexed by class code and method ID.

UxMethodRegister () mapseach method name to a unique method ID. So
when you register the same method for different classes (for example, when you
override an inherited method), UxMethodRegister () returnsthe same method
ID.

Note that UxMethodRegister () storesthe method namesin aninterna table,
and uses the method ID as an index into the table.

Example In generated C code, the source file defines two variables for each method:
int UxbulletinBoardl set Background Id = -1;

char* UxbulletinBoardl set Background Name =
" set Background";

The 14 variable holds the ID returned by UxMethodRegister (), and the
Name Vvariable holds the method name. The method is actually registered in the
interface's generated Interface Function:

static int UxIfClassId;

UIM/X Advanced Topics 209

G

UxMethodRegister()

swidget create_bulletinBoardl(swidget _UxUxParent)
swidget rtrn;
_UxCbulletinBoardl *UxContext;

static int Uxinit = 0;

UxBulletinBoardlContext = UxContext =

(_UxCbulletinBoardl *) UxNewContext (
sizeof (_UxCbulletinBoardl), False);

UxParent = UxUxParent;
if (! Uxinit)

_UxIfClassId = UxNewInterfaceClassId() ;

UxbulletinBoardl__set_Background Id =

UxMethodRegister (
_UxIfClassId,UxbulletinBoardl set Background
Name, (void (*) ()) bulletinBoardl set Backgroun
d);
_Uxinit = 1;
}
rtrn = Uxbuild bulletinBoardl () ;

return (rtrn) ;

}

Note: The method is registered in a one-time only block of code.Note also that

method registration is not performed in generated C++ code, as method |ookups are
not necessary in C++,

See Also UxInheritedM ethodUnregister(), UxMethodL ookup(), UxNewl nterfaceClassld(),
UxNewSubclassid()

210 UIM/X Advanced Topics

UxMethodSignatureRegister()

UxMethodSignatureRegister()
Registers the signature for a method.

Synopsis #include “uxmethod.h”

int UxMethodSignatureRegister (int clsCode, char
*mname, struct Method t *signature);

Arguments clsCode A class code obtained from UxNewInterfaceClassId()or
UxNewSubclassId().
mname The method name.

signature The method signature.
Return Value Returns the method ID.

Description A method signature is the description of the arguments of a method and its return
type. The builder needs this information at design time to determine how to call
compiled-in methods and how to display them in the Connection Editor.

UxMethodSignatureRegister() registers the signature that you obtain from
UxCreateMethodSignature (). Thisisusualy done immediately after you
register the method with UxMet hodRegister () . For backward compatibility, if
you do not register asignature, the builder will assumeit isa CORBA 1 method,
and it will not be available in the Connection Editor.

The builder can automatically generate calls to
UxMethodSignatureRegister if you generate Ux Integration Code. You
might have to edit the generated code if you need your own validators and
ValuesOf functions for the method arguments. See UxGet ArgResource () for
details.

Example int cid, mid;

cid UxNewClassId() ;

mid = UxMethodRegister(cid, “ set height”,
_set_height) ;

UxMethodSignatureRegister (cid, “ set height”,

UxCreateMethodSignature (* set height”, Corbal,
NULL,

UxEnvArgResource (),

UxGetArgResource (“height”, UxUT_int, “0”,

UIM/X Advanced Topics 211

G UxMethodSignatureRegister()

UxValidateInt, UxValuesOfInt),
NULL) ;

See Also UxCreateM ethodSignature(), UXEnvArgResource(), UxGetArgResource(),
UxMethodRegister()

212 UIM/X Advanced Topics

UxNewInterfaceClassld() G

UxNewlnterfaceClassld()

Registers anew interface class.

Synopsis #ifdef XT CODE
#include <UxXt.h>
#else #
include <UxLib.h>
#endif

int UxNewInterfaceClassId(void);

Arguments None.
Return Value Returns the class code.
Description UxNewInterfaceClassId() registersan interface class as a subclass of the

abstract base classUxVisual Interface (sometimesreferred to asthe Interface
class). Every interface class and component in UIM/X is a subclass of

UxVisua Interface.

UxNewInterfaceClassId () registersthe methods of the Interface class:
» Default versions of standard accessor methods for x, y, width, and height.
e A default UxManage () method.

Example In generated C code, the Interface Function for an interface class calls
UxNewInterfaceClassId() togetaclasscode, whichit then usesto register
methods:

_UxIfClassId = UxNewInterfaceClassId() ;

UxbulletinBoardl set Background Id =
UxMethodRegister (

_UxIfClassId,
UxbulletinBoardl_ _set_Background_ Name,

_bulletinBoardl set Background) ;

See Also UxMethodL ookup(), UxMethodRegister(), UxNewSubclassId()

UIM/X Advanced Topics 213

G UxNewSubclassld()

UxNewSubclassld()

Registers anew class as a subclass of an existing class.
Synopsis #ifdef XT CODE
#include <UxXt.h>
#else
#include <UxLib.h>
#endif

int UxNewSubclassId(int super);

Arguments super The class code for the superclass of the new subclass.
Return Value Returns the class code for the new subclass.
Description You use UxNewSubclassId () toregister aclass as asubclass of another class.

The subclass inherits the methods of its superclass.

Thismeans that if you pass an instance of the new subclassto
UxMethodLookup (), UIM/X invokes the superclass’ version of the method.

See Also UxNewInterfaceClassld()

214 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Description

UXPUT _type()

UxPUT _type() G

These functions are only used in defining the DESIGN_TIMEversions of the
UxPut macros in the swidget class public header file.

#include <stdgetput.h>

int UxPUT_type (swidget sw, binptr bp, char* name, type

value) ;
sw Swidget to put value on.
bp ID of property.
name

Name of property. Used in error message if the property does not exist

for the swidget class.

value Valueto put.

UxPUT _type () returns NO_ERROR if successful, ERROR otherwise.

The UxPUT_type () functions call the put_function for the specified
property to put the current property value from the specified swidget.
UIM/X displays an error dialog box (by calling UxGUIError) if the
property does not exist for the swidget class of the specified swidget.

One UxPUT_type() function existsfor each utype:

Function Name Utype Value Type
UxPUT 1int UxUT_1int int
UxPUT float UxUT float float
UxPUT_short UxUT_short short
UxPUT_Iong UxUT long Tong
UxPUT _string UxUT_string char *
UxPUT_char UxUT_char char
UxPUT_voidFunction UxUT voidFunction void (*) ()
UxPUT_cardFunction UxUT _cardFunction Cardinal

*

UxPUT_visualPointer UxUT visualPointer Vlsu(al) (*)
UxPUT_stringTable UxUT_stringTable char **
UxPUT XmTextSource UxUT_XmTextSource XmTextSource

UIM/X Advanced Topics 215

G UxPUT _type()

Example status = UxPUT string(swgt, UxP_LabelRD alignment,
“alignment", "alignment end");
See Also UxDefineResource(), UxGET_type()

216 UIM/X Advanced Topics

UxPutClassResource() G

UxPutClassResource()
Installs a resource descriptor for a swidget class property.

Synopsis #include <swidget.h>

void UxPutClassResource(Class t cl, binptr bp,
Resource t *res);

Arguments cl Swidget class ID.
bp ID of the class property.
res Resource descriptor to install.
Return Value None.
Description UxPutClassResource () installs aresource descriptor as a class property of

the swidget class c1. Existing resource descriptors—for example, the resource
descriptors of inherited properties—are replaced for the specified class.

UxPutClassResource () should be called once for each resource during class
initialization.
Example The following code installs a new valuesOf function for all pushButtons:
#include <pushB.cl.h>

extern int ValuesOfBackgroundColor (char ***values,
int *nentries);

UxPutClassResource (UxC_pushButton,
UxP_CoreRD_background,

UxDefineResource (

RD_EXAMPLE, UxGetRD_background(UxC_pushButton
)

RD_VALUESOF, ValuesOfBackgroundColor,
RD END));

UIM/X Advanced Topics 217

G

UxPutComponentRef()

UxPutComponentRef()
Sets the component reference for an adapter swidget.
Synopsis #ifdef XT CODE
#include <UxXt.h>
#else
#include <UxLib.h>
#endif

void UxPutComponentRef (swidget sw, void *ref);

Arguments sw An adapter swidget.
ref The component reference.
Return Value None.
Description UxGetComponentRef () and UxPutComponentRef () are accessors for the

component reference field of an adapter swidget. UxAdapterSwidget () sets
the component reference field when it creates the adapter swidget.

See Also UxGetComponentRef ()

218 UIM/X Advanced Topics

UxPutlconBitmap() G

UxPutlconBitmap()

The macro UxPutIconBitmap () specifies the name of the bitmap file to
be used to represent a swidget class. It should be called once at class
initialization.

Synopsis #include <swidget.cl.h>
void UxPutIconBitmap(Class_t cl, char* bitmap file);
Arguments cl Swidget class being initialized.
bitmap fileName of bitmap file.
Return Value None.

Example UxPutIconBitmap (UxC label, "stext.bm");

UIM/X Advanced Topics 219

Synopsis

Arguments

Return Value

Description

Example

See Also

G

UxPutProp()

UxPutProp()

Sets the current value of a swidget property.

#include <UxLib.h>

int UxPutProp (swidget sw, char *prop, XtArgVal

value) ;
sw A swidget.
prop The name of the property (an XmNor XtN constant).
value The property value.

ReturnsNO_ERROR if successful, ERROR otherwise.

UxPutProp () is part of the Ux Convenience Library. Thisfunction is used to
define the run-time versions of the UxPutProperty() macros (in the swidget class
public header files).

UxPutProp () is used when run-time conversion of property valuesis not
required. Run-time conversion is required when the data type of the values
expected by the swidget and awidget are not the same. UxDDPutProp () isused
to define run-time UxPut Property() macros for properties that require run-time
conversion.

#define UxPutIconY (o, v) \
UxPutProp (o, XmNiconY, ((XtArgVal) (v)))

UxDDGetProp(), UxDDPutProp(), UxGetProp(), “ Run-TimeMacros’ in Chapter 2,
“Integrating Widgets’

220 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Description

Example

UxPutToolKitClass() G

UxPutToolKitClass()
Specifies the widget class that corresponds to a swidget class.

#include <swidget.cl.h>

void UxPutToolKitClass(Class_t cl, WidgetClass
wgt_class) ;

cl swidget class being initialized
wgt_class corresponding widget class
None.

The macro UxPutToolKitClass () specifies the widget class that
corresponds to a swidget class.

UxPutToolKitClass (UxC label, XmLabelWidgetClass) ;

UIM/X Advanced Topics 221

G UxPutUxFilename()

UxPutUxFilename()

Sets the name of the public header file for a swidget class.

Synopsis #include <veos.h>

void UxPutUxFilename(Class_t cl, char *filename);
Arguments cl The class ID of aswidget class.
filename The name of the swidget class' public header file.
Return Value None.

Description UxPutUxFilename () setsthe class property that specifies the name of the
public header file for the swidget class. This function must be called in the function
which registers and initializes the swidget class.

Example UxPutUxFilename (UxC label, "<UxLabel.h>");

See Also “The Class Structure” in Chapter 2, “Integrating Widgets”

222 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Description

Example

UxRegister_class()

UxRegister_class()

Registers a new swidget class.

#include <veos.h>

Class_t UxRegister class(char *name, Class t
superclass, int instance size, int class_size);

name Name of swidget class.

superclass Swidget superclass.

instance_size Size of instance structure in bytes.
class size Sizeof class structure in bytes.
Returns the swidget class ID.

Registers a swidget class. If aclass already exists with the same name, superclass,
instance size, and class size, the class is considered to aready be registered.

UxC_label = UxRegister class("label", UxC primitive,
sizeof (label), sizeof (UxlabelClass)) ;

UIM/X Advanced Topics 223

G

Synopsis

Arguments

Description

Examples

See Also

G UxType_get_op()
UxType _get_op()
L ooks up aswidget class method and returns a function pointer.
#include <veos_d.h>

void (*UxVoid get op(Object t cl, binptr
method_id)) (void) ;

int (*UxInt get op(Object t cl, binptr
method_id)) (void) ;

char* (*UxPNTR get op(Object t cl, binptr
method_id)) (void) ;

obj Class or swidget whose method is to be retrieved.
method_id 1D of method.

TheUxType get op () functionslook up the function that was previously
installed for a given method and return a pointer to a function returning type.

swidget swgt;

UxVoid get op(UxC label, UxM Init) (swgt);
char *msg = UxPNTR_get op

(UxC_form, UxM InteractiveChildCreate) (swgt);

swidget swgt to recreate =
(swidget) UxPNTR get op

(UxC_label, UxM RecreateParentOrChild) (swgt);

UxFixed_class method(), UxInit_method()

224 UIM/X Advanced Topics

Synopsis

Arguments

Return Value

Description

Example

See Also

UxValidateXtype() G

UxValidateXtype()
Validates a property value of a specific xtype.
#include <valuesOf.hs>
int UxValidateXtype (swidget swgt, type value) ;
swgt A swidget.
value A property value.
ReturnsNO_ERROR if valueisvalid, and ERROR otherwise.

Validation functions are used by UIM/X to check that the values given when setting
aproperty on aswidget instance are valid values. Validation functions are specified
(with RD_VATL.IDATOR) when aresource descriptor is defined by
UxDefineResource (). The name of the validation function is conventionally
UxValidateXtype() where Xtype isthe name of the property xtype being
validated. All validation functions should follow the format shown above.

int UxValidatePositivelInt (swidget swgt, int value)

{

if (value <= 0)
return (ERROR) ;
else

return (NO_ERROR) ;

}
UxDefineResource(), UxValuesOf Xtype()

UIM/X Advanced Topics 225

G UxValuesOfXtype()

UxValuesOfXtype()

Describes the allowable values for a property of a given xtype.

Synopsis #include <valuesOf.h>

int UxValuesOfXtype (char ***values, int* num strings) ;
Arguments values Array of permissible values or a description of permissible values.
num_strings Number of stringsin the array values.

Return Value If thearray values holdsalist of permissible values (asit should for an
enumerated type property), the return value should be the number of permissible
values. Note that the list of permissible values may be followed by other strings
holding additional descriptive information, so that the return value is not
necessarily equal to ‘*num_strings'.

If the valuesarray holds strings that describe the permissible values, the return
value should be 0.

Description ValuesOf functions are used by UIM/X when a description of the permissible
values for a property is needed. For enumerated type properties, the Val uesOf
function is used to supply thelist of choicesthat appearsin the Property Editor.
ValuesOf functions are specified (with RD_VALUESOF) when aresource
descriptor is defined by UxDefineResource (). The name of the ValuesOf
function is conventionally UxvaluesOf Xtype() where Xtype is the name of the
property xtype. All ValuesOf functions should follow the format shown above.

Examples int UxValuesOfPositivelInt (char ***vals, int *n)
**yvals = "<positive integers>";
*n = 1;

return (0) ;

}

int UxValuesOfBoolean (char ***vals, int *n)
static char *boolean values|[] = {"true", "false"};

*vals = boolean values;

226 UIM/X Advanced Topics

UxValuesOfXtype() G

*n = XtNumber (boolean values) ;

return (*n);

}
See Also UxDefineResource, UxValidateXtype

UIM/X Advanced Topics 227

D

228 UIM/X Advanced Topics

Index

childSite() 54, 56
I n d ex class methods 129-154
init 130
A UxApply 131

accessor methods
callback accessors
naming convention 57
property accessors
inherited from Interface 70
naming convention 73
adapter swidgets
child site 54
component reference 191, 218
creating 53, 162
defined 53
returned by constructor 54
AddEventNameProc() 58
adjust button
on compound widgets 2
allows9
application defaults viii
ArgDefinition property 84

B
bindings, C and C++ 52

C

Callback Editor 57
callbacks
component properties 58
compound editors 9
passing arguments 60
structure, defining 60
CanBeTopLevel property 101
CanHaveChildren property 101
child site 54

UxBuild 132

UxCanL oseChild 133
UxChildAdded 135
UxChildRemoved 136
UxClassValidate 137
UxClearExpressions 138
UxClearValues 139
UxDrawHandles 140, 141
UxHandlePostCreation 142
UxInteractiveChildCreate 143
UxInteractiveCreateAndApply 144
UxMakeArglist 145
UxMenusMenuSensitivities 146
UxObjectToRecreate 147
UxRealize 148
UxRecreateParentOrChild 149
UxRecreateSwidget 150
UxSetNonarglist 151
UxUnrealize 152
UxVaidMoveOrResize 153
UxWidgetCannotAcceptChildren 154

class structure fields 14, 16
classes

derived wrapper class 71
hierarchy

swidgets 12
Interface base class 52, 69
pointer to, XkThisComponent 69
registering 214
root class, hierarchy of 80
swidget

defining 19

229

Index

initializing 20
registering 20
structure 14-17
wrapper class constructor 74
ClipboardOps property 101
code, generated
integration with UIM/X 62
linking with UIM/X 64
compilation flags 83
-DDESIGN_TIME 26, 64
-DEXTERN_C_WRAPPERS 64
-DPRIVATE_SWIDGET 95
-DUX_C64
compiling
conditional compilation 76
Component property 84
components
and compound widgets 1
archiving in run-time library 90
child site 54
compiled into UIM/X 82
constructors 70, 74
destroying 65
instances, creating 54
integrating 49-85
integrating with UIM/X 62
methods, registering 79
Motif elements, connecting 53
pointer to 191, 218
recreating 56
source files, writing 71
stub context structure 68
subclassing 68
UIM/X, integrating with 57
wrapper methods 50, 65
compound editors
installing 8
compound properties and compound widgets
Compoundicon 8
CompoundName 8, 9
DragRecursion 5
Editor 9

230 UIM/X Advanced Topics

EditorClientData 9

IsCompound 2

IsinCompound 2

IsRegion 3

ResizeRecursion 4
compound widgets

icon 8

in palettes 8

name 8

top widget 8
CompoundEditor, See Editor
CompoundEditorName property 101
Compoundlcon property 8, 85, 101
CompoundName property 8, 85, 101
CompoundResourceSet property 101
CompoundSwidgetM ethodSet property 102
connection_action 112
connection_event class 112
constraint set

initialization 199
Constructor property 76
constructors

adapter swidgets 162

C wrapper 76

C++ wrapper 74

declaring 71
context manager, X 60
Context Structure 68
conventions

naming viii

symboalic viii
converter functions 39

D

-DDESIGN_TIME constant 64

Declaration properties 84
Constructor 76
HeaderFlle 65

DESIGN_TIME constant 26

design-time 25

DragRecursion property 5, 102

E

Editor property 9, 102
EditorClientData property 9, 102
enumerated xtypes 122
Environment pointer 70
event procedures

as properties 57

defining 58

PropDefinition property 84

registering 57

wrapper event, writing 60
EXTERN 64
EXTERN_C_WRAPPERS constant 64
F
facets 108

lock 109

of resources 109

source 109
files

loading into Interpreter 81, 206
source, for components 71

flags 83

flags, See compilation flags

functions
registering with Interpreter 81, 96

G

geometry of instances 56
global variables
registering with Interpreter 97

H
header files

loading into Interpreter 81, 206
HeaderFile property 65, 84
hierarchy of swidget classes 115

icons
palette 85
implicit shell 75

Index

init 130
installing compound editors 8
Instance Structure 17
instances
adapter swidgets 53
ArgDefinition property 84
Component property 84
components 54, 83
Constructor property 76
Declaration properties 84
geometry 56
HeaderFile property 65, 84
managing 53
palettes, storing in 83-85
PropDefinition property 84
instance-specific resources 108
instantiating an object 107
integration code
components 64
defined 50
Interface base class 69
defined 52
geometry, handling 56
registering subclasses 213
interface files
format 107
loading earlier versions 114
object instantiation in 107
Interface-Specific Resources 109
Interpreter
access to compiled functions 94
header files, loading 81
registering functions 81, 96
registering globals 97
IsAlignable property 102
IsAreaSel ectable property 102
IsArrangeable property 103
IsCompound property 2, 103
IsDeletable property 103
IsDraggable property 103
IsDuplicatable property 103
IsinCompound property 2, 103

UIM/X Advanced Topics 231

Index

IsMovable property 103
IsNovice property 103
IsRecreatable property 103
IsRegion property 3, 104
IsReorderable property 104
| sReparentable property 104
IsResizable property 104

| sSelectabl e property 104

L
libraries
linking with UIM/X 83
registering functions 96
registering global variables 97
libuxbuild.a
recompiling 92
libuxcustom.a
recompiling 88
linkage 71
linker flags
lock facet 109

M

macros
C bindings 66
EXTERNC 67
UX_C 66
Makefile.uimx 64, 82
makefiles
augmenting UIM/X 82
build/src/Makefile 92-94
custom/src/Makefile 88-92
mkinclude/central.mk 99
methods
and class structure 16
childSite() 54, 56
design-time 55, 160
inherited, overriding 52
overriding 43
property values 50
registering 79, 209
registration 20

232 UIM/X Advanced Topics

retrieving function pointer 207
UxAdapterDesignM ethods() 56
UxCanBeAnInstance() 54
UxCheckChildren() 56
UxDrawHandles() 56
UxObjectToRecreate() 56
Visuallnterface Manage() 53
wrappers 66

See also accessor methods

N

names 8

palette 85
naming conventions viii
non-enumerated xtypes 123

O

objects

instantiating 107
option menus

external components 82

P

palettes
putting compound widgetsin 8
storing instances 83-85
PLists
or resource descriptors 199
PropDefinition property 84
properties
ArgDefinition 84
CanBeTopLevel 101
CanHaveChildren 101
ClipboardOps 101
CompoundEditorName 101
Compoundicon 8, 85, 101
CompoundName 8, 85, 101
CompoundResourceSet 101
CompoundSwidgetM ethodSet 102
Constructor 76
DragRecursion 5, 102
Editor 9

EditorClientData 9, 102
HeaderFile 65, 84
inherited 199
IsAlignable 102
IsAreaSelectable 102
IsArrangeable 103
IsCompound 2, 103
IsDeletable 103
IsDraggable 103
IsDuplicatable 103
IsilnCompound 2, 103
IsMovable 103
IsNovice 103
IsRecreatable 103
IsRegion 3, 104
IsReorderable 104
IsReparentable 104
IsResizable 104
IsSelectable 104
new data types (xtypes) 38-42
PropDefinition 84
ResizeRecursion 4, 104
resource descriptors 21-23
run-time conversion 47
ShowlInBrowser 105
UsePropEditor 105
UxPut and UxGet macros 25-31
xtypes, utypes 42
Property Editor
option menus 82
resource editors 82
proprietary resources 108

R

RD _EXAMPLE 23
reference environment, | nterpreter 206
region widget 4, 104
ResizeRecursion property 4, 104
resource descriptors 155-158
and inherited properties 199
class structure fields 14
initialization 21-23

Index

resource editors 82
resource set
initialization 199
resource types 121
resources
facets of 108
instance-specific 108
interface-specific 109
proprietary 108
setting viii
shortPallconNames 85
splitPallconNames 85
UxPrjOptionsCGenGenCWrappers 63
UxPrjOptionsCGenGenUxIntCode 63
run-time library
See Ux Convenience Library

S

selection handles, drawing 56
shortPal lconNames resource 85
ShowlInBrowser property 105
signature

event procedure 60

Xt callback, event procedures 57
source facet 109
splitPallconNames resource 85
structures 16
subclasses

components 68

registering 214
swidget class hierarchy 115
swidget methods 113
swidgetmethod class 114
swidgets

adapter swidget 71

Class Editor 21

classicon 21

classID 19

class structure 14-17

compiling & linking new classes 88-92

component, instance of 52

constraint sets 199

UIM/X Advanced Topics 233

Index

defined 12, 50

instance structure 17
private header file 14-18
public header file 25-31
resource descriptors 21-23
resource sets 199

source file 18-25

T

Toolkit 11
top-level
defined 78

U

UIM/X
augmenting 82-83

components, connecting Motif elements 53

generated code 51
linking with integration code 64
uimx_main.cc 83
UsePropEditor property 105
user-xtype.c 3942
Using 88
utypes 38, 122
Ux 66
Ux builder functions 160, 160-227
Ux Convenience Library 66
extending 47
UX_C constant 64
UxAdapterDesignM ethods() 56, 160
UxAdapterSwidget() 53, 77, 162
UxAddConv() 42, 164
UxAddEnumType 42
UxAddEnumType() 167
UxAddMweEditorSeparator() 168
UxAddToCreateMenu() 170
UxAddToMweEditor() 173
UxAddXtype 42
UxAddXtype() 176
UxApply 131
UxBuild 132
UxCallConverter() 177

234 UIM/X Advanced Topics

UxCanBeAnlnstance() 54, 77
UxCanL oseChild 133
uxcgen

recompiling 88
UxCheckChildren() 55, 134
UxChildAdded 135
UxChildRemoved 136
UxClassValidate 137
UxClearExpressions 138
UxClearVaues 139
UxCreateMethodSignature() 178
UxCreateSwidget 28
UxDDGetProp() 29, 180
UxDDlInstall() 47, 181
UxDDPutProp() 29, 182
UxDefineResource() 183
UxDrawHandles() 55, 140, 141
UxEnvArgResource() 186
UxFixed class method() 23, 187
UxFixed class prop() 188
UxGet 25
UxGet_int 27
UXGET _string 27
UxXGET _type() 27, 189
UxGetArgResource() 190
UxGetComponentRef() 191
UxGetProp() 28, 193
UxGetResourceSet() 194
UxGloball nstanceResource() 82, 195
UxHandlePostCreation 142
UxInheritedM ethodUnregister() 198
UxInheritResources() 21, 199
UxInit_method() 23, 43, 200
UxInstanceResource() 82, 201
UxInteractiveChildCreate 143
UxInteractiveCreateAndApply 144
UxIslnterface() 204
UxIsSubclass() 205
UxLib.h 66
UxL oadGlobalInclude() 81, 206
UxMakeArglist 145
UxMenusM enuSensitivities 146

UxM ethodL ookup() 53, 66, 207
UxMethodRegister() 52, 67, 72, 209
UxMethodSignatureRegister() 211
UxNewInterfaceClassld() 52, 53, 213
UxNewSubclassld() 52, 214
UxObjectToRecreate() 55, 147
UxPrjOptionsCGenGenCWrappers 63
UxPrjOptionsCGenGenUxIntCode 63
UxPut 25
UxPut_int 27
UXPUT _string 27
UxPUT _type() 27, 215
UxPutClassResource() 21, 217
UxPutComponentRef() 218
UxPutlconBitmap() 219
UxPutProp() 28, 220
UxPutToolKitClass() 20, 221
UxPutUxFilename() 20, 222
uxreaduil

recompiling 88
UxRealize 148
UxRecreateParentOrChild 149
UxRecreateSwidget 150
UxRegister_class() 19, 223
UxRegisterFunction() 82
UxRegisterFunctions 96
UxRegisterGlobas 97
UxSetNonarglist 151
UxThis 71, 77
UxType_get_op() 24, 224
UxUnrealize 152
UxValidateXtype() 225
UxVaidMoveOrResize 153
UxVa uesOfXtype() 226
UxVisualInterface base class inheritance for com-

ponents 53

UxWidgetCannotA cceptChildren 154
UxXt.h 66

Vv

Validator functions 39
VauesOf functions 39

Index

variables

See global variables
veos.h 72
vhandle type 16
VisuaInterface Manage() 53

W
widgets
compiling & linking new classes 88-92
region 104
selection handles 56
wrapper 71
wrappers
Cand C++50
constructors 74
derived wrapper class 71
event procedure 61
methods, writing 72
pointer, XtCallbackProc 57

X

X context manager 60
X Toolkit, See toolkit
XkAdapter() 77
XkCreatelmplicitShell() 75
XkThisComponent 69
xNewSubclassld() 53
XtCallbackProc 58, 59, 60
XtDestroyWidget() 65
xtypes 122
defining new 38-42
enumerated 39, 122
non-enumerated 123

UIM/X Advanced Topics 235

236 UIM/X Advanced Topics

	Preface
	Overview
	Who Should Use this Guide
	Before You Read this Guide
	Related Books
	How this Guide Is Organized
	Conventions Used in this Guide
	Setting Application Defaults

	Compound Widgets 1
	Overview
	Specifying the Widgets in a Compound
	The Adjust Button and Compound Widgets
	Finding a Region
	Finding a Resizable Widget
	Finding a Draggable Widget

	Creating Compound Properties and Swidget Methods
	Putting a Compound Widget in a Palette
	Installing Compound Editors

	Integrating Widgets 2
	Overview
	Getting Started
	Swidget Class Source Files
	Writing the Private Header File
	The Class Structure
	The Instance Structure
	Global Variables
	Summary

	Writing the Swidget Class Source File
	Include Files
	Global Variable Definitions
	Defining the Swidget Class
	Summary

	Writing the Public Header File
	Design-Time Macros
	Design-Time C++ Member Functions
	Run-Time Macros
	Run-Time C++ Member Functions
	Summary

	Building UIM/X
	Creating Widgets from UIM/X’s Menus
	Customizing UIM/X’s Create Menus
	Customizing the Browser’s New Option
	Customizing the Main Window Editor’s Option Menus
	Defining New Xtypes
	Enumerated Xtypes
	Non-Enumerated Xtypes

	Overriding Inherited Class Methods
	Generating Code and Reading UIL
	Building uxcgen
	Building uxreaduil

	Extending the Ux Convenience Library
	Building the Ux Convenience Library

	Summary of Naming Conventions

	Integrating Components 3
	Overview
	Understanding What to Do
	Wrapping Components
	Creating Adapter Swidgets
	Managing Instances
	Designating a Child Site
	Creating Instances of your Components
	Defining Design-Time Methods

	Overriding the Geometry-Handling Methods
	Adding Event Procedures

	Generating Integration Code
	Writing the Integration Code
	Writing the Header File
	Including the Required Files
	Defining the C and C++ Bindings
	Defining the Context Structure
	Defining the C++ Wrapper Class
	Declaring the C Wrapper Constructor

	Writing the Source File
	Including the Required Files
	Writing the Wrapper Methods
	Understanding the Wrapper Constructors
	Writing the C++ Wrapper Constructor
	Writing the C Wrapper Constructor
	Wrapping UxAdapterSwidget()
	Registering the Methods

	Writing Initialization Code for UIM/X
	Loading Header Files
	Registering Functions
	Installing Option Menus and Resource Editors

	Augmenting UIM/X
	Building a Palette
	Creating Instances
	Putting Instances in the Palette

	Building Executables 4
	Overview
	Using the Custom Makefile
	Custom Makefile Macros
	Invoking Make on the Custom Makefile
	General Procedure for Using the Custom Makefile

	Using the Build Makefile
	Build Makefile Macros
	Invoking Make on the Build Makefile
	General Procedure for Using the Build Makefile

	Augmenting UIM/X
	Registering Functions
	Registering Globals
	Conditional Compilation in Generated Code
	Using Makefile.uimx

	Using central.mk

	Compound Properties A
	CanBeTopLevel
	CanHaveChildren
	ClipboardOps
	CompoundEditorName
	CompoundIcon
	CompoundName
	CompoundResourceSet
	CompoundSwidgetMethodSet
	DragRecursion
	Editor
	EditorClientData
	IsAlignable
	IsAreaSelectable
	IsArrangeable
	IsCompound
	IsDeletable
	IsDraggable
	IsDuplicatable
	IsInCompound
	IsMovable
	IsNovice
	IsRecreatable
	IsRegion
	IsReorderable
	IsReparentable
	IsResizable
	IsSelectable
	ResizeRecursion
	ShowInBrowser
	UsePropEditor

	Interface File Format B
	File Format Concepts
	Object Instantiation
	Instance-Specific and Proprietary Resources

	Facets
	Interface-Specific Resources
	Methods
	Connections
	Swidget Methods
	Loading Interface Files of an Earlier Version

	Swidget Class Hierarchy C
	Overview

	Resource Types D
	Overview
	Utypes
	Xtypes
	Enumerated Xtypes
	Non-Enumerated Xtypes

	Validator And ValuesOf Functions

	Class Methods E
	Overview
	init
	UxApply
	UxBuild
	UxCanLoseChild
	UxCheckChildren
	UxChildAdded
	UxChildRemoved
	UxClassValidate
	UxClearExpressions
	UxClearValues
	UxDrawHandles
	UxDrawHandles
	UxHandlePostCreation
	UxInteractiveChildCreate
	UxInteractiveCreateAndApply
	UxMakeArglist
	UxMenusMenuSensitivities
	UxObjectToRecreate
	UxRealize
	UxRecreateParentOrChild
	UxRecreateSwidget
	UxSetNonarglist
	UxUnrealize
	UxValidMoveOrResize
	UxWidgetCannotAcceptChildren

	Resource Descriptors F
	Overview
	Resource Descriptor Fields

	Ux Builder Functions G
	Overview
	UxAdapterDesignMethods()
	UxAdapterSwidget()
	UxAddConv()
	UxAddEnumType()
	UxAddMweEditorSeparator()
	UxAddToCreateMenu()
	UxAddToMweEditor()
	UxAddXtype()
	UxCallConverter()
	UxCreateMethodSignature()
	UxDDGetProp()
	UxDDInstall()
	UxDDPutProp()
	UxDefineResource()
	UxEnvArgResource()
	UxFixed_class_method()
	UxFixed_class_prop()
	UxGET_type()
	UxGetArgResource()
	UxGetComponentRef()
	UxGetProp()
	UxGetResourceSet()
	UxGlobalInstanceResource()
	UxInheritedMethodUnregister()
	UxInheritResources()
	UxInit_method()
	UxInstanceResource()
	UxIsInterface()
	UxIsSubclass()
	UxLoadGlobalInclude()
	UxMethodLookup()
	UxMethodRegister()
	UxMethodSignatureRegister()
	UxNewInterfaceClassId()
	UxNewSubclassId()
	UxPUT_type()
	UxPutClassResource()
	UxPutComponentRef()
	UxPutIconBitmap()
	UxPutProp()
	UxPutToolKitClass()
	UxPutUxFilename()
	UxRegister_class()
	UxType_get_op()
	UxValidateXtype()
	UxValuesOfXtype()

	Index

